
Deep Learning
Past, present and future

Prof. Gilles Louppe, Chaire NRB
g.louppe@uliege.be

1 / 36

Past

1 / 36

Perceptron Research from the 50's & 60's, clip

1 / 36

Perceptron

The Perceptron (Rosenblatt, 1957)

f(x;w) = {
1
0

if w +w x > 00
T

otherwise

2 / 36

3 / 36

The Multi-Layer Perceptron (Rumelhart et al, 1986)

4 / 36

Convolutional networks

Hubel and Wiesel, 1962

5 / 36

The Neocognitron (Fukushima, 1987)

6 / 36

Convolutional network (LeCun et al, 1989)
7 / 36

8 / 36

Convolutional Network Demo from 1993

LeCun et al, 1993

9 / 36

Learning

θ = θ − γ∇ L(θ)t+1 t θ t

10 / 36

Present

10 / 36

11 / 36

11 / 36

Algorithms Data

Software Compute engines

What has changed?

12 / 36

Deep networks

Szegedy et al, 2014

13 / 36

Applications

(Left) Image classi�cation
(Right) Biomedical image segmentation (Cytomine, 2010-2018, ULiège)

14 / 36

Soccer games analysis (Cioppa et al, 2018, ULiège)

15 / 36

ATLAS-LHC collision animation with a soundtrack

16 / 36

Analysis of scienti�c data at the LHC (Brehmer et al, 2018)

17 / 36

Autonomous Drone Navigation with Deep Learning. Flight over 250 meter F…

Autonomous drones (Smolianskiy et al, 2017)

18 / 36

NVIDIA DRIVE—GTC 2018 Demonstration

Autonomous cars (NVIDIA)

19 / 36

DQN Breakout

Learning to play video games (Mnih et al, 2013)

20 / 36

BRETT the Robot learns to put things together on his own

Learning to perform tasks (Levine et al, 2015)

21 / 36

Future

21 / 36

22 / 36

Andrej Karpathy (Director of AI, Tesla, 2017)

Neural networks are not just another classi�er, they represent the beginning of a
fundamental shift in how we write software. They are Software 2.0.

23 / 36

Software 1.0

Software 1.0
Programs are written in languages such as Python, C or Java.

They consist of explicit instructions to the computer written by a programmer.

The programmer identi�es a speci�c point in program space with some
desirable behavior.

24 / 36

Software 1.0 Software 2.0

Software 2.0
Programs are written in neural network weights

No human is involved in writing those weights!

Instead, specify constraints on the behavior of a desirable program (e.g.,
through data).

Search the program space through optimization.

25 / 36

For many real-world problems, it is often signi�cantly easier to collect the data than
to explicitly write the program.

Therefore,

programmers of tomorrow do not maintain complex software repositories,
write intricate programs or analyze their running times.

Instead, programmers become teachers. They collect, clean, manipulate, label,
analyze and visualize the data that feeds neural nets.

26 / 36

Pixel data
(e.g., visual recognition)

Audio data
(e.g., speech recognition and synthesis)

Text data
(e.g., machine translation)

System applications
(e.g., databases)

27 / 36

(Jeff Dean, Lead of Google.ai, 2017)

28 / 36

Bene�ts
Computationally homogeneous

Simple to bake in silicon

Constant running time

Constant memory use

It is highly portable

It is very agile

It is better than you

29 / 36

Modules can meld into an optimal whole (Jeff Dean, Lead of Google.ai, 2017)

30 / 36

Software 2.0 needs Software 1.0 (Sculley et al, 2015)

31 / 36

Yann LeCun (Director of AI Research, Facebook, 2018)

People are now building a new kind of software by assembling networks of
parameterized functional blocks and by training them from examples using some
form of gradient-based optimization.

An increasingly large number of people are de�ning the networks procedurally in
a data-dependent way (with loops and conditionals), allowing them to change
dynamically as a function of the input data fed to them. It's really very much like a
regular program, except it's parameterized.

32 / 36

Any Turing machine can be simulated by a recurrent neural network
(Siegelmann and Sontag, 1995)

33 / 36

Differentiable Neural Computer (Graves et al, 2016)

34 / 36

DNC solving a moving block puzzle

35 / 36

Summary
Past: Deep Learning has a long history, fueled by contributions from
neuroscience, control and computer science.

Present: It is now mature enough to enable applications with super-human
level performance, as already illustrated in many engineering disciplines.

Future: Neural networks are not just another classi�er. Sooner than later, they
will take over increasingly large portions of what Software 1.0 is responsible
for today.

36 / 36

The end.

36 / 36

