
Adversarial Games for Particle Physics

Gilles Louppe

Deep Learning for Physical Sciences workshop
December 8, 2017







Adversarial games for particle physics



I. Fast simulation



Generative adversarial networks

Ld =Ex∼p(x|θ)[d(x;φ)] − Ex∼pr (x)[d(x;φ)] + λΩ(φ)

Lg = − Ex∼p(x|θ)[d(x;φ)]

(Wasserstein GAN + Gradient Penalty)



Fast simulation

Challenges:

• How to ensure
physical properties?

• Non-uniform
geometry

• Mostly sparse

• How to scale to full
resolution?

de Oliveira et al, 2017, arXiv:1701.05927; Paganini et al, 2017, arXiv:1705.02355

https://arxiv.org/abs/1701.05927
https://arxiv.org/abs/1705.02355


Evaluation

Physics: Evaluate well-known physical
variates ML: Look at generated images

How to be sure the generator is physically correct?

Paganini et al, 2017, arXiv:1705.02355, Gulrajani et al, 2017, arXiv:1704.00028

https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/1704.00028


II. Learning to Pivot

Louppe et al, 2016, arXiv:1611.01046

https://arxiv.org/abs/1611.01046


Independence from physics variates

• Analysis often rely on the model being independent from some
physics variates (e.g., mass).

• Correlation leads to systematic uncertainties, that cannot
easily be characterized and controlled.

Shimmin et al, 2017, arXiv:1703.03507; ATL-PHYS-PUB-2017-004

https://arxiv.org/abs/1703.03507
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-004/


Independence from known unknowns

• The generation process is
often not uniquely specified
or known exactly, hence
systematic uncertainties.

• Parametrization through
nuisance parameters.

• Ideally, we would like a
classifier that is robust to
nuisance parameters.

Credits: Kyle Cranmer



Problem statement

• Assume a family of data generation processes p(X ,Y ,Z )
where

X are the data (taking values x ∈ X),
Y are the target labels (taking values y ∈ Y),
Z is an auxiliary random variable (taking values z ∈ Z).

• Z corresponds to physics variates or nuisance parameters.

• Supervised learning: learn a function f (·; θf ) : X 7→ Y.

• We want inference based on f (X ; θf ) to be robust to the
value z ∈ Z.

E.g., we want a classifier that does not change with systematic
variations, even though the data might.



Pivot

• We define robustness as requiring the distribution of f (X ; θf )
conditional on Z to be invariant with Z . That is, such that

p(f (X ; θf ) = s |z) = p(f (X ; θf ) = s |z ′)

for all z , z ′ ∈ Z and all values s ∈ S of f (X ; θf ).

• If f satisfies this criterion, then f is known as a pivotal
quantity.

• Same as requiring f (X ; θf ) and Z to be independent random
variables.



Adversarial game

Classifier f

X

data

p(signal|data)

θf

f (X ; θf )

Lf (θf )

...

p(signal|data)

Regression of Z from f ’s output

Adversary r

γ1(f (X ; θf ); θr )

γ2(f (X ; θf ); θr )

. . .

θr

...

Z

pθr (Z |f (X ; θf ))

P(γ1,γ2, . . . )

Lr (θf , θr )

Consider a classifier f built as usual, minimizing the

cross-entropy Lf (θf ) = Ex∼XEy∼Y |x [− log pθf (y |x)].

Pit f against an adversary network r producing as

output the posterior pθr(z |f (X ; θf ) = s).

Set r to minimize the cross entropy

Lr(θf , θr) = Es∼f (X ;θf )Ez∼Z |s[− log pθr(z |s)].

Goal is to solve: θ̂f , θ̂r = arg minθf maxθr Lf (θf ) −Lr(θf , θr)

Intuitively, r penalizes f for outputs that can be used to infer Z .
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In practice

• The assumption of existence of a classifier that is both
optimal and pivotal may not hold.

• However, the minimax objective can be rewritten as

Eλ(θf , θr ) = Lf (θf ) − λLr (θf , θr )

where λ controls the trade-off between the performance of f
and its independence w.r.t. Z .

Setting λ to a large value enforces f to be pivotal.
Setting λ close to 0 constraints f to be optimal.

• Tuning λ is guided by a higher-level objective (e.g., statistical
significance).



Toy example (without adversarial training)
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(Left) The conditional probability distributions
of f (X ; θf )|Z = z changes with z .

(Right) The decision surface strongly depends on X2.



Toy example (with adversarial training)
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(Left) The conditional probability distributions
of f (X ; θf )|Z = z are now (almost) invariant with z!

(Right) The decision surface is now independent of X2.



Applications

Decorrelated Jet Substructure Tagging
using Adversarial Neural Networks

Fader networks

Shimmin et al, 2017, arXiv:1703.03507; Lample et al, 2017, arXiv:1706.00409

https://arxiv.org/abs/1703.03507
https://arxiv.org/abs/1706.00409


III. Adversarial Variational
Optimization

Louppe and Cranmer, 2017, arXiv:1707.07113

https://arxiv.org/abs/1707.07113


Microscopic picture

Pencil and paper
calculable from first
principles.

Controlled approximation
of first principles.

Phenomenological model.



Macroscopic picture

Simulate interactions of outgoing particles with the detector.



Likelihood-free assumptions

Operationally,

x ∼ p(x|θ)⇔ z ∼ p(z|θ), x = g(z;θ)

where

• z provides a source of randomness;

• g is a non-differentiable deterministic function (e.g. a
computer program).

Accordingly, the density p(x|θ) can be written as

p(x|θ) =

∫
{z:g(z;θ)=x}

p(z|θ)dz

Evaluating the integral is often intractable.



Inference

Given observations x ∼ pr (x), we seek:

θ∗ = arg min
θ

ρ(pr (x), p(x|θ))



Adversarial game

Replace g with an actual scientific simulator!



Variational Optimization

min
θ

f (θ) 6 Eθ∼q(θ|ψ)[f (θ)] = U(ψ)

∇ψU(ψ) = Eθ∼q(θ|ψ)[f (θ)∇ψ log q(θ|ψ)]

Piecewise constant − sin(x)
x q(θ|ψ = (µ,β)) = N(µ, eβ)

(Similar to REINFORCE gradient estimates)



Adversarial Variational Optimization

• Replace the generative network with a non-differentiable
forward simulator g(z;θ).

• With VO, optimize upper bounds of the adversarial objectives:

Ud = Eθ∼q(θ|ψ)[Ld ] (1)

Ug = Eθ∼q(θ|ψ)[Lg ] (2)

respectively over φ and ψ.



Operationally,

x ∼ q(x|ψ)⇔ θ ∼ q(θ|ψ), z ∼ p(z|θ), x = g(z;θ)

Therefore, q(x|ψ) is the marginal
∫
p(x|θ)q(θ|ψ)dθ.

• If p(x|θ) is misspecified, q(x|ψ) will to attempt to smear the
simulator to approach pr (x).

• If not, q(x|ψ) will concentrate its mass around the true
data-generating parameters.

Entropic regularization can further be used to enforce that.



Preliminary results

Simplified simulator for
electron–positron collisions
resulting in
muon–antimuon pairs.

• Parameters: Ebeam,Gf .

• Observations:
x = cos(A) ∈ [−1, 1],
where A is the polar angle
of the outgoing muon wrt
incoming electron.
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Ongoing work

• Benchmark against alternative methods (e.g., ABC).

• Scale to a full scientific simulator.

• Control variance of the gradient estimates.



Summary

• Adversarial training = indirectly specifying complicated loss
functions.

For generation
For enforcing constraints

• Directly useful in domain sciences, such as particle physics.



Questions?

Joint work with


