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Adversarial games for particle physics
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Generative adversarial networks
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(Wasserstein GAN + Gradient Penalty)



de Oliveira et al, 2017, arXiv:1701.05927; Paganini et al, 2017, arXiv:1705.02355

Fast simulation
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Challenges:

® How to ensure
physical properties?

® Non-uniform
geometry

® Mostly sparse

® How to scale to full
resolution?



https://arxiv.org/abs/1701.05927
https://arxiv.org/abs/1705.02355

Paganini et al, 2017, arXiv:1705.02355, Gulrajani et al, 2017, arXiv:1704.00028

Evaluation
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Physics: Evaluate well-known physical
variates

DCGAN LSGAN WGAN (clipping)  WGAN-GP (ours)

Bascline (G: DCGAN, D: DCGAN)
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G: No BN and a constant number of filters, D: DCGAN

layer 512-dim ReL

No normalization in either
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Gated multiplicative nonlmemm everywhere in G and D

ML: Look at generated images

How to be sure the generator is physically correct?


https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/1704.00028
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Learning to
pivot

Louppe et al, 2016, arXiv:1611.01046

Pivot


https://arxiv.org/abs/1611.01046

Shimmin et al, 2017, arXiv:1703.03507; ATL-PHYS-PUB-2017-004

Independence from physics variates

e Analysis often rely on the model being independent from some
physics variates (e.g., mass).

e Correlation leads to systematic uncertainties, that cannot
easily be characterized and controlled.
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https://arxiv.org/abs/1703.03507
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-004/

Credits: Kyle Cranmer

Independence from known unknowns

e The generation process is
often not uniquely specified
or known exactly, hence
systematic uncertainties.

e Parametrization through
nuisance parameters.

e Ideally, we would like a
classifier that is robust to
nuisance parameters.

Incorporating Systematic Effects .
Tabulate effect of individual variations of sources of systematic uncertainty
- typically one at a time evaluated at nominal and “+ 1 0"

» use some form of interpolation to parametrize p variation in terms of
nuisance parameter a,

Events /5 GeV.
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Problem statement

e Assume a family of data generation processes p(X, Y, Z)
where
m X are the data (taking values x € X),

m Y are the target labels (taking values y € Y),
m Z is an auxiliary random variable (taking values z € Z).

e 7 corresponds to physics variates or nuisance parameters.

e Supervised learning: learn a function f(-;0¢) : X — Y.

e We want inference based on f(X;0¢) to be robust to the
value z € Z.
m E.g., we want a classifier that does not change with systematic
variations, even though the data might.



Pivot

e We define robustness as requiring the distribution of f(X;0¢)
conditional on Z to be invariant with Z. That is, such that

p(f(X;0r) = slz) = p(f(X; 07) = slz’)

for all z,z’ € Z and all values s € 8 of f(X;0¢).

e If f satisfies this criterion, then f is known as a pivotal
quantity.

e Same as requiring f(X;0¢) and Z to be independent random
variables.



Adversarial game
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Consider a classifier f built as usual, minimizing the
cross-entropy £(07) = E,xIE, .y log po, (ylx)].



Adversarial game
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Pit f against an adversary network r producing as

output the posterior pg, (z|f(X; 0f) = s). Regression of Z from 's output
Set r to minimize the cross entropy

L,(0¢,0,) = Es r(x00)E,- 25— log po, (2]5)].



Adversarial game

Classifier f

Adversary r
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Goal is to solve: 07,6, = arg ming, maxg, L¢(0r) — £,(0¢,0,)

Intuitively, r penalizes f for outputs that can be used to infer Z.



In practice

e The assumption of existence of a classifier that is both
optimal and pivotal may not hold.

e However, the minimax objective can be rewritten as
E?\(ef: er) = Lf(ef) - )\Lr(efx er)

where A controls the trade-off between the performance of f
and its independence w.r.t. Z.

m Setting A to a large value enforces f to be pivotal.
m Setting A close to O constraints f to be optimal.

e Tuning A is guided by a higher-level objective (e.g., statistical
significance).



Toy

example (without adversarial training)
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(Left) The conditional probability distributions
of f(X;0f)|Z = z changes with z.

(Right) The decision surface strongly depends on X;.



Toy example (with adversarial training)
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(Left) The conditional probability distributions
of f(X;0¢)|Z = z are now (almost) invariant with z!

(Right) The decision surface is now independent of Xj.



Shimmin et al, 2017, arXiv:1703.03507; Lample et al, 2017, arXiv:1706.00409

Applications
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Decorrelated Jet Substructure Tagging
using Adversarial Neural Networks


https://arxiv.org/abs/1703.03507
https://arxiv.org/abs/1706.00409

Louppe and Cranmer, 2017, arXiv:1707.07113

[11. Adversarial Variational
Optimization


https://arxiv.org/abs/1707.07113

Microscopic picture

Pencil and paper
calculable from first
principles.

Controlled approximation
of first principles.

Phenomenological model.



Macroscopic picture
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through CMS.

Simulate interactions of outgoing particles with the detector.



Likelihood-free assumptions
Operationally,
x~p(x|0) &z~ p(z|0),x = g(z;0)

where
e z provides a source of randomness;

e g is a non-differentiable deterministic function (e.g. a
computer program).

Accordingly, the density p(x|@) can be written as

p(x10) = J p(216)dz
{z:g(z;0)=x}

Evaluating the integral is often intractable.



Inference

Given observations x ~ p,(x), we seek:

0" =arg min p(pr(x), p(x|60))



Adversarial game

@ ﬁf z ~ py()

d(x; ¢)

T~ p(r|f) & = g(2:6)

Replace g with an actual scientific simulator!



Variational Optimization

mein f(0) < Eg_q(a14)[f(0)] = U(9)
VypU() = Eg_q(g)4)[f(0)Vy log q(0]1))]
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Piecewise constant —#

(Similar to REINFORCE gradient estimates)



Adversarial Variational Optimization

e Replace the generative network with a non-differentiable
forward simulator g(z; 9).
e With VO, optimize upper bounds of the adversarial objectives:

Uy = Ingq(ghp)[Ld] (1)
Ug = Eoq(1¢) (L] (2)

respectively over ¢ and 1.



Operationally,
x~q(x|p) < 0 ~q(6lY),z~ p(z|0), x = g(z;0)

Therefore, g(x|2)) is the marginal [ p(x|0)q(6ly)d6.

e If p(x|@) is misspecified, g(x|w) will to attempt to smear the
simulator to approach p,(x).
e If not, g(x|1p) will concentrate its mass around the true
data-generating parameters.
m Entropic regularization can further be used to enforce that.



Preliminary results

X~ p(x)
1.00 mm x~p(x|ly) y=0
m x~p(x|y) y=5
Simplified simulator for 095
electron—positron collisions e
resulting in S8BT N — qemv=0
. . 0.80 — qély) y=5
muon—antimuon pairs. sl o 0'=(209
' a a2 a3
® Parameters: Epeam, Gr. Eveam

® Observations:
x =cos(A) € [—1,1],
where A is the polar angle
of the outgoing muon wrt
incoming electron.




Ongoing work

e Benchmark against alternative methods (e.g., ABC).
e Scale to a full scientific simulator.

e Control variance of the gradient estimates.



Summary

e Adversarial training = indirectly specifying complicated loss
functions.

m For generation
m For enforcing constraints

e Directly useful in domain sciences, such as particle physics.



Questions?

Joint work with




