Teaching machines to discover particles
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How do you look for new laws?

[watch here]
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https://www.youtube.com/watch?v=b240PGCMwV0

Can we automate the scientific method?
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Particle Physics 101



Credits: Jorge Cham, PHD comics

Testing for new physics

THE THING 15, WE HAVE THIS COLLIDER...

THE MAGIC OF A COLLIDER
1S TUAT YOU CAN MAKE
KINDS OF MATTER THAT
You PON'T HAVE AROUND.

TS LIKE HAVING
A MENU...

what can i get
in the 500 GeV
vange?

ENERGY AS POSSBLE.
EVERY TIME YOU CRANK x’
ul
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http://phdcomics.com/comics/archive.php?comicid=1489

Testing for new physics

DETECTNG THE HIGGS BOSON

HOW MANY COLLI
WAPPEN FOR EACH ENERGY LEVEL:
Ky AND YOU BULD UP YOUR DATA.

*
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Credits: Jorge Cham, PHD comics
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http://phdcomics.com/comics/archive.php?comicid=1489

Testing for new physics

N
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YES WGGS
BoSON

# COLLISIONG,

ENERGY.

WHAT You NEED (S A

HUGE
AMOUNT OF DATA.

TUAT'S WHY WE RUN

THS THING 4O MILLION
TIMES/SECOND, ALL
DAY, ALL YEAR.
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Events - Fitted bkg

Credits: Jorge Cham, PHD comics
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Hypothesis test based on
the likelihood ratio

p(x|background)

p(x|background + signal)


http://phdcomics.com/comics/archive.php?comicid=1489

The scientific method

Hypothesis Conclusion

e
The Higgs boson LHC+ATLAS+CMS Discovery!

exists
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Credits: Kyle Cranmer

The Standard Model

1 )We begin with Quantum Field Theory

Theory gives detailed
2) prediction for high-
energy collisions

+ @'T9)G,  + (GiLoR+GiLoR+ he.)

mu+

3) The interaction of outgoing particles
with the detector is simulated.

e+ >100 million sensors

4) Finally, we run particle identification and
feature extraction algorithms on the simulated
data as if they were from real collisions.

~10-30 features describe interesting part
mu- -

The uniqueness of particle physics lies
in its highly precise and compact model.

This model should be leveraged by ML!



Likelihood-free inference
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The players

0 = (p,v)

Parameters

I

Parameters of interest

1 74
Nuisance parameters

Forward modeling
Generation
Simulation

Latent variables z

p(x|0)

Inference

i

Inverse problem
Unfolding
Measurement

Parameter search

X ~ pp(x)
Observations drawn
from Nature

x ~ p(x|6)
Simulated data
(a lot!)



Likelihood-free assumptions
Operationally,
x ~ p(x|0) =z ~ p(z|6),x = g(z;0)

where
e 7 provides a source of randomness;

e g is a non-differentiable deterministic function (e.g. a
computer program).

Accordingly, the density p(x|@) can be written as

p(x]6) = / p(2/8)dz
{z:9(2;0)=x}

Evaluating the integral is often intractable.
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T T T T
om " m 3m
Key:

Muon
Electron
Charged Hadron (e.g. Pion)

— — — - Neutral Hadron (e.g-Neutron}
----- Photon

i) \ N

Calorimeter Solet

Transverse sice
through CMS

Determining and evaluating all possible execution paths and all z
that lead to the observation x is not tractable.

(And even less, normalizing that thing!)
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Testing hypothesis (<@=)

Formally, physicists usually test a null @ = g by constructing the
likelihood ratio test statistic

A(D; 6p) = p(DI6o) _  IlxepP(x[60)

supgece P(P]0)  supgeo erD p(x|0)

e Most measurements and searches for
new particles are based on the
distribution of a single variable x € R. @

ATLAS
H—ZZ*—4l
\s=7TeV JLdt=451"
\s=8TeV JLdt=20716

e The likelihood p(x|0) is approximated
using 1D histograms.

e Choosing a good variable x tailored
for the goal of the experiment is the
physicist’s job.
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Likelihood-free inference (<)

Given observations x ~ p,(x), we seek:

0" = arg m;ixp(x\e)

e Histogramming p(x|@) does not scale to high dimensions.

e Can we automate or bypass the physicist's job of thinking
about a good and compact representation for x, without
losing information?

e Hint: We do not need to know p(x|@) to find 8*.
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Credits: 1506.02169

Approximating likelihood ratios with classifiers (CARL)

The likelihood ratio r(x) is invariant under the change of variable
u = s(x), provided s(x) is monotonic with 7(x):

_ p(x|6) _ p(s(x)|60)
p(x]601)  p(s(x)[61)

A classifier s trained to distinguish x ~ p(x|6p) from x ~ p(x|6;)
satisfies the condition above.

r(x)

This gives an automatic procedure for learning a good and
compact representation for x!

14 /38


https://arxiv.org/abs/1506.02169

Credits: 1506.02169

Therefore,

0" = arg m@axp(x\@)

p(x]6)

p(x(61)

= arg max p(s(x;6,6,)|6)
S D(s(x; 0,61)]61)

= arg max
0

where 0 is fixed and s(x; 0, 60;) is a family of classifiers trained to
distinguish between 0 and 6.
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https://arxiv.org/abs/1506.02169

Application to the Higgs

Preliminary work using fast detector simulation and CARL to
approximate likelihoods using full kinematic information
parameterized in coefficients of a Quantum Field Theory.

C 16 covariates
(using the CARL)

» 2 covariates

preliminary
- T ! (density estimation)

el e Equivalent to 3x more data.
(idealized, no systematic uncertainty)
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Credits: 1610.03483

Learning in implicit generative models

Likelihood-free inference can be cast into the framework of
“implicit generative models”.

- Density Estimation
by Comparison

This framework ties together:

® Approximate Bayesian
computation

Ho:p"=qo vs. p* #qp

L(0, )

® Density estimation-by-
comparison algorithms
(two sample testing,
density ratio, density Density Difference BSnsiypatiol

difference estimation) Te =D — Qo T — 5—9 —l
|
° . > ) . | _

Generative adversarial

networks Sl -
) ) R — N - / . [ & z y.wl
® Variational inference Max Mean Moment Bregman  Class Probability )
Discrepency Matching Divergence Estimation f-Divergence

X v % A

~ -

flu) ;u’logu —(u+ lﬁog(u +1)
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https://arxiv.org/abs/1610.03483

ABC in Montreal = ABC in Montreal (2014)

ABC in Montreal

NIPS 2015 Workshop; December 11, 2015
Montreal, Canada

PP Bayesian 1 (ABC) or likelihood-free (LF) methods have developed mostly beyond the radar of the machine learni
commut and diverse segment of the scientific community. This is particularly true for

nal neuroscience, computer vision, healthcare sciencesllvT & EeRUER G X

Interaction between the ABC and machine leaming community has recently started and contributed to important advances. In general, however, there
is still significant room for more intense i and on. Our p aims at being a place for this to happen.

Likelihood-free inference has become
a hot topic in machine learning!
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ICML2017 Implicit Models h - Invited Spea . ed Paper:

ICML 2017 Workshop on
Implicit Models

Workshop: 10 August, Room: Parkside 1

Workshop Aims

Probabilistic models are an important tool in machine learning. They form the basis for models that generate realistic
data, uncover hidden structure, and make predictions. Traditionally, probabilistic models in machine learning have
focused on prescribed models. Prescribed models specify a joint density over observed and hidden variables that can
be easily evaluated. The requirement of a tractable density simplifies their learning but limits their flexibility --- several
real world phenomena are better described by simulators that do not admit a tractable density. Probabilistic models
defined only via the simulations they produce are called implicit models.

Arguably starting with generative adversarial networks, research on implicit models in machine learning has exploded
in recent years. This workshop's aim is to foster a discussion around the recent developments and future directions of
implicit models.

Implicit models have many applications. They are used in ecology where models simulate animal populations over
time; they are used in phylogeny, where simulations produce hypothetical ancestry trees; they are used in [Jj\/El&]

SN e g o RV E Ty T T = M el ==, Recently, implicit models have been used to improve the

state-of-the-art in image and content generation. Part of the workshop’s focus is to discuss the commonalities among
applications of implicit models.
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Fast simulation (E=>)

e Half the LHC computing power (300000 cores) is dedicated to
producing simulated data.

e Huge savings (in time and $) if simulations can be made
faster.

e Hand-made fast simulators are being developed by physicists,
trading-off precision for speed.

Can we learn to generate data?
(i.e. can we build a fast proxy for x ~ p(x|0)?)
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Generative adversarial networks

/ O real data

T ~ Pdata(T)

1D b

Discriminator 1
Network
Generator D(z)
Network
generated

data

Li=Eap(z)[d(9(20); @) — Exp, ) d(x; ¢)]
Ly=—Lg
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Which ones are real photographs?
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Credits: 1701.05927, 1705.02355

Learning generative models (E=>)

true
-~
= e
i ok
T "-.-:'
generated
[ r.
1
- Challenges:

® How to ensure
physical properties?

® Non-uniform
geometry

® Mostly sparse

® GANs vs. VAE vs.
Normalizing Flows?
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https://arxiv.org/abs/1701.05927
https://arxiv.org/abs/1705.02355

What if the generator g in GANs isn't a neural net, but an actual
physics simulator?
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What if the generator g in GANs isn't a neural net, but an actual
physics simulator?

Usually, we cannot compute Vgd(g(z; 0); ¢), because g is
non-differentiable.

24 /38



Variational Optimization

min f(8) < Eg-q(014)[f(0)] = U(¥)
VU () = Eggeo14)[f (0)Vy log ¢(6]9)]

Piecewise constant

sin(x)
—==

201y = (1, ) = N (. e”)
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Credits: 1707.07113

Adversarial Variational Optimization

e Replace the generative network with a non-differentiable
forward simulator g(z; 9).
e With VO, optimize upper bounds of the adversarial objectives:

Ud = Egq(0)4)[Ld] (1)
Ug = Egq(o4) L] (2)

respectively over ¢ and ).
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https://arxiv.org/abs/1707.07113

Operationally, we get the marginal model:

x ~q(x|¢) = 6 ~ q(0]th), z ~ p(z]0),x = g(2; )

27 /38



Toy example: ete™ — putu~

e Simplified simulator for electron—positron collisions resulting
in muon—antimuon pairs.

e Observations: x = cos(A) € [—1, 1], where A is the polar
angle of the outgoing muon wrt incoming electron.

e Parameters: Epeam, G-
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1.05
1.0 . X~ p(x)
1.00 A ' mm x~p(x|y) y=0
mm x~p(x|ly) y=5
0.95 0.8
& 0.90 06
)
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Ebeam

0 50 100 150 200 250 300
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Powering the scientific method with Al
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Automating the scientific process

Conclusion

Most efforts are focused on automating the analysis of
experimental results to draw conclusions, assuming the hypothesis
and experiment are fixed.

Science:=

Can we also automate

the steps of hypothesis and experiments? . Tegomns
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Optimal experimental desgin

Experiment(¢) Eonclus\'on

Parameters 0 of the (standard) model are known with uncertainty
HI[O]. How to best reduce the uncertainty H[0]?
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Optimal experimental desgin

Experiment(¢) Eonc\us\'on

Parameters 0 of the (standard) model are known with uncertainty
HI[O]. How to best reduce the uncertainty H[0]?
1. Assume an experiment with parameters ¢ can be simulated.
2. Simulate the expected improvement
A(¢) = H[O] — Egaralp[ H [6data]].
m This embeds the full likelihood-free inference procedure.
3. Find ¢* = argmaxgy A(¢)

m Computationally (super) heavy.

32/38



Credits: cranmer/active_sciencing

Active sciencing

Perform
exporiment

Observed
data

Expt. config
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https://github.com/cranmer/active_sciencing

Credits: cranmer/active_sciencing

Active sciencing

——————

Petom .
‘experiment (Ee

Observed
data

Opimize.
experiment.

Proposal

]

Expected
info gain

.~®_  Danilo J. Rezende @DeepSpiker - 3m
m Replying to @KyleCranmer @glouppe @Ilukasheinrich_
dongly
You have the full loop of the scientific method in a python notebook :)
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https://github.com/cranmer/active_sciencing

Exploring the theory space

Hypothesis()) Conclusion

The Standard model admits several extensions.

Can we explore the space of theories and find
the envelope that agree with the data?

e Assume a generative model of theories,
indexed by 1.

o Assume the experiment design ¢ is fixed.

e Find {¥|p(pr(x|¢), p(x|1p, P, 0%)) < €}.
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

quality of contour
«Q
=,
o

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 4 points

A

000 02 ofo o7 100 135 1f0
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

> grid

quality of contour

random

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 5 points

000 025 ofo o7 100 135 1%
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

: grid

quality of contour

random

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 6 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is

relevant. E _actve >
m where the value of the test statistic é M o grid
(e.g., CLs) to be above/below the 27
threshold is uncertain. - ndo

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 7 points

02 04 06 08 10 12 14 0o 025 ofo o7 100 135 1%
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is

relevant. 5 active i
2. /
m where the value of the test statistic 3 % = grid
(e.g., CLs) to be above/below the 2
threshold is uncertain. CE random

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 8 points

!

0o 02 ofo o7 100 135 1%
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

quality of contour
«Q
=,
o

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 9 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is

relevant. 5 active
2. P
m where the value of the test statistic 3 % = grid
(e.g., CLs) to be above/below the 20
threshold is uncertain. CE random

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 10 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is

. active
relevant. 3~ =
m where the value of the test statistic 3 - IR
(e.g., CLs) to be above/below the 27

threshold is uncertain.

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 11 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

quality of contour
«Q
=,
o

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 12 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is

. active
relevant. 3~ =
m where the value of the test statistic 3 - IR
(e.g., CLs) to be above/below the 27

threshold is uncertain.

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 13 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is

. active
relevant. 3~ =
m where the value of the test statistic 3 - IR
(e.g., CLs) to be above/below the 27

threshold is uncertain.

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 14 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is

relevant. 5 active
2. P
m where the value of the test statistic 3 % = grid
(e.g., CLs) to be above/below the 20
threshold is uncertain. CE random

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 15 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
7

4

PC . am grid

random

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 16 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 17 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is

. active
relevant. 3~ =
m where the value of the test statistic 3 - IR
(e.g., CLs) to be above/below the 27

threshold is uncertain.

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 18 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is

relevant. 5 active
2. P
m where the value of the test statistic 3 % = grid
(e.g., CLs) to be above/below the 20
threshold is uncertain. CE random

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 19 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is

relevant. 5 active
2. P
m where the value of the test statistic 3 % = grid
(e.g., CLs) to be above/below the 20
threshold is uncertain. CE random

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 20 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
7

4

PC . am grid

random

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 21 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
7

4

PC . am grid

random

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 22 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
7

4

PC g grid

random

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 23 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 24 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

F[ y grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 27 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 28 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
7

4

PC g grid

random

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 29 points
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Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 30 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
7

4

PC g grid

random

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 31 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

e Embed and instrument the full
experimental pipeline through RECAST.

e Drastically more efficient use of
computing resources.

bayes_opt_f14 32 points

00 02 04 06 08 10 12 14

active

=

//

¥

quality of contour

random

grid

#samples

0o 025 ofo o075 100 135 1%

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 33 points

00 02 04 06 08 10 12 14 0o 02 ofo ois 100 135 1f0

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 34 points

00 02 04 06 08 10 12 14 0o 025 ofo o7 100 135 1%

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

grid

quality of contour
i

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 35 points

00 02 04 06 08 10 12 14 0o 02 ofo o7 100 135 1f0

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 36 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 37 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 38 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 39 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 40 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 41 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 42 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

grid

quality of contour
i

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 43 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

F[ y grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 44 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

grid

quality of contour
i

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 45 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

grid

quality of contour
i

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 46 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

grid

quality of contour
i

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 47 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

grid

quality of contour
i

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 48 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

grid

quality of contour
i

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 49 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

F[ y grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 50 points

0o 02 ofo o7 100 135 1%

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

F[ y grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 51 points

0o 02 ofo o7 100 135 1%

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

grid

quality of contour
i

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 52 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

grid

quality of contour
i

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 53 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

grid

quality of contour
i

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 54 points

0o 02 ofo o7 100 135 1%

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

grid

quality of contour
i

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 55 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

grid

quality of contour
i

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 56 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active

grid

quality of contour
i

e Embed and instrument the full
experimental pipeline through RECAST.

#samples o

e Drastically more efficient use of
computing resources.

bayes_opt_f14 57 points

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 58 points

0o 02 ofo o7 100 135 1%

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 59 points

0o 025 ofo o7 100 135 1%

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 60 points

000 02 ofo o7 100 135 1%

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 61 points

000 02 ofo o7 100 135 1%

35/38



Ongoing work with Lukas Heinrich and Kyle Cranmer

Finding exclusion contours

e Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

m where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

active
=

P/ g grid

quality of contour

e Embed and instrument the full
experimental pipeline through RECAST.

#samples

e Drastically more efficient use of
computing resources.

bayes_opt_f14 62 points

000 02 ofo o7 100 135 1%

35/38



Al recipe for understanding Nature

Hypothesis(ﬂ Experiment(¢) Conclusion

Find {4|p(p,(x|@), p(x|¢, $,0")) < €,V}
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Summary

e Likelihood-free inference algorithms are modern
generalizations of histogram-based inference.

e Very active field of research, which connects many related
problems and algorithms.

e Particle physics provide a unique testbed for the ambitous
development of ML/AI methods, as enabled by the precise
mechanistic understanding of physical processes.
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