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How do you look for new laws?

[watch here]
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https://www.youtube.com/watch?v=b240PGCMwV0


Can we automate the scientific method?
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Particle Physics 101
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Testing for new physics
Credits: Jorge Cham, PHD comics
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http://phdcomics.com/comics/archive.php?comicid=1489
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Testing for new physics

Hypothesis test based on
the likelihood ratio

p(x|background)

p(x|background + signal)

Credits: Jorge Cham, PHD comics
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http://phdcomics.com/comics/archive.php?comicid=1489


The scientific method

Hypothesis Experiment Conclusion

The Higgs boson

exists

LHC+ATLAS+CMS Discovery!
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The Standard Model

The uniqueness of particle physics lies
in its highly precise and compact model.

This model should be leveraged by ML!

Credits: Kyle Cranmer
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Likelihood-free inference
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The players

θ := (µ,ν)
Parameters

µ
Parameters of interest

ν
Nuisance parameters

Forward modeling
Generation
Simulation

Latent variables z

Prediction

p(x|θ)

Inference

Inverse problem
Unfolding

Measurement

Parameter search

x ∼ pr(x)
Observations drawn

from Nature

x ∼ p(x|θ)
Simulated data

(a lot!)
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Likelihood-free assumptions

Operationally,

x ∼ p(x|θ) ≡ z ∼ p(z|θ),x = g(z;θ)

where

• z provides a source of randomness;

• g is a non-differentiable deterministic function (e.g. a
computer program).

Accordingly, the density p(x|θ) can be written as

p(x|θ) =

∫
{z:g(z;θ)=x}

p(z|θ)dz

Evaluating the integral is often intractable.
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Determining and evaluating all possible execution paths and all z
that lead to the observation x is not tractable.

(And even less, normalizing that thing!)
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Testing hypothesis ( Inference )

Formally, physicists usually test a null θ = θ0 by constructing the
likelihood ratio test statistic

Λ(D;θ0) =
p(D|θ0)

supθ∈Θ p(D|θ)
=

∏
x∈D p(x|θ0)

supθ∈Θ

∏
x∈D p(x|θ)

• Most measurements and searches for
new particles are based on the
distribution of a single variable x ∈ R.

• The likelihood p(x|θ) is approximated
using 1D histograms.

• Choosing a good variable x tailored
for the goal of the experiment is the
physicist’s job.
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Likelihood-free inference ( Inference )

Given observations x ∼ pr(x), we seek:

θ∗ = arg max
θ
p(x|θ)

• Histogramming p(x|θ) does not scale to high dimensions.

• Can we automate or bypass the physicist’s job of thinking
about a good and compact representation for x, without
losing information?

• Hint: We do not need to know p(x|θ) to find θ∗.
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Approximating likelihood ratios with classifiers (CARL)

The likelihood ratio r(x) is invariant under the change of variable
u = s(x), provided s(x) is monotonic with r(x):

r(x) =
p(x|θ0)
p(x|θ1)

=
p(s(x)|θ0)
p(s(x)|θ1)

A classifier s trained to distinguish x ∼ p(x|θ0) from x ∼ p(x|θ1)
satisfies the condition above.

This gives an automatic procedure for learning a good and
compact representation for x!

Credits: 1506.02169
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https://arxiv.org/abs/1506.02169


Therefore,

θ∗ = arg max
θ
p(x|θ)

= arg max
θ

p(x|θ)

p(x|θ1)

= arg max
θ

p(s(x;θ,θ1)|θ)

p(s(x;θ,θ1)|θ1)

where θ1 is fixed and s(x;θ,θ1) is a family of classifiers trained to
distinguish between θ and θ1.

Credits: 1506.02169
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https://arxiv.org/abs/1506.02169


Application to the Higgs

Preliminary work using fast detector simulation and CARL to
approximate likelihoods using full kinematic information
parameterized in coefficients of a Quantum Field Theory.
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Learning in implicit generative models

Likelihood-free inference can be cast into the framework of
“implicit generative models”.

This framework ties together:

• Approximate Bayesian
computation

• Density estimation-by-
comparison algorithms
(two sample testing,
density ratio, density
difference estimation)

• Generative adversarial
networks

• Variational inference

Credits: 1610.03483

17 / 38

https://arxiv.org/abs/1610.03483


Likelihood-free inference has become
a hot topic in machine learning!
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Fast simulation (Prediction )

• Half the LHC computing power (300000 cores) is dedicated to
producing simulated data.

• Huge savings (in time and $) if simulations can be made
faster.

• Hand-made fast simulators are being developed by physicists,
trading-off precision for speed.

Can we learn to generate data?
(i.e. can we build a fast proxy for x ∼ p(x|θ)?)
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Generative adversarial networks

Ld =Ez∼p(z)[d(g(z;θ);φ)]− Ex∼pr(x)[d(x;φ)]

Lg = − Ld
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Which ones are real photographs?
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Learning generative models (Prediction )

Challenges:

• How to ensure
physical properties?

• Non-uniform
geometry

• Mostly sparse

• GANs vs. VAE vs.
Normalizing Flows?

Credits: 1701.05927, 1705.02355
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https://arxiv.org/abs/1701.05927
https://arxiv.org/abs/1705.02355


What if the generator g in GANs isn’t a neural net, but an actual
physics simulator?

Usually, we cannot compute ∇θd(g(z;θ);φ), because g is
non-differentiable.
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Variational Optimization

min
θ
f(θ) ≤ Eθ∼q(θ|ψ)[f(θ)] = U(ψ)

∇ψU(ψ) = Eθ∼q(θ|ψ)[f(θ)∇ψ log q(θ|ψ)]

Piecewise constant − sin(x)
x q(θ|ψ = (µ, β)) = N (µ, eβ)
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Adversarial Variational Optimization

• Replace the generative network with a non-differentiable
forward simulator g(z;θ).

• With VO, optimize upper bounds of the adversarial objectives:

Ud = Eθ∼q(θ|ψ)[Ld] (1)

Ug = Eθ∼q(θ|ψ)[Lg] (2)

respectively over φ and ψ.

Credits: 1707.07113
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https://arxiv.org/abs/1707.07113


Operationally, we get the marginal model:

x ∼ q(x|ψ) ≡ θ ∼ q(θ|ψ), z ∼ p(z|θ),x = g(z;θ)
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Toy example: e+e− → µ+µ−

• Simplified simulator for electron–positron collisions resulting
in muon–antimuon pairs.

• Observations: x = cos(A) ∈ [−1, 1], where A is the polar
angle of the outgoing muon wrt incoming electron.

• Parameters: Ebeam, Gf .
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Powering the scientific method with AI
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Automating the scientific process

Hypothesis Experiment Conclusion

Most efforts are focused on automating the analysis of
experimental results to draw conclusions, assuming the hypothesis
and experiment are fixed.

Can we also automate
the steps of hypothesis and experiments?
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Optimal experimental desgin

Hypothesis Experiment(φ) Conclusion

Parameters θ of the (standard) model are known with uncertainty
H[θ]. How to best reduce the uncertainty H[θ]?

1. Assume an experiment with parameters φ can be simulated.

2. Simulate the expected improvement
∆(φ) = H[θ]− Edata|φ[H[θ|data]].

This embeds the full likelihood-free inference procedure.

3. Find φ∗ = arg maxφ∆(φ)

Computationally (super) heavy.
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Active sciencing
Credits: cranmer/active sciencing
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https://github.com/cranmer/active_sciencing


Active sciencing
Credits: cranmer/active sciencing
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Exploring the theory space

Hypothesis(ψ) Experiment Conclusion

The Standard model admits several extensions.

Can we explore the space of theories and find
the envelope that agree with the data?

• Assume a generative model of theories,
indexed by ψ.

• Assume the experiment design φ is fixed.

• Find {ψ|ρ(pr(x|φ), p(x|ψ,φ,θ∗)) < ε}.

34 / 38



Finding exclusion contours

• Do not generate Monte Carlo a priori,
generate it on demand only where it is
relevant.

where the value of the test statistic
(e.g., CLs) to be above/below the
threshold is uncertain.

• Embed and instrument the full
experimental pipeline through RECAST.

• Drastically more efficient use of
computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
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AI recipe for understanding Nature

Hypothesis(ψ) Experiment(φ) Conclusion

Find {ψ|ρ(pr(x|φ), p(x|ψ,φ,θ∗)) < ε,∀φ}
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Summary

• Likelihood-free inference algorithms are modern
generalizations of histogram-based inference.

• Very active field of research, which connects many related
problems and algorithms.

• Particle physics provide a unique testbed for the ambitous
development of ML/AI methods, as enabled by the precise
mechanistic understanding of physical processes.
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Joint work with
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