Teaching machines to discover particles

Gilles Louppe
@glouppe

HEP seminar, Radboud University. November 2, 2017.
How do you look for new laws?

[watch here]
Can we automate the scientific method?
Particle Physics 101
Testing for new physics

The thing is, we have this collider...

The magic of a collider is that you can make kinds of matter that you don’t have around.

You take two kinds of particles and annihilate them...

What comes out doesn’t have to be a re-arrangement of what went in.

It’s kind of quantum magic where it sort of disappears into pure energy...

You can make any sort of particle for which you have enough energy.

* a force-carrying boson

It’s like having a menu...

What can I get in the 500 GeV range?

You can make anything that costs that much energy or less.

That’s why you want to have as much energy as possible.

Every time you crank up the energy, you could be exploring a whole new regime.
Testing for new physics

DETECTING THE HIGGS BOSON

FIRST, THE COLLISION HAPPENS...

IT LASTS FOR 0.00000000000000000000000000000001 SECONDS...

...AND YOU GET ONE MEASUREMENT OF THE (BOTTOM QUARK) DECAY PRODUCTS.

THEN YOU PLOT THE TOTAL ENERGY...

...AND YOU COUNT HOW MANY COLLISIONS HAPPEN FOR EACH ENERGY LEVEL:

AND YOU BUILD UP YOUR DATA...

TOTAL ENERGY OF THE REACTION
Testing for new physics

Hypothesis test based on the likelihood ratio

\[
p(x|\text{background}) \quad \frac{p(x|\text{background + signal})}{p(x|\text{background})}
\]
The scientific method

Hypothesis → Experiment → Conclusion

The Higgs boson exists

LHC+ATLAS+CMS

Discovery!
The Standard Model

\[\mathcal{L}_{\text{SM}} = \]

\[+ \frac{1}{4} W_{\mu \nu} \cdot W^{\mu \nu} - \frac{1}{4} B_{\mu \nu} B^{\mu \nu} - \frac{1}{4} C_{\mu \nu} C^{\mu \nu} \]

\[\text{kinetic energies and self-interactions of the gauge bosons} \]

\[+ \frac{1}{2} g (i \partial_\mu - \frac{1}{2} g \gamma^\mu W_\mu) L + \frac{1}{2} g (i \partial_\mu - \frac{1}{2} g \gamma^\mu Y B_\mu) R \]

\[\text{kinetic energies and electroweak interactions of fermions} \]

\[+ \frac{1}{2} \left((i \partial_\mu - \frac{1}{2} g \gamma^\mu W_\mu - \frac{1}{2} g Y B_\mu) \phi \right)^2 - V(\phi) \]

\[\text{W, Z, and Higgs masses and couplings} \]

\[+ g''(q^\mu T_q^\mu) G^q \]

\[\text{interactions between quarks and gluons} \]

\[+ \left(G_1 \phi R + G_2 \phi R + h.c. \right) \]

\[\text{fermion masses and couplings to Higgs} \]

1) We begin with Quantum Field Theory

2) Theory gives detailed prediction for high-energy collisions

 hierarchical: 2 \(\rightarrow \) \(O(10) \) \(\rightarrow \) \(O(100) \) particles

3) The interaction of outgoing particles with the detector is simulated.

 >100 million sensors

4) Finally, we run particle identification and feature extraction algorithms on the simulated data as if they were from real collisions.

 ~10-30 features describe interesting part

The **uniqueness** of particle physics lies in its highly precise and compact model.

This model should be leveraged by ML!
Likelihood-free inference
The players

\[\theta := (\mu, \nu) \]

- Parameters of interest
- Nuisance parameters

\[\mu \]
- Parameters of interest

\[\nu \]
- Nuisance parameters

Forward modeling
- Generation
- Simulation

Latent variables \(z \)

Prediction

\[x \sim p_r(x) \]
- Observations drawn from Nature

\[x \sim p(x|\theta) \]
- Simulated data (a lot!)

Inference

- Inverse problem
- Unfolding
- Measurement
- Parameter search
Likelihood-free assumptions

Operationally,

\[x \sim p(x|\theta) \equiv z \sim p(z|\theta), x = g(z; \theta) \]

where

- \(z \) provides a source of randomness;
- \(g \) is a non-differentiable deterministic function (e.g. a computer program).

Accordingly, the density \(p(x|\theta) \) can be written as

\[p(x|\theta) = \int_{\{z: g(z; \theta) = x\}} p(z|\theta) dz \]

Evaluating the integral is often intractable.
Determining and evaluating all possible execution paths and all z that lead to the observation x is not tractable.

(And even less, normalizing that thing!)
Formally, physicists usually test a null $\theta = \theta_0$ by constructing the likelihood ratio test statistic

$$\Lambda(\mathcal{D}; \theta_0) = \frac{p(\mathcal{D}|\theta_0)}{\sup_{\theta \in \Theta} p(\mathcal{D}|\theta)} = \frac{\prod_{x \in \mathcal{D}} p(x|\theta_0)}{\sup_{\theta \in \Theta} \prod_{x \in \mathcal{D}} p(x|\theta)}$$

- Most measurements and searches for new particles are based on the distribution of a single variable $x \in \mathbb{R}$.
- The likelihood $p(x|\theta)$ is approximated using 1D histograms.
- Choosing a good variable x tailored for the goal of the experiment is the physicist’s job.
Likelihood-free inference (

Given observations $x \sim p_r(x)$, we seek:

$$\theta^* = \arg \max_{\theta} p(x|\theta)$$

- Histogramming $p(x|\theta)$ does not scale to high dimensions.
- Can we automate or bypass the physicist’s job of thinking about a good and compact representation for x, without losing information?
- Hint: We do not need to know $p(x|\theta)$ to find θ^*.

Approximating likelihood ratios with classifiers (CARL)

The likelihood ratio $r(x)$ is invariant under the change of variable $u = s(x)$, provided $s(x)$ is monotonic with $r(x)$:

$$r(x) = \frac{p(x|\theta_0)}{p(x|\theta_1)} = \frac{p(s(x)|\theta_0)}{p(s(x)|\theta_1)}$$

A classifier s trained to distinguish $x \sim p(x|\theta_0)$ from $x \sim p(x|\theta_1)$ satisfies the condition above.

This gives an automatic procedure for learning a good and compact representation for x!
Therefore,

\[\theta^* = \arg \max_{\theta} p(x|\theta) \]

\[= \arg \max_{\theta} \frac{p(x|\theta)}{p(x|\theta_1)} \]

\[= \arg \max_{\theta} \frac{p(s(x; \theta, \theta_1)|\theta)}{p(s(x; \theta, \theta_1)|\theta_1)} \]

where \(\theta_1 \) is fixed and \(s(x; \theta, \theta_1) \) is a family of classifiers trained to distinguish between \(\theta \) and \(\theta_1 \).
Application to the Higgs

Preliminary work using fast detector simulation and CARL to approximate likelihoods using full kinematic information parameterized in coefficients of a Quantum Field Theory.

16 covariates
(using the CARL)

2 covariates
(density estimation)

Equivalent to 3x more data.
(idealized, no systematic uncertainty)

work with Juan Pavez, Gilles Louppe, Cyril Becot, and Lukas Heinrich; Johann Brehmer, Felix Kling, and Tilman Plehn
Likelihood-free inference can be cast into the framework of “implicit generative models”.

This framework ties together:
- Approximate Bayesian computation
- Density estimation-by-comparison algorithms (two sample testing, density ratio, density difference estimation)
- Generative adversarial networks
- Variational inference
ABC in Montreal

NIPS 2015 Workshop; December 11, 2015
Montreal, Canada

Approximate Bayesian computation (ABC) or likelihood-free (LF) methods have developed mostly beyond the radar of the machine learning community, but are important tools for a large and diverse segment of the scientific community. This is particularly true for systems and population biology, computational neuroscience, computer vision, healthcare sciences, but also many others.

Interaction between the ABC and machine learning community has recently started and contributed to important advances. In general, however, there is still significant room for more intense interaction and collaboration. Our workshop aims at being a place for this to happen.

Likelihood-free inference has become a hot topic in machine learning!
Workshop Aims

Probabilistic models are an important tool in machine learning. They form the basis for models that generate realistic data, uncover hidden structure, and make predictions. Traditionally, probabilistic models in machine learning have focused on prescribed models. Prescribed models specify a joint density over observed and hidden variables that can be easily evaluated. The requirement of a tractable density simplifies their learning but limits their flexibility --- several real world phenomena are better described by simulators that do not admit a tractable density. Probabilistic models defined only via the simulations they produce are called implicit models.

Arguably starting with generative adversarial networks, research on implicit models in machine learning has exploded in recent years. This workshop's aim is to foster a discussion around the recent developments and future directions of implicit models.

Implicit models have many applications. They are used in ecology where models simulate animal populations over time; they are used in phylogeny, where simulations produce hypothetical ancestry trees; they are used in physics to generate particle simulations for high energy processes. Recently, implicit models have been used to improve the state-of-the-art in image and content generation. Part of the workshop's focus is to discuss the commonalities among applications of implicit models.
Fast simulation (Prediction)

- Half the LHC computing power (300000 cores) is dedicated to producing simulated data.
- Huge savings (in time and $) if simulations can be made faster.
- Hand-made fast simulators are being developed by physicists, trading-off precision for speed.

Can we learn to generate data? (i.e. can we build a fast proxy for $x \sim p(x|\theta)$?)
Generative adversarial networks

\[L_d = \mathbb{E}_{z \sim p(z)} [d(g(z; \theta); \phi)] - \mathbb{E}_{x \sim p_r(x)} [d(x; \phi)] \]

\[L_g = -L_d \]
Which ones are real photographs?
Learning generative models (Prediction)

Challenges:

- How to ensure physical properties?
- Non-uniform geometry
- Mostly sparse
- GANs vs. VAE vs. Normalizing Flows?
What if the generator g in GANs isn't a neural net, but an actual physics simulator?
What if the generator \(g \) in GANs isn’t a neural net, but an actual physics simulator?

Usually, we cannot compute \(\nabla_{\theta} d(g(z; \theta); \phi) \), because \(g \) is non-differentiable.
Variational Optimization

\[
\min_{\theta} f(\theta) \leq \mathbb{E}_{\theta \sim q(\theta|\psi)}[f(\theta)] = U(\psi)
\]

\[
\nabla_{\psi} U(\psi) = \mathbb{E}_{\theta \sim q(\theta|\psi)}[f(\theta) \nabla_{\psi} \log q(\theta|\psi)]
\]

Piecewise constant \(-\frac{\sin(x)}{x}\)

\[
q(\theta|\psi = (\mu, \beta)) = \mathcal{N}(\mu, e^\beta)
\]
Adversarial Variational Optimization

- Replace the generative network with a non-differentiable forward simulator $g(z; \theta)$.
- With VO, optimize upper bounds of the adversarial objectives:

$$U_d = \mathbb{E}_{\theta \sim q(\theta | \psi)}[\mathcal{L}_d]$$ \hspace{1cm} (1)

$$U_g = \mathbb{E}_{\theta \sim q(\theta | \psi)}[\mathcal{L}_g]$$ \hspace{1cm} (2)

respectively over ϕ and ψ.
Operationally, we get the marginal model:

\[x \sim q(x|\psi) \equiv \theta \sim q(\theta|\psi), \quad z \sim p(z|\theta), \quad x = g(z; \theta) \]
Toy example: $e^+ e^- \rightarrow \mu^+ \mu^-$

- Simplified simulator for electron–positron collisions resulting in muon–antimuon pairs.
- Observations: $x = \cos(A) \in [-1, 1]$, where A is the polar angle of the outgoing muon wrt incoming electron.
- Parameters: E_{beam}, G_f.
Powering the scientific method with AI
Most efforts are focused on automating the analysis of experimental results to draw conclusions, assuming the hypothesis and experiment are fixed.

Can we also automate the steps of hypothesis and experiments?
Parameters θ of the (standard) model are known with uncertainty $H[\theta]$. How to best reduce the uncertainty $H[\theta]$?
Parameters θ of the (standard) model are known with uncertainty $H[\theta]$. How to best reduce the uncertainty $H[\theta]$?

1. Assume an experiment with parameters ϕ can be simulated.

2. Simulate the expected improvement
 \[\Delta(\phi) = H[\theta] - \mathbb{E}_{data|\phi}[H[\theta|data]]. \]
 ■ This embeds the full likelihood-free inference procedure.

3. Find $\phi^* = \arg \max_{\phi} \Delta(\phi)$
 ■ Computationally (super) heavy.
Active sciencing

- Expt config
- Perform experiment
- Expt
- Perform inference
- ABC
- Prior
- Observed data
- posterior
- Optimize experiment
- Proposal
- EIG

= ABC

= Sim

= EIG

= Info Gain

Credits: cranmer/active_sciening
Active sciencing

Danilo J. Rezende @DeepSpiker · 3m
Replying to @KyleCranmer @glouppe @lukasheinrich_
You have the full loop of the scientific method in a python notebook :)

Credits: cranmer/active_sciencing
Exploring the theory space

The Standard model admits several extensions.

Can we explore the space of theories and find the envelope that agree with the data?

- Assume a generative model of theories, indexed by ψ.
- Assume the experiment design ϕ is fixed.
- Find $\{\psi \mid \rho(p_r(x \mid \phi), p(x \mid \psi, \phi, \theta^*)) < \epsilon\}$.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.

- Embed and instrument the full experimental pipeline through RECAST.

- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand **only where it is relevant.** where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.

- Embed and instrument the full experimental pipeline through RECAST.

- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand **only where it is relevant.**
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand **only where it is relevant.**
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand **only where it is relevant.**
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.

- Embed and instrument the full experimental pipeline through RECAST.

- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.

- Embed and instrument the full experimental pipeline through RECAST.

- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand only where it is relevant.
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.
- Embed and instrument the full experimental pipeline through RECAST.
- Drastically more efficient use of computing resources.
Finding exclusion contours

- Do not generate Monte Carlo a priori, generate it on demand **only where it is relevant.**
 - where the value of the test statistic (e.g., CLs) to be above/below the threshold is uncertain.

- Embed and instrument the full experimental pipeline through RECAST.

- Drastically more efficient use of computing resources.

Ongoing work with Lukas Heinrich and Kyle Cranmer
AI recipe for understanding Nature

\[\text{Hypothesis}(\psi) \rightarrow \text{Experiment}(\phi) \rightarrow \text{Conclusion} \]

Find \[\{ \psi \mid \rho(p_r(x|\phi), p(x|\psi, \phi, \theta^*)) < \epsilon, \forall \phi \} \]
Summary

- Likelihood-free inference algorithms are modern generalizations of histogram-based inference.

- Very active field of research, which connects many related problems and algorithms.

- Particle physics provide a unique testbed for the ambitious development of ML/AI methods, as enabled by the precise mechanistic understanding of physical processes.
Joint work with