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Catch-up session for Kyle’s yersterday talk
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Background
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A few words about myself

Background:

• Training in computer science

• PhD in machine learning
Contributions to random forests

(interpretation, randomness, scalability, etc)

Machine learning for Science:

• As a PhD, I grew an interest for scientific applications of ML.

Recognition
algorithms for

biomedical images

Connectome
reconstruction

algorithms

Genome-wide
associations studies

with ML

4 / 37



Postdoc’ing at CERN + NYU

• Joined CERN, and then NYU, as a postdoc with the goal of
applying ML to particle physics data.

• Switched gears in terms of research:
Contributions in likelihood-free inference, adversarial learning, domain
adaptation, ...

Driven by particle physics applications.

• Team work with physicists and researchers in ML.
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Physics jargon vs. ML lingo

Physicists and machine learning researchers
do not speak the same language.

• Due/thanks to its large collaborations, particle physics has often siloed itself and
(re-)developed its own tools.

• This results in a barrier between physicists and outsiders, despite sometime
using the same underlying concepts.

Disclaimer. Ask if things are unclear!
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Particle Physics 101
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The scientific method

Hypothesis Experiment Conclusion

The Higgs boson

exists

LHC+ATLAS+CMS Discovery!

• The scientific method = recurrence over the sequence “hypothesis,
experiment and conclusion”.

• Conclusions are routinely automated through statistical inference, in
which machine learning methods are embedded.

• Hypothesis and experiments are usually left for the scientists to
decide.
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Testing for new physics
Credits: Jorge Cham, PHD comics
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Testing for new physics
Credits: Jorge Cham, PHD comics
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Testing for new physics

Hypothesis test based on
the likelihood ratio

p(x|background)

p(x|background + signal)

Credits: Jorge Cham, PHD comics
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The Standard Model

The uniqueness of particle physics lies
in its highly precise and compact model.

Credits: Kyle Cranmer
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Machine learning ∩ Particle physics
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The players

θ := (µ,ν)
Parameters

µ
Parameters of interest

ν
Nuisance parameters

z
Latent variables

Forward modeling
Generation
Simulation

Prediction

p(x|θ)

Inference

Inverse problem
Unfolding

Measurement
Parameter search

x ∼ pr(x)
Observations drawn

from Nature

x ∼ p(x|θ)
Simulated data

(a lot!)

12 / 37



Likelihood-free assumptions

Operationally,

x ∼ p(x|θ) ≡ z ∼ p(z|θ),x = g(z;θ)

where

• z provides a source of randomness;

• g is a non-differentiable deterministic function (e.g. a
computer program).

Accordingly, the density p(x|θ) can be written as

p(x|θ) =

∫
{z:g(z;θ)=x}

p(z|θ)µ(dz)

Evaluating the integral is often intractable.
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Determining and evaluating all possible execution paths and all z
that lead to the observation x is not tractable.

(And even less, normalizing that thing!)
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Testing hypothesis ( Inference )
Formally, physicists usually test a null θ = θ0 by constructing the
likelihood ratio test statistic

Λ(D;θ0) =
∏
x∈D

p(x|θ0)
supθ∈Θ p(x|θ)

• Most measurements and searches for
new particles are based on the
distribution of a single variable x ∈ R.

• The likelihood p(x|θ) is approximated
using 1D histograms. (Physicists love
histograms!)

• Choosing a good variable x tailored
for the goal of the experiment is the
physicist’s job.

See Glen’s talk today!
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Supervised learning ( Inference )

Setup:

• Training data {(xi, yi) ∈ X × Y|xi ∼ p(x|µ = yi)}Ni=1

• Learn a function f : X → Y.

In particle physics:

• Part of a larger analysis

• To recognize signal from background
events and build a test statistic in the
region of acceptance (e.g.,
“cut-and-count” analysis).

• To compress the data into a 1D value
(more later).

Credits: 1012.3589
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• Domain knowledge is traditionally incorporated as engineered
features.

• New paradigm: Recent successes with deep learning models
built on raw data is tickling physicists’ curiosity.

How to recast physics problems into well-studied ML problems?
How to incorporate domain knowledge?
Can we learn what these models have learned? (See Daniel’s
talk tomorrow)
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Particle physics detector as a camera

Challenges:

• 3D volume of pixels

• Non-uniform
geometry

• Mostly sparse

Images: 1612.01551
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https://arxiv.org/abs/1612.01551


Collision events as text paragraphs

Analogy:

• word → particle

• sentence → jet

• parsing → jet algorithm

• paragraph → event

Domain knowledge is used to template the structure of

the network, on a per-event basis.
QCD-aware recursive

networks

Credits: 1702.00748
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Domain adaptation, Transfer learning ( Inference )

Setup:

• Test data {xi ∼ pr(x)}Ni=1

• pr(x) 6= p(x|θ)

In particle physics:

• How does one build a model from simulated data that
transfers well-enough to the true data distribution?

• How does one ensure the model does not exploit simulation
artefacts?

Attend Michael’s talk on Saturday!
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Learning under uncertainty ( Inference )

• Despite the precision of the SM, we still have to deal with:

statistical uncertainties (inherent fluctuations)
systematic uncertainties (the known unknowns of the model)

• Uncertainty is usually formulated as nuisance parameters ν.

With adversarial training, force the model
to be independent of ν.

Add ν as an input to the model and profile
it out later.

When to use one strategy over the other?

Credits: 1611.01046, 1601.07913
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Likelihood-free inference ( Inference )

Given observations x ∼ pr(x), we seek:

θ∗ = arg max
θ
p(x|θ)

• Histogramming p(x|θ) does not scale to high dimensions.

• Can we automate or bypass the physicist’s job of thinking
about a good and compact representation for x, without
losing information?

• Hint: We do not need to know p(x|θ) to find θ∗.
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Approximating likelihood ratios with classifiers

The likelihood ratio r(x) is invariant under the change of variable
u = s(x), provided s(x) is monotonic with r(x):

r(x) =
p(x|θ0)
p(x|θ1)

=
p(s(x)|θ0)
p(s(x)|θ1)

A classifier s trained to distinguish x ∼ p(x|θ0) from x ∼ p(x|θ1)
satisfies the condition above.

This gives an automatic procedure for learning a good and
compact representation for x!

Credits: 1506.02169
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Therefore,

θ∗ = arg max
θ
p(x|θ)

= arg max
θ

p(x|θ)

p(x|θ1)

= arg max
θ

p(s(x;θ,θ1)|θ)

p(s(x;θ,θ1)|θ1)

where θ1 is fixed and s(x;θ,θ1) is a family of classifiers trained to
distinguish between θ and θ1.

Credits: 1506.02169
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Learning in implicit generative models

Likelihood-free inference can be cast into the framework of
“implicit generative models”.

This framework ties together:

• Approximate Bayesian
computation

• Density estimation-by-
comparison algorithms
(two sample testing,
density ratio, density
difference estimation)

• Generative adversarial
networks

• Variational inference

Credits: 1610.03483
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Hot topic in machine learning! 26 / 37



Fast simulation (Prediction )

• Half the LHC computing power (300000 cores) is dedicated to
producing simulated data.

• Huge savings (in time and $) if simulations can be made
faster.

• Hand-made fast simulators are being developed by physicists,
trading-off precision for speed.

Can we learn to generate data?
(i.e. can we build a fast proxy for x ∼ p(x|θ)?)
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Learning generative models (Prediction )

Challenges:

• How to ensure
physical properties?

• Non-uniform
geometry

• Mostly sparse

• GANs vs. VAE vs.
Normalizing Flows?

Credits: 1701.05927, 1705.02355

28 / 37

https://arxiv.org/abs/1701.05927
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How to evaluate generative models?

Physics: Evaluate well-known physical
variates ML: Look at generated images

This is not satisfying.
Can’t we do better from a methodological standpoint?

(Some first steps at 1511.01844)

Credits: 1705.02355, 1704.00028
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https://arxiv.org/abs/1511.01844
https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/1704.00028


Outlooks
(a thought experiment)
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Automating the scientific process

Hypothesis Experiment Conclusion

Most efforts are focused on automating the analysis of
experimental results to draw conclusions, assuming the hypothesis
and experiment are fixed.

Can we also automate
the steps of hypothesis and experiments?
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Optimal experimental desgin

Hypothesis Experiment(φ) Conclusion

Parameters θ of the (standard) model are known with uncertainty
H[θ]. How to best reduce the uncertainty H[θ]?

1. Assume an experiment with parameters φ can be simulated.

2. Simulate the expected improvement
∆(φ) = H[θ]− Edata|φ[H[θ|data]].

This embeds the full likelihood-free inference procedure.

3. Find φ∗ = arg maxφ ∆(φ)

Computationally (super) heavy.

Connections to:

• Bayesian optimization

• Optimal experimental design

• Reinforcement learning (for a sequence of experiments)
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Active sciencing
Credits: cranmer/active sciencing
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Active sciencing
Credits: cranmer/active sciencing
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Exploring the theory space

Hypothesis(ψ) Experiment Conclusion

The Standard model admits several extensions.

Can we explore the space of theories and find
the envelope that agree with the data?

• Assume a generative model of theories,
indexed by ψ.

• Assume the experiment design φ is fixed.

• Find {ψ|ρ(pr(x|φ), p(x|ψ,φ,θ∗)) < ε}.
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AI recipe for understanding Nature

Hypothesis(ψ) Experiment(φ) Conclusion

Find {ψ|ρ(pr(x|φ), p(x|ψ,φ,θ∗)) < ε,∀φ}
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Summary
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Why collaborating with physicists?

• Contribute to the understanding of the Universe.

• Open methodological challenges.

• Test bed for developing ambitious ML/AI methods, as enabled
by the precise mechanistic understanding of physical processes.

• Core problems in particle physics transfer to other fields of
science (likelihood-free inference, domain adaptation,
optimization, etc).
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