Teaching machines to discover particles
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A few words about myself
Background:

e Training in computer science

e PhD in machine learning
m Contributions to random forests
(interpretation, randomness, scalability, etc)

Machine learning for Science:

e As a PhD, | grew an interest for scientific

g ksl s
Recognition Connectome
algorithms for reconstruction

biomedical images algorithms

applications of ML.

Genome-wide
associations studies
with ML
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Postdoc’ing at CERN + NYU

e Joined CERN, and then NYU, as a postdoc with the goal of
applying ML to particle physics data.

e Switched gears in terms of research:

B Contributions in likelihood-free inference, adversarial learning, domain
adaptation, ...

m Driven by particle physics applications.

e Team work with physicists and researchers in ML.

3409
o086
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Physics jargon vs. ML lingo

Physicists and machine learning researchers
do not speak the same language.

Sl /V,N/wk; \C(ZV/«L) o - F(w, /xyw).h!

/ F(uwa{é 24

® Due/thanks to its large collaborations, particle physics has often siloed itself and
(re-)developed its own tools.

® This results in a barrier between physicists and outsiders, despite sometime
using the same underlying concepts.

Disclaimer. Ask if things are unclear!
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Particle Physics 101
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The scientific method

Hypothesis Conclusion

The Higgs boson LHC+ATLAS+CMS

exists

Discovery!

o The scientific method = recurrence over the sequence “hypothesis,
experiment and conclusion”.

e Conclusions are routinely automated through statistical inference, in
which machine learning methods are embedded.

e Hypothesis and experiments are usually left for the scientists to
decide.
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Credits: Jorge Cham, PHD comics

Testing for new physics

THE THING 15, WE HAVE THIS COLLIDER...

THE MAGIC OF A COLLIDER
1S TUAT YOU CAN MAKE
KINDS OF MATTER THAT
You PON'T HAVE AROUND.

TS LIKE HAVING
A MENU...

what can i get
in the 500 GeV
vange?

ENERGY AS POSSBLE.
EVERY TIME YOU CRANK x’
ul
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http://phdcomics.com/comics/archive.php?comicid=1489

Testing for new physics

DETECTNG THE HIGGS BOSON

HOW MANY COLLI
WAPPEN FOR EACH ENERGY LEVEL:
Ky AND YOU BULD UP YOUR DATA.

*
X x
% x B X

x x
P S *
. Kxx’;x

A

Credits: Jorge Cham, PHD comics
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http://phdcomics.com/comics/archive.php?comicid=1489

Testing for new physics

N
BosoN

YES WGGS
BoSON

# COLLISIONG,

ENERGY.

WHAT You NEED (S A

HUGE
AMOUNT OF DATA.

TUAT'S WHY WE RUN

THS THING 4O MILLION
TIMES/SECOND, ALL
DAY, ALL YEAR.

doReE CUM B 2012

Events / 2 GeV

Events - Fitted bkg

Credits: Jorge Cham, PHD comics

E ATLAS E
000> *  Data2011:2012 s
£ SM Higgs boson m,=126.8 GeV (i) ]
F Bkg (4th order polynomial) 1
so00[— -
r o ]
000~ i
L \s:7TeVILdl:48(b' u|
2000/ B
C \s:sTe\/J’Ld(:znﬂb' |
a00f- E
= L)/\\»
200F- + E
100E- E
iy NLATPE
B T3N BLE AR ARSI RS
200E- E
1 7o g = T 75
m,, [GeV]

Hypothesis test based on
the likelihood ratio

p(x|background)

p(x|background + signal)


http://phdcomics.com/comics/archive.php?comicid=1489

Credits: Kyle Cranmer

The Standard Model

1 )We begin with Quantum Field Theory

+

2 Theory gives detailed
) prediction for high-
+ 7" T.9) G?, + (G\LoR +GaLo R+ h.c.) energy collisions

ntcractom b d ghaons

hierarchical: 2 = O(10) = O(100) particles

)The interaction of outgoing particles
with the detector is simulated.
e+ >100 million sensors

Finally, we run particle identification and

feature extraction algorithms on the simulated

data as if they were from real collisions.
~10-30 features describe interesting part

The uniqueness of particle physics lies
in its highly precise and compact model.
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Machine learning N Particle physics
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The players

6 := (p,v)

Parameters

7

Parameters of interest

1 4
Nuisance parameters

Z
Latent variables

Forward modeling
Generation
Simulation

p(x|0)

< Inference

Inverse problem
Unfolding
Measurement
Parameter search

X ~ pr(X)

Observations drawn

from Nature

x ~ p(x|6)
Simulated data
(a lot!)
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Likelihood-free assumptions
Operationally,
x ~ p(x|0) =z ~ p(z|6),x = g(z;0)

where
e 7 provides a source of randomness;

e g is a non-differentiable deterministic function (e.g. a
computer program).

Accordingly, the density p(x|@) can be written as

pixio)= [ plalon(in

Evaluating the integral is often intractable.
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Légende: Muon

Electron
Hadron chargé (ex. Pion)

— — — — Hadron neutre (ex. Neutron)
------ Phaoton

\\\\

I U U A = I
Trajectographe : b
au silicium : s
Calorimétre s |
électromagnetique

Calorimétre Solénaide +

hadronique superconducteur Culasse de retour de I'aimant
m
1

avec des chambres a muons

om m m 3m 4m Sm ém
1 1 1 1

Determining and evaluating all possible execution paths and all z
that lead to the observation x is not tractable.

(And even less, normalizing that thing!)
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Testing hypothesis (<@=)
Formally, physicists usually test a null @ = 8y by constructing the
likelihood ratio test statistic

AD;60) = ]

x€eD

p(x|600)
supgce P(x(0)

e Most measurements and searches for
new particles are based on the 3 wf + o
distribution of a single variable x € R. it =

ATLAS
H—ZZ*—4l
\s=7TeV JLdt=451b"
g Vs=8TeV JLai=207m"

e The likelihood p(x|@) is approximated
using 1D histograms. (Physicists love
histograms!)

e Choosing a good variable x tailored
for the goal of the experiment is the et
physicist’s job.

See Glen'’s talk today!
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Credits: 1012.3589

Supervised learning (<@=1)

Setup:
e Training data {(x;,y:) € X x Y|x; ~ p(x|p = y;)}
e Learn a function f: X — ).

N
=1

In particle physics:

e Part of a larger analysis

py)
<

e To recognize signal from background o e o roms
events and build a test statistic in the
region of acceptance (e.g.,
“cut-and-count” analysis).

1 p(yls)
plylb)

e To compress the data into a 1D value O S R B
(more later).

16 /37


https://arxiv.org/abs/1012.3589

e Domain knowledge is traditionally incorporated as engineered

features.

e New paradigm: Recent successes with deep learning models

built on raw data is tickling physicists' curiosity.
m How to recast physics problems into well-studied ML problems?

m How to incorporate domain knowledge?
m Can we learn what these models have learned? (See Daniel’s

talk tomorrow)
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Images: 1612.01551

Particle physics detector as a camera

Challenges:
® 3D volume of pixels

® Non-uniform
geometry

® Mostly sparse

pre-process

convolutional layer dense layer

quark jet

doddoobon

gluon jet

max-pooling

x3


https://arxiv.org/abs/1612.01551

Collision events as text paragraphs

cleverness other  kind — intelligent humor

Analogy:
® word — particle
® sentence — jet
® parsing — jet algorithm
°

paragraph — event

Domain knowledge is used to template the structure of

the network, on a per-event basis.

Credits: 1702.00748
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QCD-aware recursive
networks
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https://arxiv.org/abs/1702.00748

Domain adaptation, Transfer learning (<&==)

Setup:
o Test data {x; ~ p, (%)},
° pr(X> 7& p(X’0>

In particle physics:
e How does one build a model from simulated data that
transfers well-enough to the true data distribution?

e How does one ensure the model does not exploit simulation
artefacts?

Attend Michael’s talk on Saturday!
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Credits: 1611.01046, 1601.07913

Learning under uncertainty (<@=)

e Despite the precision of the SM, we still have to deal with:
m statistical uncertainties (inherent fluctuations)
m systematic uncertainties (the known unknowns of the model)
e Uncertainty is usually formulated as nuisance parameters v.

Classifer £ Adversary ¢ ,

Mirixian) e,;—l— 4
SELLALLH
M | fxon UL,
— o LIS X
g Sx1x20)
,,,,,, X2
o P Background
4. my =500
Ll [E2 AIZ==) ous
3 AAX)IZ=0)

=
=
3 my =750
1 my =1

30T HAX)Z= +0)

=

o002

Fraction of events/5 GeV

1ol P epoRST
ol f ot
o —s 57 s e f s0 1000 mu:‘;usevy 2000 200 2000
With adversarial training, force the model Add v as an input to the model and profile
to be independent of v. it out later.

When to use one strategy over the other?
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https://arxiv.org/abs/1611.01046
https://arxiv.org/abs/1601.07913

Likelihood-free inference (<)

Given observations x ~ p,(x), we seek:

0" = arg m;ixp(x\e)

e Histogramming p(x|@) does not scale to high dimensions.

e Can we automate or bypass the physicist's job of thinking
about a good and compact representation for x, without
losing information?

e Hint: We do not need to know p(x|@) to find 8*.



Credits: 1506.02169

Approximating likelihood ratios with classifiers

The likelihood ratio r(x) is invariant under the change of variable
u = s(x), provided s(x) is monotonic with 7(x):
p(x[60) _ p(s(x)[60)
r(x) = =
%)= 8~ psol6)

A classifier s trained to distinguish x ~ p(x|6p) from x ~ p(x|6;)
satisfies the condition above.

This gives an automatic procedure for learning a good and
compact representation for x!
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https://arxiv.org/abs/1506.02169

Credits: 1506.02169

Therefore,

0" = arg m@axp(x\@)

p(x]6)

p(x(61)

= arg max p(s(x;6,6,)|6)
S D(s(x; 0,61)]61)

= arg max
0

where 0 is fixed and s(x; 0, 60;) is a family of classifiers trained to
distinguish between 0 and 6.
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https://arxiv.org/abs/1506.02169

Credits: 1610.03483

Learning in implicit generative models

Likelihood-free inference can be cast into the framework of
“implicit generative models”.

- Density Estimation
by Comparison

This framework ties together:

® Approximate Bayesian
computation

Ho:p"=qo vs. p* #qp

L(0, )

® Density estimation-by-
comparison algorithms
(two sample testing,
density ratio, density Density Difference BSnsiypatiol

difference estimation) Te =D — Qo T — 5—9 —l
|
° . > ) . | _

Generative adversarial

networks Sl -
) ) R — N - / . [ & z y.wl
® Variational inference Max Mean Moment Bregman  Class Probability )
Discrepency Matching Divergence Estimation f-Divergence

X v % A

~ -

flu) ;u’logu —(u+ lﬁog(u +1)
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https://arxiv.org/abs/1610.03483

ICML2017 Implicit Models . h - Invite

ICML 2017 Workshop on
Implicit Models

Workshop: 10 August, Room: Parkside 1

Workshop Aims

Probabilistic models are an important tool in machine learning. They form the basis for models that generate
realistic data, uncover hidden structure, and make predictions. Traditionally, probabilistic models in machine
learning have focused on prescribed models. Prescribed models specify a joint density over observed and hidden
variables that can be easily evaluated. The requirement of a tractable density simplifies their learning but limits
their flexibility — several real world phenomena are better described by simulators that do not admit a tractable
density. Probabilistic models defined only via the simulations they produce are called implicit models,

Arguably starting with generative adversarial networks, research on implicit models in machine learning has
exploded in recent years. This workshop's aim is to foster a discussion around the recent developments and future
directions of implicit models

implicit models have many applications. They are used in ecology where models simulate animal populations over
time; they are used in phylogeny, where simulations produce hypothetical ancestry trees; they are used in physics
to generate particle simulations for high energy processes. Recently, implicit models have been used to improve
the state-of-the-art in image and content generation. Part of the workshop's focus is to discuss the commonalities
among applications of implicit models.

Of particular interest at this workshop is to unite fields that work on implicit models. For example:

» Generative adversarial networks (3 NIPS 2016 workshop) are implicit models with an adversarial training
scheme.

= Recent advances in variational inference (a NIFS 2015 and 2016 workshop) have leveraged implicit models for
more accurate approximations.

= Approximate Bayesian computation (a NIPS 2015 workshop) focuses on posterior inference for models with
implicit likelinoods.

= Learning implicit models is deeply connected to two sample testing, density ratio and density difference
estimation

We hope to bring together these different views on implicit models, identifying their core challenges and
combining their innovations.

Hot topic in machine learning!

6
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Fast simulation (E=>)

e Half the LHC computing power (300000 cores) is dedicated to
producing simulated data.

e Huge savings (in time and $) if simulations can be made
faster.

e Hand-made fast simulators are being developed by physicists,
trading-off precision for speed.

Can we learn to generate data?
(i.e. can we build a fast proxy for x ~ p(x|0)?)
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Credits: 1701.05927, 1705.02355

Learning generative models (E=>)

true
-~
= e
i ok
T "-.-:'
generated
[ r.
1
- Challenges:

® How to ensure
physical properties?

® Non-uniform
geometry

® Mostly sparse

® GANs vs. VAE vs.
Normalizing Flows?
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https://arxiv.org/abs/1701.05927
https://arxiv.org/abs/1705.02355

Credits: 1705.02355, 1704.00028

How to evaluate generative models?

Physics: Evaluate well-known physical
variates

DCGAN LSGAN WGAN (clipping)  WGAN-GP (ours)

Baseline (G: DCGAN, D

G: No BN and a constant number of filters, D: DCGAN

G: tlayer 512-dim ReLU

No normalization in either G or D

“ﬂﬁﬁ%%

Gated multiplicative nonlinearities everywhere in G and D

101-layer ResNet G and D

ML: Look at generated images

This is not satisfying.
Can't we do better from a methodological standpoint?
(Some first steps at 1511.01844)
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https://arxiv.org/abs/1511.01844
https://arxiv.org/abs/1705.02355
https://arxiv.org/abs/1704.00028

Outlooks
(a thought experiment)
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Automating the scientific process

Conclusion

Most efforts are focused on automating the analysis of
experimental results to draw conclusions, assuming the hypothesis
and experiment are fixed.

Science:=

Can we also automate

the steps of hypothesis and experiments? . Tegomns
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Optimal experimental desgin

Experiment(¢p) Conclusion

Parameters 0 of the (standard) model are known with uncertainty
HI[O]. How to best reduce the uncertainty H[0]?

1. Assume an experiment with parameters ¢ can be simulated.
2. Simulate the expected improvement
A(¢) = H[O] — Eqara) [ H [0|data]].
m This embeds the full likelihood-free inference procedure.
3. Find ¢* = argmaxg A(¢)

m Computationally (super) heavy.

Connections to:
® Bayesian optimization
® Optimal experimental design
® Reinforcement learning (for a sequence of experiments)
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Credits: cranmer/active_sciencing

Active sciencing

Perform
exporiment

Observed
data

Expt. config
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https://github.com/cranmer/active_sciencing

Credits: cranmer/active_sciencing

Active sciencing

——————

Petom .
‘experiment (Ee

Observed
data

Opimize.
experiment.

Proposal

]

Expected
info gain

.~®_  Danilo J. Rezende @DeepSpiker - 3m
m Replying to @KyleCranmer @glouppe @Ilukasheinrich_
dongly
You have the full loop of the scientific method in a python notebook :)
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https://github.com/cranmer/active_sciencing

Exploring the theory space

Hypothesis() Conclusion

The Standard model admits several extensions.

Can we explore the space of theories and find
the envelope that agree with the data?

e Assume a generative model of theories,
indexed by 1.

o Assume the experiment design ¢ is fixed.

o Find {4|p(p,(x|0), p(x|2h, $,0%)) < €}.
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Al recipe for understanding Nature

Hypothesis(ﬂ Experiment(¢) Conclusion

Find {4|p(p,(x|@), p(x|¢, $,0")) < €,V}
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Summary
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Why collaborating with physicists?

Contribute to the understanding of the Universe.

Open methodological challenges.

Test bed for developing ambitious ML/Al methods, as enabled
by the precise mechanistic understanding of physical processes.

Core problems in particle physics transfer to other fields of
science (likelihood-free inference, domain adaptation,
optimization, etc).
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