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Likelihood-free assumptions
Operationally,
x ~ p(x|0) =z ~ p(z|6),x = g(z;0)

where
e 7 provides a source of randomness;
e g is a non-differentiable deterministic function (e.g. a
computer program).

Accordingly, the density p(x|@) can be written as

pixio)= [ plalon(in

Evaluating the integral is often intractable.



Problem statement

Given observations x ~ p,(x), we seek:

6" = arg min p(p,(x), p(x(6))



Generative Adversarial Networks

/ O real data

T ~ Pdata(T)
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What if g isn’t a neural net, but a non-differentiable simulator?



Variational Optimization

min f(8) < Eg-q(014)[f(0)] = U(¥)
VU () = Eggeo14)[f (0)Vy log ¢(6]9)]

Piecewise constant —Si"iéx) g0 = (1, B)) = N(u, )



Adversarial Variational Optimization

e Replace the generative network in a non-differentiable forward
simulator g(z;8).

e With VO, optimize upper bounds of the adversarial objectives:

Ua = Eg~q(o/y)[Lal (1)

Uy = Egq(o19)Lo] (2)

respectively over ¢ and ).
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Operationally, we get the marginal model:

X~ q(x,9) =0~ q(0|Y),z ~ p(z]0),x = g(z;0)
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Summary

e We provide a new likelihood-free inference algorithm:

m That works for non-differentiable forward simulators.
m Combines adversarial training with variational optimization.

e Needs further validation on realistic simulators.



