QCD-aware Recursive Neural Networks
for Jet Physics
arXiv:1702.00748

Gilles Louppe, Kyunghyun Cho, Cyril Becot, Kyle Cranmer

NYU

https://arxiv.org/abs/1702.00748

A machine learning perspective

Kyle's talks on QCD-aware recursive nets:

® Theory Colloquium, CERN, May 24,
https://indico.cern.ch/event/640111/

e DS@HEP 2017, Fermilab, May 10,
https://indico.fnal.gov/
conferenceDisplay.py?confId=13497

® Jet substructure and jet-by-jet tagging, CERN,
April 20,
https://indico.cern.ch/event/633469/

e Statistics and ML forum, CERN, February 14,

https://indico.cern.ch/event/613874/
contributions/2476427/

Today: the inner mechanisms of recursive nets for jet physics.

/19

https://indico.cern.ch/event/640111/
https://indico.fnal.gov/conferenceDisplay.py?confId=13497
https://indico.fnal.gov/conferenceDisplay.py?confId=13497
https://indico.cern.ch/event/633469/
https://indico.cern.ch/event/613874/contributions/2476427/
https://indico.cern.ch/event/613874/contributions/2476427/

Neural networks 101

Goal = Function approximation
e Learn a map from x to y based solely
on observed pairs
e Potentially non-linear map from x to y

e x and y are fixed dimensional vectors

Model = Multi-layer perceptron (MLP)
e Parameterized composition f(+;0) of
non-linear transformations
e Stacking transformation layers allows
to learn (almost any) arbitrary highly
non-linear mapping

Credits: Lecun et al, 2015

Output units () O

Hidden units H2

Hidden units H1 .

Input units .

https://www.nature.com/nature/journal/v521/n7553/full/nature14539.html

Learning

e Learning by optimization

e Cost function

N
Z Yiy (%0

e Stochastic gradient descent optimization
Om:=0m-1—VeJ(0m_1;Bm)

where B, € D is a random subset of D.

How does one derive Vg J(0)7?

19

Credits: Goodfellow et al, 2016. Section 6.5.

Computational graphs

fx;0 = (WO W) = WP relu(WPx) (simplified 1-layer MLP)

J(8 = (W, W) = e + A (Z (W) + (w,ﬁij)
i\j

http://www.deeplearningbook.org/

Backpropagation

e Backpropagation = Efficient computation of VgJ(0)
e Implementation of the chain rule for the (total) derivatives

o Applied recursively from backward by walking the
computational graph from outputs to inputs

dJ - 0J dJM[_E 0J du(g)
dW(l) o aJMLE dW(l) au(g’ dW(l)
dImLe
dw 1)
du(®
dw 1)

=... (recursive case)

(recursive case)

6/19

Recurrent networks

Setup
e Sequence x = (X1, X2, ...y Xr)
m E.g., a sentence given as a chain of words

e The length of each sequence may vary

Model = Recurrent network

e Compress x into a single vector by recursively
applying a MLP with shared weights on the
sequence, then compute output.

o Alt) — f(h(tfl))x(t);e)

e 0=g(hl";0)

I

0,0:0,L0,0

How does one backpropagate through the cycle?

19

Credits: Goodfellow et al, 2016. Section 10.2.

Backpropagation through time

e Unroll the recurrent computational graph through time

e Backprop through this graph to derive gradients

unroll
—_—

http://www.deeplearningbook.org/

This principle generalizes to any kind of (recursive or iterative)
computation that can be unrolled into a directed acyclic
computational graph.

(That is, to any program!)

9/19

Credits: Goodfellow et al, 2016. Section 10.6

Recursive networks

Setup
e Xx is structured as a tree
m E.g., a sentence and its parse tree

e The topology of each training input may vary

Model = Recursive networks
e Compress x into a single vector by recursively
applying a MLP with shared weights on the
tree, then compute output.
v(xt:0) if tis a leaf
[] h(t) =
f(httere) | pltighe): 9) otherwise

e 0=g(h;0)

10/19

http://www.deeplearningbook.org/

Credits: pytorch.org/about

Dynamic computational graphs

e Most frameworks (TensorFlow, Theano, Caffee or CNTK)
assume a static computational graph.

e Reverse-mode auto-differentiation builds computational
graphs dynamically on the fly, as code executes.

m One can change how the network behaves (e.g. depending on
the input topology) arbitrarily with zero lag or overhead.
m Available in autograd, Chainer, PyTorch or DyNet.

W, h W, 5%

from torch.autograd import Variable

x = Variable(torch.randn(l, 10)) @ @
prev_h = Variable (torch.randn(l, 20))

W_h = Variable (torch.randn (20, 20))
W x = Variable (torch.randn (20, 10)) .
= i2h (Add) h2h
i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())

next h = i2h + h2h
next h = next h.tanh()

next_h.backward(torch.ones (1, 20))

next_h

11/19

http://pytorch.org/about/

Credits: Neubig et al, 2017

Operation batching

e Distinct per-sample topologies make it difficult to vectorize
operations.

e However, in the case of trees, computations can be performed
in batch level-wise, from bottom to top.

[0000] [©000| 0000 [@080]
1) x._)\ x:‘“ x\‘”

‘Teess}

H)000]b.‘ .0..'1! ..0.‘”
[0cc00Q] [0e00] [@060] [©0 Xi X2 X5 e ‘
e e P e H T padding

On-the-fly operation batching (in DyNet)

12/19

https://arxiv.org/abs/1705.07860

From sentences to jets

This hlm

@/\@@/

does n't care

a bou‘r

o1
& \® ®/ o ®/
wit any
® © O)
cleverness other kind 1Ith"-“1£:i‘11t humor

Analogy:
e word — particle
e sentence — jet
e parsing — jet algorithm

13/19

Jet topology

e Use sequential recombination jet algorithms (kt, anti-kT, etc)
to define computational graphs (on a per-jet basis).

e The root node in the graph provides a fixed-length embedding
of a jet, which can then be fed to a classifier.

e Path towards ML models with good physics properties.

A jet structured as a tree by the kT recombination algorithm

14 /19

QCD-aware recursive neural networks

Simple recursive activation: Each node k
combines a non-linear transformation wuy of the
4-momentum o, with the left and right

embeddings hy, and hy,.

uy if k is a leaf

jet

hiet — h,kL

k o | W, hJ:t + by, otherwise
R

ug
uy = o (Wuglok) + bu)

v; if k is a leaf
o, — i(k)
O, + Ok otherwise

Classifier

Jet embedding

F)

|

PEANN

e

Vi,

15/19

QCD-aware recursive neural networks Aty

Gated recursive activation: Each node actively [
selects, merges or propagates up the left, right

or local embeddings as enabled with reset and /}‘R

update gates r and z. (Similar to a GRU.)

g

b
o
=
"
uy if k is a leaf E)t;
hJ',;Et —{zy O Bft +2z © hJ:Z+ otherwise
r jet
it T O by,
jet _ A jet .
™ =0 | W rR@thR + by -
h"”(t-}
L v O ug 1 i
ﬁjet
ZH hjket
z) k jet
= softmax | W, AL+ b, = h
ZR hiet g *
ZN kr %
uy 5 - . -
Z gt hiet |
et H ko, kg
h! 5 l
r; _kL - !
rr | = sigmoid | W, thEt + by x * f,\ :
ry R I |
1 I
1 1

VioVz o YNi o 15/19

Jet-level classification results

W-jet tagging example (data from 1609.00607)

On images, RNN has similar performance to
previous CNN-based approaches.

® |mproved performance when working with

calorimeter towers, without image pre-processing.

® Working on truth-level particles led to significant
improvement.

® Choice of jet algorithm matters.

— particles
— towers
= images

107 :]
particleg

£

P Y COO O TSNS N _

- towers

images

01 02 03 04 05 06 07 08 09 1.0
Signal efficiency

[Tnput [Architecture] _ROC AUC__| R._son
Projected into images
MaxOut | 0.8418
ke 0.8321 + 0.0025 [12.7 + 0.4

towers | ke (gated) | 0.8277 £ 0.0028 | 12.4 £ 0.3

Without image preprocessing
Towers N 0.7644 6.70
towers | mass + 21 | 0.8212 11.31
towers Fe 0.8807 = 0.0010 | 24.1 £ 0.6
towers C/A 0.8831 = 0.0010 | 24.2 % 0.7
towers | anti-k | 0.8737 £ 0.0017 | 22.3 £ 0.8

towers | ascpr | 0.8835 £ 0.0009 |26.2 £ 0.7
towers | desc-pr |0.8838 = 0.0010| 25.1 + 0.6
towers | random | 0.8704 % 0.0011 | 20.4 + 0.3
particles ke 0.9185 = 0.0006 | 68.3 = 1.8
particles| C/A [0.9192 + 0.0008| 68.3 £ 3.6
particles| anti-k | 0.9096 £ 0.0013 | 51.7 £ 3.5
particles| asc-pr | 0.9130 + 0.0031 | 52.5 + 7.3
particles| desc-pr | 0.9189 + 0.0009 |70.4 + 3.6
particles| random | 0.9121 + 0.0008 | 51.1 % 2.0
With gating (see Appendix A
Towers Fe 0.8822 = 0.0006 | 25.4 = 0.4
towers C/A 0.8861 + 0.0014 | 26.2 + 0.8
towers | anti-k, | 0.8804 % 0.0010 | 24.4 + 04
towers | ascpr | 0.8849 £ 0.0012 | 27.2 + 0.8
towers | descpr |0.8864 + 0.0007|27.5 + 0.6
towers | random | 0.8751 0.0029 | 22.8 + 1.2
particles Fe 0.9195 = 0.0000 | 74.3 + 2.4
particles| C/A [0.9222 + 0.0007| 81.8 + 3.1
particles| anti-ke | 0.9156 + 0.0012 | 68.3 + 3.2
particles| ascpr | 0.9137 = 0.0046 [54.8 = 11.7
particles| desc-pr | 0.9212 + 0.0005 |83.3 + 3.1
particles| random | 0.9106 £ 0.0035 | 50.7 £ 6.7

16/19

https://arxiv.org/abs/1609.00607

From paragraphs to events

Event embedding

Classifier

7w e) x

— Fevent(e)

viti) v(ty) vitar)

‘ l l
B () by (tz)

VRN 7N 7N
NN P
PN Lo

Analogy:

e word — particle
e sentence — jet
e parsing — jet algorithm

e paragraph — event

|
i (tar) 7

Joint learning of jet embedding
event embedding and classifier.

/19

Event-level classification results

RNN on jet-level 4-momentum v(t;)
only vs. adding jet-embeddings h;: e [ROCATE [Fam]

Hardest jet

° H H 1 H v(t;) 0.8909 £ 0.0007 | 5.6 £ 0.0
Adding jet embedding is much e h}w B0y E0mOT [SEE00
1 1 1 v(t;), WP | 09504 40,0010 | 25.6 & 1.4
better (provides jet tagging i 00
H H v(t;) 0.9606 + 0.0011 211+ 1.1
|nformat|on). v(t;), b 0.9866 + 0.0007 | 156.9 + 14.8
v(t;) ‘ 1 fese—pr) 0.9875 + 0.0006|174.5 + 14.0
5 hardest jets
v(t,) 0.9576 £ 0.0019 | 203 £ 0.9
. M jet(k; .
RNN on jet-level embeddings vs. RNN V(t), b | 09867 £ 0.0001 | 1528 £ 104
. . K v(t;), W Eer1) |0 9872 + 0.0003| 167.8 + 9.5
that simply processes all particles in the o Jot clustering, descpr_on vi
i=1 0.6501 + 0.0023 1.7+ 0.0
. i=1,..., 50 0.8925 + 0.0079| 5.6 = 0.5
event i=1,...,100 0.8781 + 0.0180 4.9 + 0.6
i=1,...,200 0.8846 4 0.0091 52+ 0.5
i=1,...,400 0.8780 + 0.0132 4.9 + 0.5

e Jet clustering and jet embeddings
help a lot!

18/19

Summary

e Neural networks are computational graphs whose architecture
can be molded on a per-sample basis to express and impose
domain knowledge.

e Our QCD-aware recursive net operates on a variable length
set of 4-momenta and use a computational graph determined
by a jet algorithm.

m Experiments show that topology matters.

m Alternative to image-based approaches.
m Requires much less data to train (10-100x less data).

e The approach directly extends to the embedding of full
events. Intermediate jet representation helps.

e Many more ideas of hybrids of QCD and machine learning!

19/19

