QCD-aware Recursive Neural Networks for Jet Physics arXiv:1702.00748

Gilles Louppe, Kyunghyun Cho, Cyril Becot, Kyle Cranmer

A machine learning perspective

Kyle's talks on QCD-aware recursive nets:

- Theory Colloquium, CERN, May 24, https://indico.cern.ch/event/640111/
- DS@HEP 2017, Fermilab, May 10, https://indico.fnal.gov/ conferenceDisplay.py?confId=13497
- Jet substructure and jet-by-jet tagging, CERN, April 20, https://indico.cern.ch/event/633469/
- Statistics and ML forum, CERN, February 14, https://indico.cern.ch/event/613874/ contributions/2476427/

Today: the inner mechanisms of recursive nets for jet physics.

Neural networks 101

- Goal = Function approximation
 - Learn a map from x to y based solely on observed pairs
 - Potentially non-linear map from x to y
 - x and y are fixed dimensional vectors

Model = Multi-layer perceptron (MLP)

- Parameterized composition f(·; θ) of non-linear transformations
- Stacking transformation layers allows to learn (almost any) arbitrary highly non-linear mapping

Learning

- Learning by optimization
- Cost function

$$J(\theta; D) = \frac{1}{N} \sum_{i=1}^{N} \ell(y_i, f(x_i; \theta))$$

• Stochastic gradient descent optimization

$$\theta_m := \theta_{m-1} - \eta \nabla_{\theta} J(\theta_{m-1}; B_m)$$

where $B_m \in D$ is a random subset of D.

How does one derive
$$\nabla_{\theta} J(\theta)$$
?

Computational graphs

Backpropagation

- Backpropagation = Efficient computation of $\nabla_{\theta} J(\theta)$
- Implementation of the chain rule for the (total) derivatives
- Applied recursively from backward by walking the computational graph from outputs to inputs

$$\frac{dJ}{dW^{(1)}} = \frac{\partial J}{\partial J_{MLE}} \frac{dJ_{MLE}}{dW^{(1)}} + \frac{\partial J}{\partial u^{(8)}} \frac{du^{(8)}}{dW^{(1)}}$$
$$\frac{dJ_{MLE}}{dW^{(1)}} = \dots \quad (\text{recursive case})$$
$$\frac{du^{(8)}}{dW^{(1)}} = \dots \quad (\text{recursive case})$$

Recurrent networks

Setup

- Sequence $x = (x_1, x_2, ..., x_{\tau})$
 - E.g., a sentence given as a chain of words
- The length of each sequence may vary

 $\mathsf{Model} = \mathsf{Recurrent} \ \mathsf{network}$

• Compress x into a single vector by recursively applying a MLP with shared weights on the sequence, then compute output.

•
$$h^{(t)} = f(h^{(t-1)}, x^{(t)}; \theta)$$

•
$$o = g(h^{(\tau)}; \theta)$$

How does one backpropagate through the cycle?

Backpropagation through time

- Unroll the recurrent computational graph through time
- Backprop through this graph to derive gradients

This principle generalizes to any kind of (recursive or iterative) computation that can be unrolled into a directed acyclic computational graph.

(That is, to any program!)

Recursive networks

Setup

- x is structured as a tree
 - E.g., a sentence and its parse tree
- The topology of each training input may vary

$\mathsf{Model} = \mathsf{Recursive} \ \mathsf{networks}$

• Compress x into a single vector by recursively applying a MLP with shared weights on the tree, then compute output.

•
$$h^{(t)} = \begin{cases} v(x^{(t)}; \theta) & \text{if } t \text{ is a leaf} \\ f(h^{(t_{\text{left}})}, h^{(t_{\text{right}})}; \theta) & \text{otherwise} \end{cases}$$

• $o = g(h^{(0)}; \theta)$

Dynamic computational graphs

- Most frameworks (TensorFlow, Theano, Caffee or CNTK) assume a static computational graph.
- Reverse-mode auto-differentiation builds computational graphs dynamically on the fly, as code executes.
 - One can change how the network behaves (e.g. depending on the input topology) arbitrarily with zero lag or overhead.
 - Available in autograd, Chainer, PyTorch or DyNet.

```
from torch.autograd import Variable
x = Variable(torch.randn(1, 10))
prev_h = Variable(torch.randn(20, 20))
W_h = Variable(torch.randn(20, 10))
i2h = torch.mm(W_x, x.t())
h2h = torch.mm(W_h, prev_h.t())
next_h = i2h + h2h
next_h = next_h.tanh()
next_h.backward(torch.ones(1, 20))
```


Operation batching

- Distinct per-sample topologies make it difficult to vectorize operations.
- However, in the case of trees, computations can be performed in batch level-wise, from bottom to top.

On-the-fly operation batching (in DyNet)

From sentences to jets

Analogy:

- word \rightarrow particle
- $\bullet \ \text{sentence} \to \text{jet}$
- parsing \rightarrow jet algorithm

Jet topology

- Use sequential recombination jet algorithms (k_T, anti-k_T, etc) to define computational graphs (on a per-jet basis).
- The root node in the graph provides a fixed-length embedding of a jet, which can then be fed to a classifier.
- Path towards ML models with good physics properties.

A jet structured as a tree by the k_T recombination algorithm

QCD-aware recursive neural networks

Simple recursive activation: Each node k combines a non-linear transformation u_k of the 4-momentum o_k with the left and right embeddings h_{k_l} and h_{k_R} .

$$\begin{split} \mathbf{h}_{k}^{\text{jet}} &= \begin{cases} \mathbf{u}_{k} & \text{if } k \text{ is a lea} \\ \sigma \left(W_{h} \begin{bmatrix} \mathbf{h}_{k_{L}}^{\text{jet}} \\ \mathbf{h}_{k_{R}}^{\text{jet}} \end{bmatrix} + b_{h} \right) & \text{otherwise} \\ \mathbf{u}_{k} &= \sigma \left(W_{u}g\left(\mathbf{o}_{k}\right) + b_{u} \right) \\ \mathbf{o}_{k} &= \begin{cases} \mathbf{v}_{i(k)} & \text{if } k \text{ is a leaf} \\ \mathbf{o}_{k_{L}} + \mathbf{o}_{k_{R}} & \text{otherwise} \end{cases} \end{split}$$

QCD-aware recursive neural networks

Gated recursive activation: Each node actively selects, merges or propagates up the left, right or local embeddings as enabled with reset and update gates \mathbf{r} and \mathbf{z} . (Similar to a GRU.)

is a leaf

$\mathbf{h}_k^{jet} = \begin{cases} \mathbf{u}_k \\ \mathbf{z}_H \odot \tilde{\mathbf{h}}_k^{jet} + \mathbf{z}_L \odot \mathbf{h}_{k_L}^{jet} + \\ \hookrightarrow \mathbf{z}_R \odot \mathbf{h}_{k_R}^{jet} + \mathbf{z}_N \odot \mathbf{u}_k \end{cases}$	if k is a l otherwise
$\tilde{\mathbf{h}}_{k}^{\text{jet}} = \sigma \left(W_{\tilde{h}} \begin{bmatrix} \mathbf{r}_{L} \odot \mathbf{h}_{k_{l}}^{\text{jet}} \\ \mathbf{r}_{R} \odot \mathbf{h}_{k_{R}}^{\text{jet}} \\ \mathbf{r}_{N} \odot \mathbf{u}_{k} \end{bmatrix} + b_{\tilde{h}} \right)$	
$ \begin{bmatrix} \mathbf{z}_{H} \\ \mathbf{z}_{L} \\ \mathbf{z}_{R} \\ \mathbf{z}_{N} \end{bmatrix} = \operatorname{softmax} \left(W_{z} \begin{bmatrix} \tilde{\mathbf{h}}_{jet}^{jet} \\ \mathbf{h}_{jet}^{jet} \\ \mathbf{h}_{kR}^{jet} \end{bmatrix} + b_{z} \right) $	
$\begin{bmatrix} \mathbf{r}_{L} \\ \mathbf{r}_{R} \\ \mathbf{r}_{N} \end{bmatrix} = \text{sigmoid} \begin{pmatrix} W_{r} \begin{bmatrix} \mathbf{h}_{k_{l}}^{\text{jet}} \\ \mathbf{h}_{k_{R}}^{\text{jet}} \end{bmatrix} + b_{r} \\ \mathbf{u}_{k} \end{bmatrix}$	

15/19

Jet-level classification results

- W-jet tagging example (data from 1609.00607)
- On images, RNN has similar performance to previous CNN-based approaches.
- Improved performance when working with calorimeter towers, without image pre-processing.
- Working on truth-level particles led to significant improvement.
- Choice of jet algorithm matters.

	Input	Architecture	ROC AUC	$R_{\epsilon=50\%}$	
	Projected into images				
	towers	MaxOut	0.8418	-	
	towers	k_t	0.8321 ± 0.0025	12.7 ± 0.4	
	towers	k_t (gated)	0.8277 ± 0.0028	12.4 ± 0.3	
Without image preprocessing					
	towers	τ_{21}	0.7644	6.79	
	towers	mass + τ_{21}	0.8212	11.31	
	towers	k_t	0.8807 ± 0.0010	24.1 ± 0.6	
	towers	C/A	0.8831 ± 0.0010	24.2 ± 0.7	
	towers	anti- k_t	0.8737 ± 0.0017	22.3 ± 0.8	
	towers	$\operatorname{asc-}p_T$	0.8835 ± 0.0009	26.2 ± 0.7	
	towers	$desc-p_T$	0.8838 ± 0.0010	25.1 ± 0.6	
	towers	random	0.8704 ± 0.0011	20.4 ± 0.3	
	particles	k_t	0.9185 ± 0.0006	68.3 ± 1.8	
	particles	C/A	0.9192 ± 0.0008	68.3 ± 3.6	
	particles	anti- k_t	0.9096 ± 0.0013	51.7 ± 3.5	
	particles	$\operatorname{asc-}p_T$	0.9130 ± 0.0031	52.5 ± 7.3	
	particles	$desc-p_T$	0.9189 ± 0.0009	70.4 ± 3.6	
	particles	random	0.9121 ± 0.0008	51.1 ± 2.0	
		With gatin	ig (see Appendix A)	
	towers	k_t	0.8822 ± 0.0006	25.4 ± 0.4	
	towers	C/A	0.8861 ± 0.0014	26.2 ± 0.8	
	towers	anti- k_t	0.8804 ± 0.0010	24.4 ± 0.4	
	towers	$\operatorname{asc-}p_T$	0.8849 ± 0.0012	27.2 ± 0.8	
	towers	$desc-p_T$	0.8864 ± 0.0007	27.5 ± 0.6	
	towers	random	0.8751 ± 0.0029	22.8 ± 1.2	
	particles	k_t	0.9195 ± 0.0009	74.3 ± 2.4	
	particles	C/A	0.9222 ± 0.0007	81.8 ± 3.1	
	particles	anti- k_t	0.9156 ± 0.0012	68.3 ± 3.2	
	particles	$\operatorname{asc}_{-p_T}$	0.9137 ± 0.0046	54.8 ± 11.7	
	particles	$desc-p_T$	0.9212 ± 0.0005	83.3 ± 3.1	
	particles	random	0.9106 ± 0.0035	50.7 ± 6.7	

From paragraphs to events

Analogy:

- word \rightarrow particle
- sentence \rightarrow jet
- parsing \rightarrow jet algorithm
- paragraph ightarrow event

Joint learning of jet embedding, event embedding and classifier.

Event-level classification results

RNN on jet-level 4-momentum $v(t_j)$ only vs. adding jet-embeddings h_j :

 Adding jet embedding is much better (provides jet tagging information).

RNN on jet-level embeddings vs. RNN that simply processes all particles in the event:

• Jet clustering and jet embeddings help a lot!

Input	ROC AUC	$R_{\epsilon=80\%}$			
Hardest jet					
$\mathbf{v}(\mathbf{t}_j)$	0.8909 ± 0.0007	5.6 ± 0.0			
$\mathbf{v}(\mathbf{t}_j), \mathbf{h}_j^{\text{jet}(k_t)}$	0.9602 ± 0.0004	26.7 ± 0.7			
$\mathbf{v}(\mathbf{t}_j), \mathbf{h}_j^{\text{jet}(\text{desc}-p_T)}$	0.9594 ± 0.0010	25.6 ± 1.4			
2 hardest jets					
$\mathbf{v}(\mathbf{t}_j)$	0.9606 ± 0.0011	21.1 ± 1.1			
$\mathbf{v}(\mathbf{t}_j), \mathbf{h}_j^{\text{jet}(k_t)}$	0.9866 ± 0.0007	156.9 ± 14.8			
$\mathbf{v}(\mathbf{t}_j), \mathbf{h}_j^{\text{jet}(\text{desc}-p_T)}$	0.9875 ± 0.0006	$\textbf{174.5}\pm\textbf{14.0}$			
5 hardest jets					
$\mathbf{v}(\mathbf{t}_j)$	0.9576 ± 0.0019	20.3 ± 0.9			
$\mathbf{v}(\mathbf{t}_j), \mathbf{h}_j^{\text{jet}(k_t)}$	0.9867 ± 0.0004	152.8 ± 10.4			
$\mathbf{v}(\mathbf{t}_j), \mathbf{h}_j^{\text{jet}(\text{desc}-p_T)}$	0.9872 ± 0.0003	167.8 ± 9.5			
No jet clustering, desc- p_T on \mathbf{v}_i					
i = 1	0.6501 ± 0.0023	1.7 ± 0.0			
i = 1,, 50	0.8925 ± 0.0079	5.6 ± 0.5			
i = 1,, 100	0.8781 ± 0.0180	4.9 ± 0.6			
i = 1,, 200	0.8846 ± 0.0091	5.2 ± 0.5			
$i = 1, \dots, 400$	0.8780 ± 0.0132	4.9 ± 0.5			

Summary

- Neural networks are computational graphs whose architecture can be molded on a per-sample basis to express and impose domain knowledge.
- Our QCD-aware recursive net operates on a variable length set of 4-momenta and use a computational graph determined by a jet algorithm.
 - Experiments show that topology matters.
 - Alternative to image-based approaches.
 - Requires much less data to train (10-100x less data).
- The approach directly extends to the embedding of full events. Intermediate jet representation helps.
- Many more ideas of hybrids of QCD and machine learning!