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A machine learning perspective

Kyle’s talks on QCD-aware recursive nets:

• Theory Colloquium, CERN, May 24,
https://indico.cern.ch/event/640111/

• DS@HEP 2017, Fermilab, May 10,
https://indico.fnal.gov/

conferenceDisplay.py?confId=13497

• Jet substructure and jet-by-jet tagging, CERN,
April 20,
https://indico.cern.ch/event/633469/

• Statistics and ML forum, CERN, February 14,
https://indico.cern.ch/event/613874/

contributions/2476427/

Today: the inner mechanisms of recursive nets for jet physics.
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Neural networks 101

Goal = Function approximation

• Learn a map from x to y based solely
on observed pairs

• Potentially non-linear map from x to y

• x and y are fixed dimensional vectors

Model = Multi-layer perceptron (MLP)

• Parameterized composition f (·; θ) of
non-linear transformations

• Stacking transformation layers allows
to learn (almost any) arbitrary highly
non-linear mapping

Credits: Lecun et al, 2015
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https://www.nature.com/nature/journal/v521/n7553/full/nature14539.html


Learning

• Learning by optimization

• Cost function

J(θ;D) =
1

N

N∑
i=1

`(yi , f (xi ; θ))

• Stochastic gradient descent optimization

θm := θm−1 − η∇θJ(θm−1;Bm)

where Bm ∈ D is a random subset of D.

How does one derive ∇θJ(θ)?
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Computational graphs

f (x ; θ = (W (1),W (2))) = W (2)relu(W (1)x) (simplified 1-layer MLP)

J(θ = (W (1),W (2))) = JMLE + λ

∑
i ,j

(
W

(1)
i ,j

)2
+
(
W

(2)
i ,j

)2



Credits: Goodfellow et al, 2016. Section 6.5.
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http://www.deeplearningbook.org/


Backpropagation

• Backpropagation = Efficient computation of ∇θJ(θ)
• Implementation of the chain rule for the (total) derivatives

• Applied recursively from backward by walking the
computational graph from outputs to inputs

dJ

dW (1)
=

∂J

∂JMLE

dJMLE

dW (1)
+

∂J

∂u(8)

du(8)

dW (1)

dJMLE

dW (1)
= . . . (recursive case)

du(8)

dW (1)
= . . . (recursive case)
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Recurrent networks

Setup

• Sequence x = (x1, x2, ..., xτ)

E.g., a sentence given as a chain of words

• The length of each sequence may vary

Model = Recurrent network

• Compress x into a single vector by recursively
applying a MLP with shared weights on the
sequence, then compute output.

• h(t) = f (h(t−1), x (t); θ)

• o = g(h(τ); θ)

How does one backpropagate through the cycle?
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Backpropagation through time

• Unroll the recurrent computational graph through time

• Backprop through this graph to derive gradients

unroll−−−→

Credits: Goodfellow et al, 2016. Section 10.2.
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http://www.deeplearningbook.org/


This principle generalizes to any kind of (recursive or iterative)
computation that can be unrolled into a directed acyclic
computational graph.

(That is, to any program!)
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Recursive networks

Setup

• x is structured as a tree

E.g., a sentence and its parse tree

• The topology of each training input may vary

Model = Recursive networks

• Compress x into a single vector by recursively
applying a MLP with shared weights on the
tree, then compute output.

• h(t) =

{
v(x (t); θ) if t is a leaf

f (h(tleft), h(tright); θ) otherwise

• o = g(h(0); θ)

Credits: Goodfellow et al, 2016. Section 10.6.
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http://www.deeplearningbook.org/


Dynamic computational graphs
• Most frameworks (TensorFlow, Theano, Caffee or CNTK)

assume a static computational graph.
• Reverse-mode auto-differentiation builds computational

graphs dynamically on the fly, as code executes.

One can change how the network behaves (e.g. depending on
the input topology) arbitrarily with zero lag or overhead.
Available in autograd, Chainer, PyTorch or DyNet.

Credits: pytorch.org/about
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http://pytorch.org/about/


Operation batching

• Distinct per-sample topologies make it difficult to vectorize
operations.

• However, in the case of trees, computations can be performed
in batch level-wise, from bottom to top.

On-the-fly operation batching (in DyNet)

Credits: Neubig et al, 2017
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https://arxiv.org/abs/1705.07860


From sentences to jets

Analogy:

• word → particle

• sentence → jet

• parsing → jet algorithm
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Jet topology

• Use sequential recombination jet algorithms (kT , anti-kT , etc)
to define computational graphs (on a per-jet basis).

• The root node in the graph provides a fixed-length embedding
of a jet, which can then be fed to a classifier.

• Path towards ML models with good physics properties.

A jet structured as a tree by the kT recombination algorithm
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QCD-aware recursive neural networks

Simple recursive activation: Each node k
combines a non-linear transformation uk of the
4-momentum ok with the left and right
embeddings hkL and hkR .

h
jet
k

=


uk if k is a leaf

σ

Wh


h

jet
kL

h
jet
kR
uk

 + bh

 otherwise

uk = σ (Wug(ok ) + bu)

ok =

{
vi(k) if k is a leaf

okL
+ okR

otherwise
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QCD-aware recursive neural networks

Gated recursive activation: Each node actively
selects, merges or propagates up the left, right
or local embeddings as enabled with reset and
update gates r and z. (Similar to a GRU.)

h
jet
k

=


uk if k is a leaf

zH � h̃
jet
k

+ zL � h
jet
kL

+ otherwise

↪→ zR � h
jet
kR

+ zN � uk

h̃
jet
k

= σ

W
h̃


rL � h

jet
kL
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jet
kR

rN � uk

 + b
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Jet-level classification results

• W-jet tagging example (data from 1609.00607)

• On images, RNN has similar performance to
previous CNN-based approaches.

• Improved performance when working with
calorimeter towers, without image pre-processing.

• Working on truth-level particles led to significant
improvement.

• Choice of jet algorithm matters.
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https://arxiv.org/abs/1609.00607


From paragraphs to events

Analogy:

• word → particle

• sentence → jet

• parsing → jet algorithm

• paragraph → event

Joint learning of jet embedding,
event embedding and classifier.
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Event-level classification results

RNN on jet-level 4-momentum v(tj)
only vs. adding jet-embeddings hj :

• Adding jet embedding is much
better (provides jet tagging
information).

RNN on jet-level embeddings vs. RNN
that simply processes all particles in the
event:

• Jet clustering and jet embeddings
help a lot!
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Summary

• Neural networks are computational graphs whose architecture
can be molded on a per-sample basis to express and impose
domain knowledge.

• Our QCD-aware recursive net operates on a variable length
set of 4-momenta and use a computational graph determined
by a jet algorithm.

Experiments show that topology matters.
Alternative to image-based approaches.
Requires much less data to train (10-100x less data).

• The approach directly extends to the embedding of full
events. Intermediate jet representation helps.

• Many more ideas of hybrids of QCD and machine learning!
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