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The agreement between two raters judging items on a categorical
scale is traditionally assessed by Cohen’s kappa coefficient. We
introduce a new coefficient for quantifying the degree of agreement
between an isolated rater and a group of raters on a nominal or ordi-
nal scale. The group of raters is regarded as a whole, a reference or
gold-standard group with its own heterogeneity. The coefficient,
defined on a population-based model, requires a specific definition of
the concept of perfect agreement. It has the same properties as Co-
hen’s kappa coefficient and reduces to the latter when there is only one
rater in the group. The new approach overcomes the problem of con-
sensus within the group of raters and generalizes Schouten’s index.
The method is illustrated on published syphilis data and on data col-
lected from a study assessing the ability of medical students in diag-
nostic reasoning when compared with expert knowledge.
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1 Introduction

Cohen (1960) introduced the kappa coefficient �̂= (po −pe)/(1−pe) to quantify the
agreement between two raters classifying items on a categorical scale. He corrected
the proportion of items with concordant classification (po) for the proportion of
concordant pairs expected by chance (pe) and standardized the quantity to obtain
1 in case of a perfect agreement between the two raters and 0 when the raters agree
by chance. There are situations where agreement is searched between an isolated
rater and a group of raters, regarded as a whole, a reference, expert or gold-stan-
dard group, in which all raters may not perfectly agree with each other. For exam-
ple, each of a series of candidates may be assessed against a group of experts with
the purpose of evaluating their knowledge and of classifying the candidates. This is
a frequent exercise in education or in competence examinations. In the context of
accreditation, a routine laboratory may have to reach a pre-defined level of agree-
ment when challenged against a set of reference laboratories for a number of test
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specimens. This process has to account for the fact that the reference laboratories
exhibit themselves analytical variability and do not necessarily agree with each other.
The traditional approach to solve the problem is to determine a consensus in the
group of raters and to measure the agreement between the isolated rater and the
consensus in the group (Landis and Koch, 1977; Soeken and Prescott, 1986; Sal-
erno, Alguire and Waxman, 2003). Thus, the so-called ‘consensus method’ reduces
the problem of computing the classical Cohen’s kappa coefficient. Consensus may
be defined as the category chosen by a given proportion of raters in the group (e.g.
Ruperto et al., 2006, defined consensus as the category chosen by at least 80% of the
raters in the group) or the category the most frequently chosen by the raters in the
group (Kalant et al., 2000; Smith et al., 2003). In both cases, however, the prob-
lem of handling items without consensus in the group arises. Ruperto et al. (2006)
discarded all items without consensus from the analysis, while Kalant et al. (2000)
and Smith et al. (2003) did not encounter the problem. The method consisting in
reducing the judgements made by a group of raters into a consensus decision was
criticized by Eckstein et al. (1998), Salerno et al. (2003) and Miller et al. (2004).
Eckstein et al. (1998) studied the bias that may result from removing items without
consensus, while Salerno et al. (2003) argued that the dispersion likely to occur
in the classifications made by the raters in the group may not be reflected in the
consensus. Finally, Miller et al. (2004) showed that different conclusions may be
obtained by using different rules of consensus. Williams (1976) developed a mea-
sure for comparing the joint agreement of several raters with another rater with-
out determining a consensus in the group of raters. Specifically, he compared the
mean proportion of concordant items between the isolated rater and each rater in
the group with the mean proportion of concordant items between all possible pairs
of raters among the group. The ratio derived, known as ‘Williams’ index’, is com-
pared with the value of 1. Unfortunately, Williams’ index does neither account for
agreement due to chance nor measure the agreement between the isolated rater and
the group of raters. In a different context, Schouten (1982) described a hierarchical
clustering method based on pairwise weighted agreement measures (referred hereaf-
ter as ‘Schouten’s agreement index’) to identify homogeneous subgroups among a
group of raters classifying items on a nominal or ordinal scale. Finally, Light (1971)
investigated the reverse problem of comparing the joint agreement of several raters
with a gold standard. He derived a statistic based on the proportion of concordant
pairs obtained between each rater in the group and the gold standard (the isolated
rater). As for Williams’ index, Light’s method does not actually quantify the agree-
ment between the gold standard and the group of raters.

In the present study, a novel coefficient is proposed for quantifying the agreement
between an isolated rater and a group of raters, considered as a well-defined entity
with its own heterogeneity. This coefficient overcomes the problems of consensus by
capturing the variability within the group of raters. It generalizes the approach of
Schouten (1982) and possesses the same properties as Cohen’s kappa coefficient.
In Section 2, we briefly recall the intraclass kappa coefficient (ICC) quantifying the
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agreement within a group of raters. In Section 3, we introduce the new agreement
coefficient from a population-based perspective, not only for binary or multinomial
scales but also for ordinal scales. Sections 4 and 5 are devoted to the estimation
of the agreement index and its asymptotic sampling variance, respectively. Section
6 looks into consensus estimation, while in Section 7, the method is illustrated on
real-life examples. The paper closes with a discussion in Section 8. Some proofs and
detailed calculations are appended in Section 9.

2 Agreement between several raters

Consider a population I of items and a population R of raters. Suppose that the
items have to be classified into two categories (K =2) by the raters. Consider a ran-
domly selected rater r from population R and a randomly selected item i from pop-
ulation I. Let Xi,r be the random variable such that Xi,r =1 if rater r classifies item
i in category 1 and Xi,r =0 otherwise. For each item i, E(Xi,r | i)=P(Xi,r =1)=Pi

over the population of raters and var(Xi,r | i)=Pi(1−Pi). Then, over the population
of items, E(Pi)=E[E(Xi,r | i)]=� and var(Pi)=�2. The agreement in the population
of raters is classically quantified by the ICC (Kraemer, 1979)

ICC= �2

�(1−�)
.

It is easily shown that 0 ≤ ICC ≤ 1. The value ICC=1 corresponds to perfect
agreement within the population of raters. By contrast, ICC=0 when the hetero-
geneity of the items is not well detected by the raters or when items are homo-
geneous in the population (Kraemer, Periyakoil and Noda, 2002).

3 Definition of the agreement index

3.1 Binary scale (K =2)

Using the notation introduced in Section 2, consider an isolated rater not belonging
to R. Suppose that all raters from population R and the isolated rater have to clas-
sify a randomly selected item i from I in two categories (K =2). Let Yi denote the
random variable equal to 1 if the isolated rater classifies item i in category 1 and
Yi =0 otherwise. Over the population of items, E(Yi)=�∗ and var(Yi)=�∗2 =�∗(1−
�∗). The correlation between Pi and Yi over I implies

�= E(PiYi)−��∗

��∗ .

Now, consider the joint probability distribution of the classification of item i made
by the population of raters and the isolated rater. On a binary scale, this consists
of four probabilities (1−Pi)(1−Yi), (1−Pi)Yi , Pi(1−Yi) and PiYi , respectively. For
example, PiYi denotes the probability that the population of raters and the isolated
rater both classify item i in category 1. The expectations, over the population of
© 2009 The Authors. Journal compilation © 2009 VVS.
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Table 1. Expected joint and marginal probability distribu-
tions resulting from the binary classification of a randomly
selected item i from the population I by the population of
raters R and the isolated rater.

Isolated rater

R 0 1

0 E[(1−Pi)(1−Yi)] E[(1−Pi)Yi ] 1−�
(1−�)(1−�∗)+���∗ (1−�)�∗ −���∗

1 E[Pi(1−Yi)] E[PiYi ] �
�(1−�∗)−���∗ ��∗ +���∗

1−�∗ �∗ 1

items, of these joint probabilities can be represented in a 2 × 2 classification table,
as displayed in Table 1.

The probability that the population of raters and the isolated rater agree on item
i is given by

�i =PiYi + (1−Pi)(1−Yi) (1)

so that, over the population of items I, the mean probability of agreement is given
by the expression

�T =E(�i)=��∗ + (1−�)(1−�∗)+2���∗ (2)

which corresponds to the sum of the diagonal elements in Table 1. Surprisingly,
for a given level of agreement (ICC) within the population of raters, the maximum
attainable value �T is not necessarily equal to 1 as shown below.

By definition, the population of raters and the isolated rater ‘perfectly agree’ when
�=�∗ and �=1. In terms of the random variables Pi and Yi , this is equivalent to
writing (see proof in Section 9.1)

Pi =�∗∗(1−
√

ICC)+
√

ICCYi .

where, for convenience, �∗∗ denotes the common value of �=�∗.
Replacing Pi in Equation 1 and taking the expectation over population I, the

maximum attainable value of �T is found to be

�M =1−2�∗∗(1−�∗∗)(1−
√

ICC) (3)

This quantity turns out to be equal to 1 if and only if ICC=1, i.e. there is
perfect agreement in the population of raters R, or trivially, if �∗∗ =0 or 1. It should
be remarked at this stage that Schouten (1982), in his paper, implicitly assumed
�M =1.

Following the results above, the coefficient of agreement between the population
of raters and the isolated rater can be advantageously defined in a kappa-like man-
ner, namely,
© 2009 The Authors. Journal compilation © 2009 VVS.
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�= �T −�E

�M −�E
(4)

with �T the theoretical agreement, �M the maximum attainable agreement and �E

the agreement expected by chance. �E is the probability that the population of
raters and the isolated rater agree under the independence assumption, E(PiYi)=
E(Pi)E(Yi). �E is defined by

�E =��∗ + (1−�)(1−�∗). (5)

Note that �T =�E (see Equations 2 and 5) in the absence of correlation between
the ratings of the population of raters and of the isolated rater (�=0) or when there
is no variability in the classifications made by the population of raters (�2 =0) or
by the isolated rater (�∗2 =0). The agreement coefficient (Equation 4) has been stan-
dardized in such a way that �=1 if the agreement between the isolated rater and
the group of raters reaches the maximum attainable value �M (perfect agreement)
and �=0 when agreement can only be explained by pure chance. Finally, observe
that Equation 4 reduces to Schouten’s index when �M =1.

3.2 Multinomial scale (K > 2)

When K > 2, the coefficient of agreement between the population of raters and the
isolated rater is defined by

�=
∑K

j =1

(
�[j]T −�[j],E

)∑K
j =1

(
�[j]M −�[j]E

) = �T −�E

�M −�E

where �[j]T , �[j]E and �[j]M correspond to the quantities described in the binary
case (K =2) when the nominal scale is dichotomized by grouping all categories other
than category j together. �T , �E and �M are defined by

�T =
K∑

j =1

E[PijYij ]; �E =
K∑

j =1

�j�
∗
j ;

�M =
K∑

j =1

E[(�∗∗
j + (1−�∗∗

j )
√

ICCj)Yij ]

=
K∑

j =1

(�∗∗
j +�∗∗

j (1−�∗∗
j )
√

ICCj)

where Pij denotes the probability for a randomly selected item i to be classified in
category j (j =1, . . ., K ) by the population of raters, with E(Pij)=�j . Yij denotes the
random variable equal to 1 if the isolated rater classifies item i in category j (Yij =0
otherwise). Finally, ICCj denotes the ICC relative to category j (j =1, . . ., K ) in the
population of raters (see proof in Section 9.2).
© 2009 The Authors. Journal compilation © 2009 VVS.
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The coefficient � possesses the same properties as Cohen’s kappa coefficient, �=1
when agreement is perfect (�T =�M ), �=0 if observed agreement is equal to
agreement expected by chance (�T =�E ) and � < 0 if observed agreement is lower
than that expected by chance (�T <�E ).

3.3 Ordinal scale (K > 2)

A weighted version of the agreement index can be defined in a way similar to the
weighted kappa coefficient (Cohen, 1968),

�W = �T ,W −�E,W

�M ,W −�E,W

with

�T ,W =
K∑

j =1

K∑
k =1

wjkE(PijYik);

�E,W =
K∑

j =1

K∑
k =1

wjk�j�
∗
k;

�M ,W =
K∑

j =1

K∑
k =1

wjkE[(�∗∗
j + (1−�∗∗

j )
√

ICCjYij)Yik].

In general, 0≤wjk ≤1 and wkk =1(j, k =1, . . ., K ). Cicchetti and Allison (1971)
have defined absolute weights

wjk =1− | j −k |
K −1

,

whereas Fleiss and Cohen (1973) suggested quadratic weights

wjk =1−
(

j −k
K −1

)2

.

4 Estimation of the parameters

Consider a random sample of N items drawn from population I. Let each item be
classified independently on a K -categorical scale by a random sample (group) of R
raters from population R and by the isolated rater.

4.1. Binary scale

Let xi,r designate the observed value of the random variable Xi,r, denoting the
category assignment made for item i by rater r from population R (i =1, . . ., N ;
r =1, . . ., R). Then, let
© 2009 The Authors. Journal compilation © 2009 VVS.
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ni =
R∑

r =1

xi,r

denote the number of times that item i is classified in category 1 by the group of
raters and pi =ni/R the corresponding proportion (i =1, . . ., N).

The ICC in the group of raters can be estimated by the expression (Fleiss, 1981)

ÎCC=1−
∑N

i =1 ni(R −ni)
RN(N −1)p(1−p)

where p is the overall proportion of items classified in category 1 by the group of
raters,

p= 1
N

N∑
i =1

pi .

If yi denotes the observed value of the random variable Yi , representing the
category assignment of item i by the isolated rater, the probability that the pop-
ulation of raters and the isolated rater agree is estimated by the observed proportion
of agreement,

po = �̂T = 1
N

N∑
i =1

[piyi + (1−pi)(1−yi)]. (6)

The probability of agreement expected by chance is estimated by the proportion
of agreement expected by chance,

pe = �̂E =py + (1−p)(1−y)

where y is the proportion of items classified in category 1 by the isolated rater,

y = 1
N

N∑
i =1

yi .

The degree of agreement � between the group of raters and the isolated rater is
then estimated by

�̂= po −pe

pm −pe

where pm corresponds to the maximum possible proportion of agreement derived
from the sample. As each response yi given by the isolated rater can only be 0 or 1, it
is easily seen that for each item i, piyi + (1−pi)(1−yi)≤max(pi , 1−pi)(i =1, . . ., N).
It follows from Equation 6 that the maximum attainable proportion of agreement
is given by the expression

pm = �̂M = 1
N

N∑
i =1

max(pi , 1−pi).

© 2009 The Authors. Journal compilation © 2009 VVS.



Isolated rater and a group of raters 89

This quantity can only be equal to 1 if pi =0 or 1 for all items (i =1, . . ., N) as
assumed by Schouten.

4.2 Multinomial scale (K > 2)

The estimation of the parameters easily extends to the case K > 2. Let xij,r denote
the observed value of the random variable Xij,r equal to 1 if rater r (r =1, . . ., R)
of the group classifies item i (i =1, . . ., N) in category j (j =1, . . ., K ) and equal to 0
otherwise. Then, let

nij =
R∑

r =1

xij,r

denote the number of times item i is classified in category j by the raters of the
group and pij the corresponding proportion. We have

K∑
j =1

pij =1 i =1, . . ., N .

Let yij denote the observed value of the random variable Yij corresponding to
the category assignment of item i made by the isolated rater. Then, the data can be
conveniently summarized in a two-way classification table (see Table 2) by defining
the quantities

cjk = 1
N

N∑
i =1

pijyik, j, k =1, . . ., K .

The observed proportion of agreement between the group of raters and the isolated
rater is defined by

po = 1
N

N∑
i =1

K∑
j =1

pijyij =
K∑

j =1

cjj .

Table 2. Two-way classification table of the N items by
the group of raters and the isolated rater.

Isolated rater

Group of raters 1 · · · j · · · K Total

1 c11 . . . c1j . . . c1K c1.

...
...

...
...

...
...

...
j cj1 . . . cjj . . . cjK cj.
...

...
...

...
...

.

..
...

K cK1 . . . cKj . . . cKK cK .

Total c.1 . . . c.j . . . c.K 1
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The marginal classification distribution of the isolated rater, namely,

yj = 1
N

N∑
i =1

yij , j =1, . . ., K

with �K
j =1yj =1 and the marginal classification distribution of the group of raters,

pj = 1
N

N∑
i =1

pij , j =1, . . ., K

with �K
j =1pj =1 are needed to estimate the agreement expected by chance. The pro-

portion of agreement expected by chance is given by

pe =
K∑

j =1

pjyj =
K∑

j =1

cj.c.j

The degree of agreement � between the population of raters and the isolated rater
is then estimated by

�̂= po −pe

pm −pe

where pm corresponds to the maximum possible proportion of agreement derived
from the data set. By extending the argument used for the binary case, it is easily
seen that

pm = 1
N

N∑
i =1

max
j

pij . (7)

Observe that in the calculation of pm, no explicit use is made of category j in
which the maximum occurs. Thus, in the case where the maximum is not unique,
only the value of the maximum is actually important.

4.3 Ordinal scale (K > 2)

The estimation of the weighted agreement index is simply done by introducing
weights in the estimations previously defined. Hence,

�̂W = po,w −pe,w

pm,w −pe,w

with

po,w = 1
N

N∑
i =1

K∑
j =1

K∑
k =1

wjkpijyik

pe,w =
K∑

j =1

K∑
k =1

wjkpjyk
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pm,w = 1
N

N∑
i =1

max
j

(
K∑

k =1

wjkpik

)
.

The unweighted agreement index �̂ can be obtained using the weights wjj =1 and
wjk =0, j /=k.

5 Asymptotic sampling variance

The Jackknife method (Efron and Tibshirani, 1993) can be used to determine the
sampling variance of the agreement index. Suppose that the agreement between the
isolated rater and the population of raters was estimated on a random sample of N
items. Let �̂N denote the agreement index and �̂(i)

N−1 the estimated agreement index
when observation i is deleted. These quantities are used to determine the pseudo-
values

�̂N ,i =N �̂N − (N −1)�̂(i)
N−1

The Jackknife estimator of the agreement index is then defined by

�̃N = 1
N

N∑
i =1

�̂N ,i

with variance

var(�̃N )= 1
N

{
1

N −1

N∑
i =1

(�̂N ,i − �̂N )2

}
The bias of the Jackknife estimator is estimated by

Bias(�̃N )= (N −1){�̃N − �̂N}

6 Consensus approach

As already mentioned, the consensus approach consists in summarizing the responses
given by the raters of the group in a unique quantity for each item. Very often, the
consensus category is taken as the modal category (majority rule) or the category
chosen by a prespecified proportion of raters (e.g. ≥80%). A random variable Zij is
then defined, equal to 1 if category j corresponds to the consensus category given by
the population R of raters for item i, and equal 0 otherwise. Evidently, a consensus
may not always be defined. For example, on a multinomial scale, one could have
two modal categories or no category chosen by the prespecified proportion of rat-
ers. Therefore, suppose that on the N items drawn from population I, a consensus
can only be defined on NC ≤N items. Let IC denote the sub-population of items on
which a consensus is always possible. If zij denotes the observed value of the
© 2009 The Authors. Journal compilation © 2009 VVS.
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random variable Zij , we have �K
j =1zij =1 and the agreement between the population

of raters and the isolated raters is reduced to the case of two isolated raters. The
Cohen or weighted kappa coefficient can then be estimated. Note that the strength
of the consensus is not captured by the random variable Zij . For example, on a bi-
nary scale, using the majority rule, we have Zij =1 regardless of the value of Pij as
long as Pij > 0.5. It can easily be shown that our method and the consensus approach
are equivalent only in two particular cases: first, when there is only one rater in the
group of raters (R =1) and secondly, when IC =I and there is perfect agreement in
the population of raters (ICC=1).

7 Examples

7.1 Syphilis serology

A proficiency testing programme for syphilis serology was conducted by the College
of American Pathologists (CAP). For the fluorescent treponemal antibody absorp-
tion test (FTA-ABS), three reference laboratories were identified and considered as
experts in the use of that test. During 1974, 40 syphilis serology specimens were
tested independently by the three reference laboratories. Williams (1976) presented
results obtained by the three reference laboratories and an additional participant
(noted L) for 28 specimens (see Table 3). Each specimen was classified as non-
reactive (NR), borderline (BL) or reactive (RE). Note that discordances occurred
between the three reference laboratories for seven specimens. Data are also summa-
rized in a two-way classification table (Table 4) as explained in Section 4.2. In this
example R =3, K =3 and N =28.

Using the quadratic weighting scheme, the weighted coefficient of agreement �̂W

(±SE) between the participant and the three reference laboratories, as defined in
Section 3, was equal to 0.79 (±0.06). When applying the consensus approach based
on the majority rule, we found a weighted kappa coefficient of 0.76 (±0.06), but two
specimens were eliminated because no consensus could be reached between the three
reference laboratories. The weighted agreement index developed by Schouten (1982)
amounted 0.73 (±0.07), while the ICC in the reference laboratory group was 0.68
(±0.06). Because of the lack of perfect agreement among the reference laboratories
(ICC < 1), Schouten’s agreement index can never be equal to 1 so that perfect agree-
ment can never be attained. According to Equation 7, the non-weighted maximum
attainable proportion was pm =0.893, while the corresponding value for the qua-
dratic weighting scheme was pm,w =0.973. To derive the highest possible value of the
proposed agreement index, consider the hypothetical laboratory H whose responses
are given in Table 3. For this particular laboratory, as each specimen’s result corre-
sponds to the most frequent response given by the reference laboratories, our agree-
ment index yields the perfect value of 1 (±0), while Schouten’s index is only equal
to 0.94 (±0.025). For the consensus approach, the kappa coefficient derived was
© 2009 The Authors. Journal compilation © 2009 VVS.
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Table 3. Classification of 28 specimens for syphilis
serology on a three-category scale (NR = non-reactive,
BL = bordeline, RE = reactive) by two individual lab-
oratories (L and H) and three reference laboratories
(data from Williams, 1976).

Participant Reference

Specimen L H∗ R1 R2 R3

1 RE RE RE RE RE
2 RE RE RE RE RE
3 BL NR NR NR NR
4 BL NR NR NR NR
5 BL NR NR NR NR
6 RE RE RE RE RE
7 BL NR NR NR NR
8 RE RE RE RE RE
9 NR NR NR NR NR

10 NR NR NR NR NR
11 RE RE RE RE RE
12 RE BL RE BL BL
13 RE RE RE RE RE
14 RE BL RE BL BL
15 RE RE RE RE RE
16 RE BL RE NR BL
17 RE BL RE NR BL
18 RE RE RE RE RE
19 RE RE RE RE RE
20 BL NR BL NR NR
21 RE RE RE RE RE
22 BL NR NR NR NR
23 BL NR BL NR NR
24 BL NR BL NR NR
25 RE RE RE RE RE
26 NR NR NR NR NR
27 RE RE RE RE RE
28 NR NR NR NR NR

*Hypothetical participant (see text).

also equal to 1, although two specimens (16 and 17) have to be excluded. Finally,
it should be remarked that if the hypothetical laboratory H had supplied results
different from BL for specimens 16 and 17, the non-weighted agreement coefficient
obtained would still be 1 but the weighted version would yield a value less than 1
because of the weighting scheme (�W =0.958).

Table 4. Two-way classification table of the 28
syphilis serology specimens as NR (non-reactive),
BL (borderline) and RE (reactive) by three refer-
ence laboratories and participant L.

Participant L
Reference
laboratories NR BL RE Total

NR 0.143 0.250 0.024 0.417
BL 0 0.036 0.071 0.107
RE 0 0 0.476 0.476
Total 0.143 0.286 0.571 1

© 2009 The Authors. Journal compilation © 2009 VVS.
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Fig. 1. Values of kW (•), weighted � coefficients using the majority (�) and the 50% (+) rules and
weigthed agreement index of Schouten (◦) for the 39 students passing the SCT.

7.2 Script Test of Concordance

The Script Test of Concordance (SCT) is used in medicine to evaluate the ability of
physicians or medical students (isolated raters) to solve clinical situations not clearly
defined (Charlin et al., 2002). The complete test consists of a number of items
(1, . . ., N) to be evaluated on a five-point Likert scale (K =5). Each item represents
a clinical situation likely to be seen in real-life practice and a potential assumption
is proposed with it. The situation has to be unclear, even for an expert. The task
of the student or the physician being evaluated is to consider the effect of addi-
tional evidence on the suggested assumption. In this respect, the candidate has to
choose between the following proposals: (−2) the assumption is practically elimi-
nated; (−1) the assumption becomes less likely; (0) the information has no effect on
the assumption; (+1) the assumption becomes more likely; (+2) the assumption is
basically the only possible one. The questionnaire is also given to a panel of experts
(raters 1, . . ., R). The problem is to evaluate the agreement between each individual
medical student and the panel of experts.

Between 2003 and 2005, an SCT was proposed to students training in general
practice (Vanbelle et al., 2007). The SCT consisted of 34 items relating possible
situations encountered in general practice. There were 39 students passing the test
and completing the entire questionnaire. Their responses were confronted to the
responses of a panel of 11 experts. The intraclass correlation coefficient in the group
of experts was 0.22 (±0.04). The individual �̂W coefficients for the 39 students were
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computed using the quadratic weighting scheme. Values ranged between 0.37 and
0.84 and the mean agreement index ± standard deviation (SD) was 0.61 ± 0.12.
Schouten’s weighted index scores averaged 0.44 ± 0.08 (range: 0.26–0.58).

Using the consensus method, where consensus was defined as either the majority
of the raters or a proportion of at least 50% of the raters, 2 (6%) and 12 (35%) items
had to be omitted from the analysis, respectively, because no consensus was reached
among the experts. The mean weighted kappa values for the 39 students was equal
to 0.49 ± 0.13 (range: 0.19–0.72) with the majority rule and 0.66 ± 0.14 (range:
0.23–0.82) with the 50% rule. Figure 1 displays the individual agreement coefficients
relative to each student for the various methods. Marked differences can be seen on
the graph depending on the approach used. A ranking of the students was needed
for selection purposes. The ranking changed notably for some students according
to the agreement index calculated. For example, student no. 39 ranked at the 16th
place with the new approach, the 9th place with Schouten’s index, the 10th place
using the majority rule and at 20th place using the 50% rule.

8 Discussion

The method described in this paper was developed to quantify the agreement
between an isolated rater and a group of raters judging items on a categorical scale.
The group of raters is seen as a well-defined entity, a reference or gold-standard
group with its own heterogeneity, whereas the isolated rater comes from a distinct
population. Therefore, the marginal classification probabilities of the isolated rater
and of the population of raters were basically assumed to be different (� /=�∗). In
the SCT example, it is realistic to admit that each student differs from the group of
experts by the knowledge he/she acquired so far in clinical decision-making.
Although the group of raters was seen as the ‘reference’ group in the present study,
the theory is equally applicable to the case where the isolated rater represents the
expert, at least as long as a single agreement index is looked for between them. When
neither the isolated rater nor the group of raters is considered as the gold stan-
dard, an intraclass version of the proposed agreement index can be derived. The
latter reduces to the ICC (Kraemer, 1979) in case of two isolated raters, by assum-
ing that the isolated rater and the group of raters come from the same population
(�=�∗). The agreement index was conveniently developed on a population-based
model, allowing an easy extension from dichotomous to multinomial scales and the
use of weighted agreement coefficients. It also leads to a less restrictive definition of
perfect agreement. Indeed, the isolated rater and the group of raters were defined
to be in ‘perfect agreement’ when their respective classifications of items were
linearly related and equal on average, without perfect agreement among all raters
in the group (ICC < 1). It was shown that under this assumption and the additional
assumption of perfect agreement within the population of raters (ICC=1), the
proposed agreement index � is algebraically equivalent to the agreement coefficient
derived by Schouten (1982). In other terms, the present approach is based on less
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stringent assumptions than those made by Schouten. This was illustrated on the
syphilis example where it was not possible for Schouten’s agreement index to achieve
the maximum value of 1, contrary to the new agreement index. The latter further
overcomes the shortcomings of the widely used consensus method, in particular the
fact that a decision is not required for items lacking a consensus in the group. It
should be remarked, however, that for items lacking consensus among the members
of the group, the responses given by the isolated rater can lead to different kappa
values depending on the scheme used (weighted or non-weighted) as demonstrated
by the hypothetical laboratory in Williams’ example. The new agreement index also
takes into account the existing heterogeneity in the group of raters while the strength
of consensus, as already indicated, is completely ignored in the consensus method.
Finally, as illustrated in the SCT example and pointed out by Salerno et al. (2003)
and Miller et al. (2004), the results may vary markedly according to the definition
of the consensus method used.

The notion of perfect agreement appears to play a major role in the definition of
the new agreement coefficient and particularly of its maximum value of 1. Here,
the population of raters is seen as a whole, a single entity composed of equally
valued members but displaying heterogeneity in their judgements of items. Hence,
perfect agreement is defined between the isolated rater and the population itself,
not between the isolated rater and the individual members of the population. As
a consequence, agreement may be perfect without forcing all raters, including the
isolated one, to classify all items in the same way. The present definition also does
not preclude that the agreement between the isolated rater and the population may
be better than the agreement between the population and some of its individual
members. In other terms, the isolated rater can perform better than some of the ex-
perts. This may sound somewhat contradictory in the context of a gold standard.
In Schouten’s view, an agreement value of 1 can only be achieved when all raters
of the population and the isolated rater perfectly and thoroughly agree in allocating
items. A gold standard generally represents some practically not attainable but only
approachable level or quantity determined by a single reference method. There are
situations, however, where a gold standard may result from the application of
several reference methods or the opinions of several experts, without necessarily
achieving a perfect consensus on all items. In a medical context, the various res-
ponses of an expert group may not only reflect the absence of a clear consensus
among experienced physicians but also the fuzzy character of the clinical situation
at hand. As seen with Williams’ syphilis serology data, major discrepancies were
observed in the responses given by the three reference laboratories for some of the
assayed specimens. It is therefore our opinion that proficiency testing programmes
should allow for the fact that a particular non-reference laboratory is in perfect
agreement with the references laboratories without being in perfect agreement with
each of them separately, unlike Schouten’s index.

While in theory we may assume that there is always a category of the K-categori-
cal scale with a maximum proportion of raters for each item, it is not necessarily the
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case in practice. There may indeed be a maximum shared by two or more categories,
which have to be compared with the category chosen by the isolated rater for this
item (see hypothetical laboratory example in Table 3). However, as mentioned pre-
viously, this has virtually no impact on the agreement coefficient obtained. In other
terms, two distinct isolated raters will yield the same agreement coefficient (ignoring
the weighting scheme) although their response profile is not exactly identical.

In sum, the proposed kappa coefficient provides a useful alternative to the con-
sensus method and to Light’s approach. It also generalizes the agreement index pro-
posed by Schouten (1982) as well as Cohen’s kappa coefficient while keeping its
attractive properties.
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9 Appendix

9.1 Perfect agreement when K =2

Equivalence 1. The definition of perfect agreement, E(Pi)=E(Yi)=�∗∗ and corr(Pi ,
Yi)=1, is equivalent to writing Pi =�∗∗(1−√

ICC)+√
ICCYi.

Proof. Indeed, �=1 leads to the linear relation Pi =a +bYi . This implies

E(Pi)=�∗∗ =E(a +bYi)=a +b�∗∗

var(Pi)=�2 =var(a +bYi)=b2 var(Yi)=b2�∗∗(1−�∗∗)

Thus, a = (1−b)�∗∗ and Pi = (1−b)�∗∗ +bYi .
As

ICC= �2

�(1−�)
=b2 �∗∗(1−�∗∗)

�∗∗(1−�∗∗)
=b2,

we have

Pi =�∗∗(1−
√

ICC)+
√

ICCYi . �

9.2 Perfect agreement for K > 2

Equivalence 2. If �M is defined by

�M =
K∑

j =1

E[(�∗∗
j + (1−�∗∗

j )
√

ICCj)Yij ]
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where E(Pij)=E(Yij)=�∗∗
j and ICCj denotes the intraclass kappa coefficient relative

to category j (j =1, . . ., K) in the population of raters, we have

K∑
j =1

�[j]M =2�M +K −2

where �[j]M corresponds to the quantity described in the binary case (K =2) when
the nominal scale is dichotomized by grouping all categories other than category j
together.

Proof. When the population of raters and the isolated rater are in perfect agreement,
we have from Equivalence 1

Pij =�∗∗
j (1−√ICCj)+

√
ICCjYij

Therefore,

�M =E

⎡⎣ K∑
j =1

PijYij

⎤⎦=E

⎡⎣ K∑
j =1

(
�∗∗

j + (1−�∗∗
j

)√
ICCjYij

)
Yij

⎤⎦
=

K∑
j =1

(�∗∗
j + (1−�∗∗

j )
√

ICCj)�∗∗
j

=
K∑

j =1

(
�∗∗2

j +�∗∗2
j

�j

�∗∗
j

)

=
K∑

j =1

(
�∗∗2

j +�j�
∗∗
j

)
From Equation 3,

K∑
j =1

�[j]M =
K∑

j =1

(
1−2�∗∗

j (1−�∗∗
j )
(

1−√ICCj

))

=
K∑

j =1

(
1−2�∗∗2

j

�∗∗
j −�j

�∗∗
j

)

=
K∑

j =1

1−2
K∑

j =1

�∗∗2
j +2

K∑
j =1

�∗∗
j �j

=K −2+2
K∑

j =1

(
�∗∗2

j +�j�
∗∗
j

)
=2�M +K −2 �
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