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FUSION CROSS SECTION OF LIGHT IONS AT SUB-COULOMB. . .

)f&a„and the outer side (r)8,) is a pure Coulomb
repulsion betmeen tmo point charges. The dif-
ference with respect to Avishai's model' is that
a centrifugal term is added for r& Ao and the
same term is considered a function of r for r&Ro,
instead of a constant. If Eo and Ao are taken from
systematics of fusion cross section (see, e.g. ,
Ref. 1), then the function (4) has a discontinuity
at 8, which increases with Z~Z, and makes the
model less adequate for larger nuclei. For light
heavy ions at bombarding energies mell belom
the barrier top, the effect of this discontinuity
is negligible, as me shall see belom.

The integral &, can be evaluated exactly for
Bo&x&r~, but it mould be advantageous to have
an analytic expression for the mhole integration
interval. This can be obtained approximately
by making a series expansion of the integrand
in terms of the centrifugal term. Keeping the
first term in the expansion, me obtain

E,=ED(E)+(l+-,') [Dl,(E)+Dc(E)], (5)

w(E, E) (kR, ~'3
ffo = + &'g —2l} al'c sill

i2N (do

[ua, (2q —aa, ))"*,
If ( x v/2+ arcslnx

(1—0)'"

(5)

1 t'2q
D, =—

~2q (kRO

In the exp''esslons above 'g is the Sommerfeld
parameter q = pZ, Z,e'/N }t, k is the wave num-
ber, and

2(E,-E)
p(do Ao

In E', the first term represents the integration
over the half-pa. rabola and the other terms re-
sult from the integration over the Coulomb tail.
This is the l =0 contribution. The l 4 0 partial
waves give an additional term in (5), where D~ and
Dc come from the first derivative of &, mith
respect to (l+ &)2 integrated from r, to R, and

Ro to r2, respectively. Avishai's result can be
considered as a particular case of Elle. (5)-(8)
and i.s obtained by setting Dc =0 and & =0. The
approximation x= 0 is good for a narrom para-
bola (large g&oo) having a height E,«p, &u,'R '

02/.

Such examples are the parabolas mith parameters
taken form columns 2, 3, and 5 of Table I, which
give x ~ O.OV. Setting x= 0 the quantity Dp becomes

N

4p,BO 8'(go
'

TABLZ I. Parameters of the model of Eqs. (4).

Pair
Eo ~o

(MeV) (fm)
SGPp.

(MeV)
hu)p b

ACgp
C

(Mev) (Mev)

ioo+ iSO

ieo+ i4N

iso+ i2C
i4N+ i2C

i2C + 12C

iip + i2C
iog+ i2(

10.75
9.05
7.94
6.99
6.36
5.21
5.23

7.74
8.08
7.88
7.83
7.31
7.46
7.43

2.92
2.72
2.69
2.61
2.66
2.46
2.51

5.08
4.95
4.90
4.77
4.81
4.44
4.57

3.54
3.23
3.26
3.19
3.44
3.14
3.24

a From Ref. 1.
From fitting the inner part of the barrier at one point

(see text).
cFrom Eq. (18).

This is Avishai's expression for Dp, convenient
for narrow parabolas. But there are no argu-
ments to neglect Dc, which is of the same order
of magnitude and usually greater than Dp.

One would expect the approximation (5) to be
valid whenever the increase in the area under
the barrier due to the centrifugal term is small
compared to the E =0 barrier. This happens for
low partial waves and at energies weQ belom the
top of the Coulomb barrier. A detailed numerical
analysis is given in the next section.

Finally, using the approximation (5) for E,„one
can write a closed formula for the fusion cross
section (1) by replacing the sum with an integral
over E. Thi.s gives the expression

m&
op =

(
y ill[1+ exp(-2ffo)],

p+ c) (10)

III. DISCUSSION

Presently me discuss the validity of the model
described in the previous section by performing
a numerical analysis of the approximations used
in deriving the expression (10) for the fusion
cross section.

First me have to choose a realistic barriex
mhose shape mill be approximated by the Eqs.
(4). This is done in Sec. IIIA. Second we have

which is an analog of Wong's formula" (see the
Appendix) valid at energies around and above
the Coulomb barrier. Wong assumed parabolic
shapes for all barriers with the same parameters
Ro, 8'wo in a.ll partial waves. Recent studies'~
have shown that the dependence on l of the para-
meters defining the parabola is important at
energies above the Coulomb barrier. For the
model studied in the present paper one has to
define the parabola parameters for / =0 only.
The approximations which lead to formula (10)
are studies numerically in the next section.
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to find values of the parameters Rp Ep and

Iurpwhich fit the realistic barrier. This is dis-
cussed in the Sec. IGB. Lastly the validity of
the approximations used to derive the cross sec-
tion formula is analyzed in Sec. IIIC.

The intention of the present work is to under-
stand the model (4) rather than experimental data.
However, a comparison with the measured cross
sections will be given in Sec. IV.

A. The "exact" barrier

We consider the potential

V,(r) = V„(r)+Vc(r)+
I (I+ ~)2

2pH

where V„is the nuclear part and Vc the Coulomb
part. For V„wechoose the modified version
of the proximity potential' as proposed by Vaz
and Alexander'

V„($)=4rybC~C2/(C, + C2)p((),

~=(~ C, C,)/b,
(12)

= -3.437 exp(-g/. 75), $ ) 1.2511 .

The parameters C& are the central radii related
to the effective sharp radii R& by

C, =R, —b'/R, ,
(12")

R, =1.2&A ~-0.76+0.&A +&R (i=1,2),

where &R is explained below. The quantity y
is the surface energy coefficient given by

Z'I~
y =0.9517 1 —1.7826~

i A j
The Coulomb potential Vc is taken as in Ref. 8.

Vc =V, —kr" for r - R, +R, ,

3e' f (Z, +Z, )' Z, ' Z,'
5 ~i(R,'+R,')'" R, R,

(13)

zz e')
Ri+R2)

where $ is the dimensionless separation distance
between nuclear surfaces, b =1 fm a parameter
related to the surface thickness, and P($) a uni-
versal function expressed analytically as

$($)= —0.5($ —2.54) —0.0852(t —2.54)~, t ( 1.2511

z~z2gVc= x 2 for r)R~+Rr 1 2 ' (13')

This Coulomb potential is more adequate for
heavy ion collisions than that used in Ref. 1, but
this choice does not alter the results obtained
there because in the energy range considered,
the fusion cross section is insensitive to the inner
part of the barrier.

Vaz and Alexander' indicated that small changes
in the values of the parameters R„y,or b as
proposed by Blocki et al.s were necessary in order
to obtain a good fit of the fusion cross section at
energies above the Coulomb barrier. From a
detailed numerical study they found that a change
in all three parameters is practically equivalent
to a change in one parameter only. They found
it convenient to adjust the radii R, as defined
in Ref. 5 by a quantity &R. In formula (12') we
use for ~R values taken from Table II of Ref. 1.

In Ref. 1 each V, was approximated by a para-
bola with l dependent parameters E„R„and
I (Io

J
and the transmission coefficeint &, was

calculated according to the Hill-Wheeler formula, '

z (g) (y~
2~~E @) (2')

This is a very good approximation for energies
around and above the Coulomb barrier as long
as V, has a pocket and the values of E„R„and
~i(d, were determined once the parameters &R
were adjusted. The model studied in this paper
needs parameters for l =0 only, and it would be
interesting to see if the values found by Vaz and
Alexander retain a meaning at energies well be-
low the barrier.

B. Parameters of the model

We apply the model to a series of pairs of light
ions which are of particular interest in astro-
physics and for which there are extensive meas-
urements of the fusion cross section at sub-
Coulomb energies. "

The pairs of nuclei under discussion are given
in Table I together with the parameters Ep, R„
and I'vp used in the calculations. The values of
Ep and Rp are the same as in Ref . 1. For I'up

we leave some freedom. One choice is to take
it as in Ref. 1. Such values are reproduced in
column 4 of Table I. By definition they give half-
parabolas with the same curvature at Rp as that
of the exact potential defined in Sec. IIIA. But,
as one can see from Figs. 2(a) and 2(b), there
is a large difference between the half-parabola
(dashed line) and the exact potential (full line)
at r(Rp. At bombarding energies well below the
barrier this difference affects considerably the
penetrability integral (3). Two typical cases are
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shown in Tables II and III for "0+"0at E~~ = 7.76
MeV and "8+'W at E~~ =1.22 MeV, respectively.
One should compare columns 2 and 5 mhieh give
the double of the penetrability integral ealeulated
with the dashed half-parabola and the exact bar-
rier, respectively. For the partial maves indi-
cated in the tables one can see that mith increasing
E the model overestimates the penetrability in-
tegral from 15% to -30% for "O+"0 and from
7k to 9/g for '~C+ ~08. It seems therefore necess-
ary to look for an I'(d, mhich would better repro-
duce the area of the exact potential, and hence
give more satisfactory values for E,. An appro-
priate may is to make the parabola intersect the
r axis at the same place as the exact potential
does. This recipe gives the values of I(d, indi-
cated in column 5 of Table I. In Tables II and
ID, column 3, one ean find the corresponding
penetration integrals. As before, the partial
maves considered give the major contribution
to the fusion cross section of "0+"Oand "C
+"8 at the indicated energies. Compared to
column 2 the values of column 3 deviate much
less from the exact values E~ i.e., by 1% to
1.5/o. An important result to be noticed is that
the penetrability integxals E", evaluated with
the approximation (5) and given in column 4 are
very close to the values of K, in column 3, i.e. ,
those obtained without making any series expan-
sion. Some small deviations appear for large
values of f but the contribution of these partial waves
to the total cross section is very small. Therefore it
seems perfectly justified to use the approximation
(5) for ff', . We recall that the formula (10) for
the total cross section is based on this approxi-
mation and on the transformation of the sum over
/ into an integral. The effect of both these approxi-
mations on the cross section mill be discussed in
the next paragraph.

In Tables II and III me also give results for

partial cross section

o, =vg'(2, + 1)T, .

In columns 6 and 7, o', comes from a T, calculated
with &~ and E~, respectively. It turns out that
differences of 2-3% between E", and &, change
the partial cross section for the largest partial
waves by 50%. But, as it is shown in the last
column, these partial maves give a very small
contribution to the total cross section.

C. Cmss section

Results for the total cross section are given
in Tables IV-VI for 60+ '0 '~N+'2C and 8
+"C at sevex al values of the energy below the
Coulomb barrier. Columns 2-4 represent the
sequence of approximations used to derive the
analytic formula (10) for e~. It is meaningful
to compare each of these columns with column

5, which gives the fusion cross section 0~'
obtained from the potential of Sec. IHA by making
a summation over all contributing partial waves.
As was expected, the model (4) cannot be applied
just below Eo because of the artificial kink in
the barrier see Figs. 2(a) and 2(b) . Indeed,
in the case of"0+"0,one can see that at E, ~
=9.76 MeV, i.e., at -1 MeV below the barrier
top, the fusion cross section in columns 2-4 is
smaller by -12/0 than the exact cross section
0~~'". Just below the Coulomb barrier the para-
bolic approximabon of Eq. (2') would be more
adequate. Column 2 gives the cross section for
the barrier (4) with parameters from columns

2, 3, and 5 of Table I. The penetrability integral
is calculated exactly for each partial mave and
the cross section is calculated from Eqs. (1)-(3).
At energies of a fern MeV below the Coulomb
barrier the model gives larger cross sections

TABLE II. Results for the penetrability integral K& and partial fusion cross section. cr& of
~~0+ ~~0 at E &~. =7.76 MeV. Column 2—with parameters from Ref. 1; column 3—with a
semiparabola which fits well the inner side of the exact barrier; column 4—as in column 3
but with the approximation (5); column 5—with the exact barrier of Ref. 1; column 6—the
partial fusion cross section with approximation (5); column 7—the partial fusion cross sec-
tion for the exact potential; column 8—ratio of the partial to total fusion cross section for
the exact barrier Ref. 1.

2Kg 2K) 2K A,

@~o=2.92) (S(do -5 08) (+(d0-5.08)

9.563
10.403
12.465
16.155

8.202
8.825

10.295
12.643
15.928

8.202
8.824

10.275
12.556
15.666

8.336
8.994

10.520
12.897
16.138

2.88 x 10~
7.73 x 10
3.26 x 10~
4.81 x10+
2.80 x10~

2.52 x10~
6.52 x10~
2.55 x10
3.42 x10~
1.75 x10~

0,11
0.27
0.11
0.01
0.0007
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TABLE IG. Same as Table II but for C+ B at E~ ~=1.22 MeV.

2Kr 2K) 2K)
l (Sctlp =2,51) (Kdp =4,57) (kQ) p

=4.57) 2Kg

~A

(mb)

g
1

(mb)

32.598
33.348
34.967

30.339
30.859
31.898
33.460
35.557
38.227
41.575

30.339
30.859
31.898
33.457
35.535
38.133
41.250

30.578
31.090
32.106
33.611
35.588
38.037
40.979

6.529 x 10+2
1.165 x 10+~
6.869 x10+
2.024 x 10&2
3.256 x10
2.962 x 10 ~4

1.550 x 10+5

5.142 xlQ+~
0.924 x 10
5.580 x 10
1.734 x 10"i2
3.086 x10 ~3

3.258 x10 ~4

2.032 xlQ ~5

0.23
0.42
0.25
0.08
0.01
0.001
0.0001

than the exact barrier, because at these energies
the area under the penetrability integral is smaller
for the model than for the exact barrier. For even
lower energies the difference in the area becomes
less important with respect to the total area and the
results of the model become closer to those of the ex-
act barrier. Column 3 shows the effect of the approxi-
mation (5) in the penetrability integral. One can see
that this approximation is very good except for ener-
gies of 1 MeV or less below the Coulomb barrier,
where the model is not reliable. Column 4 is the
result of Eq. (10). The transformation of the sum
into an integral for obtaining Eq. (10) brings an
artificial contribution of a continuously varying l
and slightly reduces the total cross section. This
decrease somewhat compensates for the increase
produced by the model itself. Then formula (10}
brings a maximum error of -2(@ for "0+"0 or
"B+"C in the energy range of 3-4 MeV below
the Coulomb barrier. In other cases, e.g. , "C
+ "0 or "N+ "C, this figure rises up to -3tg and
gives an average maximum error (overestimate}
of -25%. After reaching a maximum this error
decreases for lower values of E.

IV. COMPARISON WITH THE EXPERIMENT

The relation between the exact barrier and its
approximation by the present model being esta-
blished, we can now discuss the comparison with
the experiment. We consider the data of Ref. 11,

which refer to the S factor related to the fusion
cross section by

S=g Ee2JP (14)

Figure 3 shows these data together with results
obtained by calculating o~ with formula (10}and
parameters from columns 2, 3, and 5 of Table I.
'The last column of Tables IV-VI indicates the
S factor obtained for "0+"0, "N+ "C, and "B
+ "C, respectively. We notice that the proximity
potential gives smaller values for S than its ap-
proximation by the model (4}, the ratio between
the S factors being the same as the ratio between
the associated cross sections. For all pairs ex-
cept "0+"0 one obtains the correct order of mag-
nitude for S. 'The agreement between the calcula-
tions and the experiment can be improved by in-
creasing the value of I~„for example up to
-7 MeV for "N+ ' C, and -6.5 MeV for "B+"C.
'This suggests that a potential with a steeper slope
than the proximity potential would better fit the
data. 'This conclusion is consistent with that of
Vaz and Alexander who found it difficult to fit
data above and bel.ow the Coulomb barrier with
the same potential.

Finally we wish to make some considerations of
astrophysical interest. At very low energies one
can make the approximation ln(l+ e '«0)- e 'ro,
and then the S factor becomes

TABLE IV. Fusion cross section for 0+ PO. o.z, 0&, and Oz' " are obtained by summ-
ing over all significant partial waves. In trz~~~ the barrier is given by Eq. (4) with parameters
explained in the text. Oz is like ez but based on the approximation (5) for the penetrability
integral; in Oz~" the barrier is given by Eqs. (11)-(13);oz results from Eq. (10). S is calcu-
lated from Eqs. (14) and (10).

E
(MeV)

~5)
(mb)

~(2)

(mb) (mb) (mb)
s

(b MeV)

9.76
8.76
7.76
6.76
4.00

7.371
0.645
0.285 x10 ~

0.537 x10 3

0.285 x10 ~~

7.669
0.656
0.287 x 10+
0.539 x 10
0.285 x 10+i

7.743
0.636
0.277 x 10"i
0.519 x10 3

0.273 x 10

8.482
0.610
0.239 x10
0.424 x 10
0.225 x10 '~

0.711x 10+
Q.133x 1025

0.228 x 10
0.368 x10 s

0.].].9 x ].026
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TABLE V. Same as Table IV but for 4N+ 2C.

E
(MeV)

~6)F
(mb)

~(2)

(mb)
OF

(mb)

gP IOX

(mb)

s
{bMeV)

6.07
5.07
4.07
3.07
1.00

10.907
0.451
0.418 x 10
0.319 x 10~
0.396 xlp 24

11.299
0.456
0.418 x 10~
0.318 x 10~
0.396 x 10~

10.889
0.435
0.397 x 10
0.300 x 10 5

0.370 x 10 '4

10.457
0.361
0.308 x10-'
0.230 x 10 5

0.305 x10 24

0.324 x 10 8

p.622 x 10
0.108 x 10 9

0.176 x 10"
0.414 x lpi9

exp ~ + 4g arc sin~
" + 2[jtR,(2q —yR, )]'/2w w(E-E„) . %a„'~'

4p Dp+Dc &2n

Making the derivative with respect to E, one obtains for E= 0

dS wi' w 4( l/R ' wE (32//ZZ eR &' '
dE 4p[D~(0)+Dc(0)] K&u, 34 M'Z, Z,e' Ie, ~~ h' j

(15)

(16)

(17)

where D~ and Dc have been defined by Eqs. (7) and (8), respectively, and E is a function of the parabola
parameters R„E„S(d,of the reduced mass p, and the charges Z„Z,:

3 1 3+1/2(y E )1/2 +3/2(y E )3/2 (y/E 1)1/2

2 y EE -' (y-E )' '+[arcsin(E /y)' '+w/2]y+2n' (y-E,)'

For brevity we have denoted 1/a =Z,Z,e'/R, and
y= p~, 'R, '/2. Fixing R, and E, one can find the
value of K(d, for which

dS—=0
dE (18)

V. CONCLUSIONS

We have derived an analytic formula for the
fusion cross section, valid at sub-Coulomb ener-

These values are given in the last column of Ta-
ble I and, if compared with those from column 5

which fit the barrier formed with the proximity po-
tential, they are systematically smaller. As we
have mentioned, to have a good fit of the experi-
mental S factor we need even larger values than
those in column 5. For such values dS/dE be-
comes negative close to E= 0. Within the present
model one would therefore expect a monotonically
decreasing S at very low energies.

1

gies. This is complementary to Wong's formula
which can be used around and above the Coulomb
barrier. 'The derivation is based on a model pro-
posed by Avishai to approximate a realistic Cou-
lomb barrier with a half-parabola and a Coulomb
potential between two point charges at the left
and right of the barrier position, respectively.
We have added a centrifugal term and studied var-
ious approximations leading to the derived analytic
formula. An estimate of the error made by using
this compact formula instead of calculating with
the exact barrier for each partial wave was made,
and it was found that on the average, for energies
of 3-4 MeV below the Coulomb barrier, the for-
mula gives a cross section of -25% higher than
the detailed exact calculations. From a compari-
son with the experimental S factor it was found

that the proximity potential modified by Vaz and

Alexander to fit fusion data at energies above the
Coulomb barrier is inadequate at sub-Coulomb
energies where data are quite sensitive to the inner

TABLE VI. Same as Table IV but for 8+ C.

(MeV)

~(i)OF

(mb)

0(2)

(mb)
(JF

(mb)

OP IOX

(mb)

s
(b MeV)

4.22
3.22
2.22
1.22
0.25

8.708
0.149
0.123 x10 3

0.274 x 10-io
0.153 x 10~2

8.946
0.150
0.123 x 10
0.274 x 10&o
p.153 x 10~2

8.466
0.140
0.114 xlp 3

0.251 x 10
p.131x 10~2

7.869
0.119
0.961 x 10~
0.220 x 10~o
0.131 x 10~2

0.184 x 10
0.312 x10 4

0.482 x 10 4

0.702 x 10i4

0.964 x 10 4



1510 J. L. DETHIER AND FL. STANCV

10"=

10

1022
Q2

I I

160 160

Q2 "p."N
Q}~60 "2C

NN 14N

Reaction

Cg

I I

10.76 ' N+ '
C 7 57

9.62 06' C+" C 6. 57
e~5 CD"C. "c 6. 66
3.61 Qe""B+' c 5. 63

Ez(MeY} Q9" B+" C 5. 72
Reaction E&(NeV)

1000

sions and to Dr. P. E. Hodgson for kind hospitality
at the Nuclear Physics Laboratory, Oxford. We
would like to thank Prof. L. Wilets for a careful
reading of the revised version of this work.

APPENDIX

10 21

1020

& 1019
K

1018

1017

Ia aa
IK~~
I3 0op

I ~

p01

k
-10L'

02

~, '
~

~e I

1016

1014

O'Cj II I i 1~ I~a
~ I ~'0 Ia8 aae.

~ ~ 0

~%a,at}t
w~f ~» ".

~4 ~.
I ~

~ a

Ia

1013

1012

j

-3 -2 -1

E-E( (NeV)

i Qe

I
~ 4~Ii aj

0 1 2

FIG. 3. Comparison between the experimental $ factor
(Ref. 11) and results of formula (10).

In this appendix we shall rederive Wong's for-
mula" for the fusion cross section, valid at en-
ergies around and above the Coulomb barrier.
The derivation of our expression (10) follows
along the same lines. In both cases the important
common feature is that the transmission coeffi-
cient is of the form

1
1+be "' '

where x=l+& and b and n depend on the barrier
shape. Wong considered barriers of a parabolic
shape

, (r -R,)' g2(l+-,')'
2 p

(A2)

with the position Rp and the curvature I&up the
same for all partial waves and height El Ep
+g'(l+ ~)2/2pR0'. From the evaluation of the pen-
etrability integral (3) we obtain in this case

( 2m 7t'5'
b=expi (E, E), n= (A3)

The fusion cross section (1) is calculated under
the assumption that one can replace the sum over
l with an integral over the variable x = l+ &. Then
using expression (Al) for T, the cross section be-
comes

side of the barrier. A nuclear potential with a
steeper slope giving rise to a narrower barrier
would improve the agreement with the experiment.
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xdx mX.' I' 1i
o, =2 a'

which brings us to Wong's formula

I(dgo 2v(E -E„)
0'y =

2E ln 1+ exp g (dp

(A4}

(A5)
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