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Abstract

We discuss the stability of multiquark systems within the recent model
of Glozman et al. where the chromomagnetic hyperfine interaction
is replaced by pseudoscalar-meson exchange. We find that such an
interaction binds a heavy tetraquark system QQq̄q̄ (Q = c, b and
q = u, d) by 0.2−0.4 GeV. This is at variance with results of previous
models where ccq̄q̄ is unstable.
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The baryon spectrum has recently been revisited by using chiral models
which include meson-exchange forces between quarks [1, 2, 3]. A generic
Hamiltonian summarising the above references reads

H =
∑

i

~p 2
i

2mi

− 3

16

∑

i<j

λ̃c
i ·λ̃c

j Vconf(rij)

−
∑

i<j

λ̃c
i ·λ̃c

j ~σi ·~σj Vg(rij) +
∑

i<j

λ̃F
i ·λ̃F

j ~σi ·~σj VF(rij), (1)

where mi is the constituent mass of the quark located at ~ri; rij = |~rj −~ri|
denotes the interquark distance; ~σi, λ̃

c
i , λ̃

F
i are the spin, colour and flavour

operators, respectively. Spin-orbit and tensor components may supplement
the above spin-spin forces for studying orbital excitations.

The last term in H represents the meson exchange. An implicit sum over
F is understood, where F = 1, 2 and 3 corresponds to π, F = 4, 5, 6 and
7 to K, F = 8 to η, and F = 0 to η′. When VF = 0, we have a standard
constituent quark model.

The confining term Vconf usually consists of a Coulomb plus a linear term,

Vconf = −a

r
+ br, (2)

and is sometimes approximated by a harmonic potential, with possible con-
stant terms.

The third term in H is often understood as the chromomagnetic analogue
of the Breit–Fermi term of atomic physics. The radial shape of Vg is taken
as being of very short range. For mesons, λ̃c

1 · λ̃c
2 = −16/3, and a positive

Vg, as in the one-gluon-exchange model, shifts each vector meson above its
pseudoscalar partner, for instance D∗ > D in the charm sector. For baryons,
where λ̃c

1 ·λ̃c
2 = −8/3 for each quark pair, such a positive Vg pushes the spin

3/2 ground states up, and the spin 1/2 down, for instance ∆ > N . In the
simplest models, Vg ∝ δ(3)(~r) is treated in first order. Adopting a finite-range
parametrisation allows one to treat Vg non-perturbatively when solving the
Schrödinger equation.

It has been long recognised that explicit fitting of light mesons and
baryons in potential and bag models requires a large strength for the chro-
momagnetic term. A possible remedy is to introduce mesonic loops. For
instance in the work of Myhrer et al. [4] or Cottingham et al. [5], the ∆−N
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splitting is shared between pion loops and chromomagnetism in about equal
parts. The complementarity between gluon-exchange and pion-field effects
arises naturally in models where the bag containing the quarks is surrounded
by a pion cloud. Such a model is the “little bag” of Brown and Rho [6], where
the pion field is strictly restricted to stay outside the bag. In the “cloudy
bag” of Thomas and collaborators [7], the pion field is allowed to penetrate
the bag.

Non-relativistic versions of the pion-exchange effect are the models intro-
duced by Weber et al. [8], and by Glozman and Riska [9]. In these models,
pions and other mesons are directly exchanged between the quarks, and thus
travel through the very interior of the hadron.

The explicit pion-exchange contribution to the last term in Eq. (1) reads

∑

i<j

~σi ·~σj ~τi ·~τj
g2

4π

1

4m2

[

µ2 exp(−µrij)

rij
− 4πδ(3)(rij)

]

, (3)

where µ is the pion mass. A coupling constant g2/4π = 0.67 at the quark
level corresponds to the usual strength gπNN/4π ≃ 14 for the Yukawa tail
of the nucleon–nucleon (NN) potential. When constructing NN forces from
meson exchanges, one disregards the short-range term in Eq. (3), for it is hid-
den by the hard core, and anyhow the potential in that region is parametrised
empirically. Similarly, when Törnqvist [10], Manohar and Wise [11], or Er-
icson and Karl [12] consider pion exchange in multiquark states, they have
in mind the Yukawa term exp(−µr)/r acting between two well separated
quark clusters. For similar reasons Weber et al. [8] ignore the delta-term
too. Therefore it is somewhat of a surprise to see the delta-term of Eq. (3)
taken seriously, and with an ad-hoc regularisation playing a crucial role in
the quark dynamics [1, 2, 3].

In the work of Glozman, Papp and Plessas [1], the chromomagnetic term
is entirely omitted (Vg = 0) and a weak linear confinement is supplemented
by π, η and η′ exchanges. The model is used to estimate the spectrum of N
and ∆ baryons. The explicit form of H integrated in the spin–flavour space
is

H = H0 +
g2

48πm2

{

15Vπ − Vη − 2 (g0/g)
2 Vη′ for N

3Vπ + Vη + 2 (g0/g)
2 Vη′ for ∆

(4)
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with

H0 =
∑

i

mi +
∑

i

~p 2
i

2mi

+
C

2

∑

i<j

rij (5)

Vµ = Θ(r − r0)µ
2 exp(−µr)

r
− 4ǫ3√

π
exp(−ǫ2(r − r0)

2); (µ = π, η, η′).(6)

The parameters are m = 0.337 GeV, C/2 = 0.01839 GeV2, g2/4π = 0.67,
(g0/g)

2 = 1.8, ǫ = 0.573 GeV, r0 = 2.18 GeV−1, and µ = 0.139, 0.547,
0.958 GeV for π, η and η′, respectively.

When the meson-exchange terms are switched off, the N and ∆ ground
states are degenerate at 1.63 GeV. When the coupling is introduced, the wave
function is modified. We have performed crude variational estimates with
Gaussian wave functions, and reproduced the results of the more elaborate
Faddeev calculation of Ref. [1]. For the nucleon, we found that the spin-
independent part H0 of the Hamiltonian gives a contribution of 2.1 GeV,
and receives a large −1.2 GeV correction from meson exchange. For the ∆
ground state, the contribution of H0 and meson exchange parts are 1.9 GeV
and −0.6 GeV, respectively. Thus one ends up with a reasonable value for
the ∆−N splitting, close to 0.3 GeV.

But dramatic effects occur when the model is applied to mesons or to mul-
tiquark systems containing heavy quarks. When the meson mass µ reaches
values of 2 or 3 GeV as for the ηc or the D, the two terms in Eq. (3) basically
cancels each other. Moreover we expect little cc̄ ↔ qq̄ mixing in the ηc, so
very weak coupling of ηc to a light quark q. Hence the most natural extension
of the model (1) to a combination of light and charmed quarks restrict meson
exchange to the former ones. Then:

1. The D and D∗ mesons are degenerate. An average mass M(D) ≃
2 GeV can be obtained from H0 if the charmed quark is given a mass value
of mc ≃ 1.35 GeV.

2. A reasonable splitting is obtained between the isoscalar Λc and the
(degenerate) Σc and Σ∗

c baryons of quark content (cqq). The masses are
Λc = 2.32 GeV, and Σc = Σ∗

c = 2.48 GeV.
3. Another consequence is that the (c̄c̄qq) multiquark is easily bound pro-

vided the light diquark is in a spin–isospin S = 0, I = 0 state. A crude trial
wave-function (a Gaussian for each internal Jacobi coordinate) is sufficient
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to give a binding energy as large as

2(c̄q)− (c̄c̄qq) = 0.18 GeV. (7)

For (b̄b̄qq) we obtain in the same way a binding energy

2(c̄q)− (c̄c̄qq) = 0.22 GeV, (8)

which becomes about twice larger for more realistic potentials including a
Coulomb term in the central part, as per Eq. (2).

A spin–isospin S = 0, I = 0 state implies a colour 3̄ for the qq diquark,
and thus an S = 1, I = 0 and colour 3 state for (Q̄Q̄), which thus takes
advantage of the confining force. It was indeed shown that in a flavour-
independent potential (no hyperfine interaction) (Q̄Q̄qq) becomes stable if
the mass ratio m(Q)/m(q) is large enough [13]; then, for realistic potentials,
stability occurs more likely for (b̄b̄qq) than for (c̄c̄qq) [14, 15]. Note that the
entire Q̄Q̄qq system discussed above has S = 1 and I = 0. When the masses
of Q̄ and q are comparable, the dynamics mixes the triplet and sextet states
of diquarks [16].

It was underlined by Törnqvist [10], and Manohar and Wise [11] that one-
pion exchange might favour binding of heavy-flavour configurations. These
authors, however, proposed quantum numbers (S = 0, I = 1) or (S = 1, I =
0) for the light diquark, so that a negative ~σ1·~σ2 ~τ1·~τ2 makes the Yukawa tail
exp(−µr)/r attractive. This implies a colour 6 for a qq diquark with relative
angular momentum ℓ = 0, in order to fulfil the Pauli principle. Thus Q̄Q̄ is
in a colour 6̄ state, at variance with the considerations above.

4. Presently we are investigating whether other multiquark systems are
predicted to be stable in our simple extension of the model of Glozman et

al. In particular we are studying the (ccqqqq) system. More details will be
given in a forthcoming publication [17].
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