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Abstract

The Hilbert transform is one of the most successful approaches to tracking the varying nature of vibration
of a large class of nonlinear systems thanks to the extraction of backbone curves from experimental data.
Because signals with multiple frequency components do not admit a well-behaved Hilbert transform, it is
inherently limited to the analysis of single-degree-of-freedom systems. In this study, the joint application of
the complexification-averaging method and the empirical mode decomposition enables us to develop a new
technique, the slow-flow model identification method. Through numerical and experimental applications,
we demonstrate that the proposed method is adequate for characterizing and identifying multi-degree-of-
freedom nonlinear systems.

1 Introduction

Nonlinear dynamics has been studied for a relatively long time, but the first contributions to the identification
of nonlinear structural models date back only to the 1970s. Since then, numerous methods have been de-
veloped because of the highly individualistic nature of nonlinear systems. A large number of these methods
were targeted at single-degree-of-freedom (SDOF) systems, but significant progress in the identification of
multi-degree-of-freedom (MDOF) lumped-parameter systems was realized during the last ten years. How-
ever, it is fair to say that there is no general analysis method that can be applied to all nonlinear systems in
all instances. For a review of the literature on the subject, the reader is invited to consult the monograph [1]
or the recent overview [2].

One of the most successful approaches to nonlinear system identification is the restoring force surface
method, introduced in the late 1970s by Masri and Caughey [3]. The technique is appealing in its sim-
plicity, the starting point being Newton’s second law. Another attractive technique, which uses the Hilbert
transform and the slow-flow dynamics for nonlinear system identification, dates back to the early 1990s.
SDOF systems were first studied in the ‘FREEVIB’ method [4], and the generalization to 2DOF systems
soon followed [5]. That procedure tracks the varying nature of vibration of a large class of nonlinear systems
thanks to the extraction of backbone curves from experimental data. Because multicomponent signals do not
admit a well-behaved Hilbert transform, the ‘FREEVIB’ method is best exploited for SDOF systems or for
single-mode resonance of MDOF systems. Alternative approaches for slow-flow-based identification were
developed, using, for instance, the wavelet [6] and Gabor [7] transforms.

Recognizing the limitation of the Hilbert transform for signals with multiple frequency components, Huang
et al. introduced the Hilbert-Huang transform (HHT) in 1998 in [8]. It decomposes signals in terms of
elemental components, termed intrinsic mode functions (IMFs), through what has been called the empirical
mode decomposition (EMD). Its capability to analyze nonlinear and nonstationary data, utilized in several
applications such as plasma diagnostics [9] and financial time series [10], makes it potentially superior to the



Fourier and wavelet transforms. This is discussed in detail in the monograph [11]. Several applications of the
HHT to structural dynamics recently appeared, including damage detection [12], gearbox and roller bearings
fault diagnosis [13], aeroelastic flight data analysis [14], and nonlinear vibration characterization [15]. Yang
et al. also related the IMFs to the modal properties, providing a clear interpretation of the relationship of
HHT to linear dynamics [16, 17]. However, a complete analytical foundation is still lacking in the presence
of nonlinear effects.

As shown for the first time in [18], the lack of this fundamental understanding of the HHT in nonlinear
structural dynamics can be addressed by linking its outcome to the slow-flow dynamics of the system.
The slow-flow model is established by performing a partition between slow and fast dynamics using the
complexification-averaging (CxA) technique, resulting in a reduced dynamical system described by slowly-
varying amplitudes and phases. Moreover, these slowly-varying variables can be extracted directly from
experimental measurements using the Hilbert transform coupled with the EMD. The comparison between
experimental and analytical results forms the basis of a novel parameter estimation method, termed the slow-
flow model identification (SFMI) method. The SFMI method can be viewed as an effective generalization of
the FREEVIB approach to MDOF systems.

This paper is organized as follows. In the next section, the CxA method is briefly presented. In Section
3, the HHT and the concept of an IMF are introduced; their use for nonlinear signal characterization is
also detailed. The intimate relation between the CxA method and the HHT, which forms the basis of the
SFMI method, is discussed in Section 4. The SFMI method is then demonstrated using numerical and
experimental application examples in Sections 5 and 6, respectively. Finally, the method’s strengths as well
as its limitations are outlined in the conclusions of Section 7.

2 Modeling the Slow Flow of Nonlinear Systems: The CxA Method

The slow-flow model of a nonlinear system is established by partitioning its response in terms of slow and
fast components, assuming that such decomposition is possible. This is the case when the time series of
the dynamics are composed of a number of well separated dominant frequency components, which can
be regarded as the fast frequencies of the response; the slow dynamics then provide the slowly-varying
modulations of the fast-frequency components. The resulting equations govern the slow-flow variables,
namely amplitudes and phases, and describe a dynamical system which is a good approximation to the
original system under certain assumptions [19].

There are important motivations for studying the slow flow. One of them is that the slowly-varying ampli-
tudes and phases represent meaningful features of the response and offer a sharper and clearer character-
ization of the system dynamics than the original time series. One possible method for deriving the slow
dynamics of structural systems is the classical method of averaging [19]. In this study, a variant of this tech-
nique, the CxA method [20], is considered. There are basically four steps in the method: (i) complexification
of the equations of motion; (ii) partition of the dynamics into slow and fast components; (iii) averaging of
the fast-varying terms; and (iv) extraction of the slow-flow variables from the averaged system.

To illustrate the method, a damped Duffing oscillator
i+ ci+ kx4 kyx® =0 with 2(0) = X, #(0) =0 (1)

is first treated. A complex change of variable, ¢ (t) = @(t) + jwz(t), is performed, where w is the frequency
which best describes the system response. Equation (1) becomes
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The dynamics () = ¢(t)e/! is decomposed into slow, ¢(t), and fast, e/“*, components such that the
motion is approximated by a single frequency component with modulated amplitude and phase. By averaging



out the fast-frequency component e/“*, equation (2) is transformed into
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Due to the averaging process, this complex-valued differential equation represents an approximation to the
original dynamics. We then proceed to the extraction of envelope and phase variables by expressing the

variable ¢(t) in polar form, ¢(t) = a(t)e/?®),
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The real and imaginary parts of this equation are
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respectively. Unlike equation (1), the equations describing the slow-flow dynamics may be solved analyti-
cally, giving
3k X 2 w k

a(t) = Xwe ™% and B(t) = o (1—e ) — (5 - %) t+ g (6)

Therefore, equations (5) may be viewed as a set of approximate but simplified equations that govern the
essential dynamics of the system. The system response predicted by the CxA method is, in final form,

x(t) = ? sin [wt + B(t)], (7)

which shows that the total phase variable is ® = wt + .

Because the primary focus of this paper is on MDOF nonlinear system identification, a 2DOF system is now
investigated with equations of motion given by

mii 4 @+ ci2(@ —y) + ke + kie(z —y) = 0,
maij + c1o(y — &) + ey + koy + k12(y — ) + kyy® = 0. ®)

The system response should comprise two dominant fast components with frequencies w; and ws. Four
complex variables are therefore introduced in this case,

Y1 =21 + JwiT, Yo = T2+ jwara, Y3 =11 + jwiyr, Y4 = Y2 + jwayo, &)

such that z(t) = x1(t) + x2(t) and y(t) = y1(t) + y2(t). By substituting this ansatz into (8), applying
multiphase averaging [21] over the fast-frequency components and expressing the complex amplitudes in
polar form, the slow-flow model is derived (see [22] for the detailed computations).

Figure 1 shows the comparison between the system response predicted by the CxA method and the response
computed using numerical simulation of the original equations of motion (8) with k1 = ko = kjo = my =
mo = 1, ky = 2, ¢ = co = 0.05, c;2 = 0 and zero initial conditions except for 2:(0) = 1. Because
the nonlinear coefficient and the initial displacement are O(1) quantities, this is a strongly nonlinear system.
Satisfactory agreement between prediction and numerical simulation is observed throughout the responses
of the two oscillators. The good predictive capability of the CxA method for strongly nonlinear systems was
previously discussed in [23], despite the absence of proof of asymptotic validity [19].
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Figure 1: Approx. of the response of a 2DOF nonlinear system using the CxA method. (a) z(¢); (b) y(t).

3 Characterization of a Multicomponent Signal: The HHT

The Hilbert transform of a time-domain signal x(¢) can be viewed as the convolution of the original signal
with 1/t, emphasizing temporal locality of x(t). It characterizes the signal x(¢) through the extraction of its
envelope A(t) and instantaneous phase ®(t), z(t) = A(t) cos ®(t). It is based on the analytic signal X (t)
defined as X (t) = z(t) + jH[z(t)] = A(t) exp[j®(t)] where j = \/—1 is the imaginary constant. Notice,
at this point, the similarity of this complexification framework to the CxA process examined in the previous
section. This is the first indication of the relationship between the two methods, which will be discussed in
Section 4. It follows that

At) = \J2(t)2 + Hlz(0)]? and  ®(t) = arctan (H[z(t)]/«(t)). (10)

The instantaneous frequency is the time derivative of the phase ®(¢). One intrinsic limitation of the method
is that it is only truly suitable for monocomponent signals, i.e., those possessing a single dominant harmonic
component.

The limitation of the Hilbert transform when applied to signals with multiple frequency components has been
recently addressed through a process known as empirical mode decomposition (EMD) [8]. The basic idea
of the EMD is to decompose the original signal in a sum of elemental components, termed intrinsic mode
functions (IMFs). To be amenable to the Hilbert transform, each IMF must satisfy two properties: (i) the
number of extrema and zero-crossings can differ by no more than one; and (ii) at any point, the mean value
of the envelope defined by the local maxima and the envelope defined by the local minima should be zero.
It follows that an IMF is a monochromatic signal, the amplitude and frequency of which can be modulated,
unlike harmonic functions. Moreover, the signal can be reconstructed as a linear superposition of its IMFs.
Taken collectively, the Hilbert spectra of the IMFs give a complete characterization of a multicomponent
signal in terms of amplitude and phase variables, or equivalently in terms of amplitudes and instantaneous
frequencies. The approach coupling the EMD with the Hilbert transform has been termed the Hilbert-Huang
Transform (HHT).

Given a signal z(t), the EMD algorithm seeks for its characteristic time scales, which are defined by the time
lapse between successive extrema [8]. A systematic means of extracting the different time scales, designated
the sifting process, is as follows: (i) identify all local extrema; (ii) interpolate the maxima and the minima by
spline approximations to produce the upper and lower envelopes, respectively; (iii) compute m(t), the mean
of the upper and lower envelopes; (iv) compute h(t) = z(t) — m(t); (v) if h(t) is not an IMF, restart the
procedure by treating h(t) as the signal.

The component h(t) is considered to be an IMF when the mean m(t) is globally smaller than a prescribed
fraction of the mode amplitude, defined as half the difference of the upper and lower envelopes. Because
overiterating for better local approximation may be detrimental to the main portions of the signal, larger
values of m(t) may be tolerated locally, as proposed by Rilling et al. [24].

Once the first IMF hq(t) has been computed, the second IMF can be extracted from the residue 7(t) =
x(t) — hi(t). By construction, the number of extrema in the residue decreases with the number of IMFs,
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Figure 2: Wavelet transform applied to signal y(¢) in Figure 1(b).
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Figure 3: Application of the EMD to signal y(¢) in Figure 1(b). (a) First IMF; (b) second IMF; (c) third IMF.
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Figure 4: Final outcome of the HHT applied to a two-component signal. (a) Envelope of the first IMF; (b)
envelope of the second IMF; (c) instantaneous frequency of the first IMF; (d) instantaneous frequency of the
second IMF



and the iterative process stops when the residue after n iterations 7, (¢) becomes a monotonic function. By
summing up all the IMFs and the last residue, the complete signal decomposition is obtained:

p(1) = 3 hilt) + ). an
k=1

Because the EMD explores sequentially the different time scales in the data, going from the finest scale
(i.e., the highest-frequency component) to the coarsest scale (i.e., the lowest-frequency component), it is
characterized by an inherent multiresolution.

For illustration, the multicomponent signal y(¢) in Figure 1(b) is considered. Figure 2 depicts the wavelet
transform of this signal, which reveals the presence of two dominant frequency components in the vicinity of
the natural frequencies of the linearized system. The application of the HHT begins with the decomposition
of the signal in terms of its IMFs using EMD. The 3 leading IMFs are displayed in Figure 3. The first 2 IMFs
are related to the fundamental frequency components and account for more than 99.5% of the total variance in
the signal, which confirms that y(¢) can be approximated using a two-component signal. The last IMF can be
physically interpreted by considering its harmonic content; in particular, its characteristic frequency is equal
to 2 times that of the second IMF minus that of the first IMF. This is remarkable, because this component
was completely missed by the wavelet transform. The Hilbert transform can now be safely applied to each of
the IMFs. The final outcome of the HHT in terms of amplitude and instantaneous frequency of the first two
IMFs is shown in Figure 4. The respective contributions of the modes can be easily assessed from Figures
4(a) and (b); that is, both modes seem to participate evenly in the system response. Moreover, because
the instantaneous frequencies of both modes decrease with time, the hardening effect of the nonlinearity is
evident in Figures 4(c) and (d). Clearly, this represents meaningful structural information, which cannot be
obtained from the visual inspection of the time series.

In summary, the HHT represents an important addition to the structural dynamicist’s signal processing tool-
box. What makes the HHT so attractive is that it eliminates the need for an a priori defined functional basis,
as is generally required for traditional signal analysis techniques (e.g., the Fourier transform expresses a sig-
nal in terms of global harmonic basis functions, and the wavelet transform in terms of local basis functions).
Being purely data-driven, the HHT precisely determines the most appropriate empirical but adaptive basis.
This ability to adapt is crucial, given the individualistic nature of nonlinear systems. Another key feature of
the method is that, by utilizing the Hilbert transform, it operates at the scale of one oscillation and is, thus,
truly able to track local changes in signals.

4 The Intimate Relation between the CxA Method and the HHT

The proposed nonlinear system identification technique, termed the slow-flow model identification (SFMI)
method, integrates elements of the previously discussed CxA process and the HHT-based slow-flow reduction
of the dynamics. Before we proceed to describe the detailed tasks that need to be undertaken in order
to develop and test the SFMI method, it is necessary to establish a relationship between the theoretical
CxA approach and the computational HHT method. The missing link between these two seemingly distinct
approaches was first revealed in [18].

Both approaches share a common basis by expanding a multifrequency signal in terms of a series of simple,
monocomponent oscillatory modes, which are related to the dominant fast-frequency components of the
signal. On the one hand, the CxA method transforms the equations of motion of a nonlinear system into a
set of approximate equations that govern the slow flow. Two equations, one for the amplitude and one for
the phase, are derived for each modeled fast-frequency component, governing the slow modulation of that
fast harmonic. On the other hand, the HHT characterizes a signal through the amplitude and phase of the
elemental oscillatory components, the IMFs.
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Figure 5: Intimate relation between the theoretical CxA approach and the computational HHT method. Left
column: HHT results; right column: CxA results.

Hence, the link between the methods is clear: the slow-flow model derived using the CxA method corresponds
to the equations governing the amplitude and phase of the dominant IMFs computed from the signal by
applying the HHT; the CxA method therefore provides a rigorous theoretical framework for the HHT.

To illustrate the relation between both approaches, Figure 5 shows the comparison of the results of the CxA
and HHT methods applied to the response y(t) of system (8) with k1 = ko = kig = m1 = mg = 1,
kn = 2, ¢1 = co = 0.05, c12 = 0 and zero initial conditions except for 2(0) = 1. The four top plots
depict the temporal evolution of the envelopes of the modeled components in the CxA method, y1(¢) and
y2(t), and of the IMFs, respectively. The four bottom plots depict the temporal evolution of the corresponding
instantaneous frequencies. An almost complete coincidence of the two sets of results is observed, confirming
the link between the two methods.

Based on this theoretical link, the SFMI method is formulated with the following steps:

1. Perform experimental measurements of the transient response of the tested system to obtain a set of
local time series at different sensing positions throughout the system.

2. Analyze each individual time series using the wavelet transform to identify the dominant frequency
components and their temporal evolution.

3. Apply the HHT to the measured time series.



4. By comparing the wavelet spectrum to the individual plots of the instantaneous frequencies of the
extracted IMFs, determine the dominant IMFs of the structural response and categorize them in terms
of their characteristic time scales.

5. Based on the slow-flow model of the CxA method, perform a curve-fitting of the measured instanta-
neous frequencies and amplitudes of the IMFs using a classical linear least-squares procedure; doing
so, the physical parameters are identified.

6. Assess the accuracy of the identification process by comparing the measured and reconstructed time
series.

One key feature of the SFMI method is that it performs a multiscaled identification, because it employs
the characteristic time scales of the dominant dynamics at different phases (time windows) of the system
response at different sensing locations.

5 The Slow-Flow Model Identification Method: Numerical Results

To demonstrate the effectiveness of the SFMI method for characterization and parameter estimation of
MDOF nonlinear systems, the identification of the 2DOF system (8) is considered. Its slow-flow model
can be recast in matrix form

A
__agsin(B3—0F1) 0 0 0 %1 0 @—a CO; (B3—P1) ] x b
_ 04 SinQ(%il—ﬁQ) 0 0 0 a72 0 G2-u CO; (Ba—=B2) | T L i myaq 1
a1 SinQ(%gl —f3) 0 0 0 0 (%2 az—ai CO; (B1—P3) ky mqu
__agsin (%é*ﬁﬂ 0 0 0 0 @ a—azcos (B2—P4) ko 2223
2 2 2 204
as cos (3 fgﬂl —al 1 0 0 0 0 —agwi sin (53_61) knl - — my (20')15'1 + w%
a a
ascos (Bi-B)maz  _y 0 0 0 cowsm@uopy || G my (2wa 02 + w3)
az az .
ai cos (B1—f3)—as 0 -1 — 3a3  3aj 0 (0 C—tawisin (B1—03) 2 ma (2w B3 + w%)
as dw? 2w§ a3 L €12 | (2 ﬂ + 2)
a2 cos (ﬁ27ﬁ4)7a4 0 -1 — % o 3_03 0 0 —a2ws sin (ﬁ27ﬁ4) L M2(2sw24 w3 -
L a4 4w§ Qw% a4 ]

12)
An estimation of the matrix A and the vector b can be obtained by direct application of the HHT, through
the computation of the envelopes a; and phases [3; (and their first derivatives) of the measured IMFs. We
note that, if the mass matrix is unknown, the identified coefficients are therefore mass-normalized.

A careful inspection of equation (12) reveals that the elements of matrix A involving the term sin (3; — ;)
must be very small, which might corrupt the curve-fitting process. The reason is that the phase differences
(B3 — B1), (B2 — B4), (61 — B3) and (B2 — [4) should be very close to 0 or +, because they correspond
to either the in-phase or anti-phase mode. The slow-flow model can therefore be rewritten by removing
those elements from matrix A, and the physical parameters contained in vector x can be identified in a
straightforward manner using the Moore-Penrose inverse

x=(ATA)'ATD (13)

The response of system (8) is computed using Newmark’s algorithm for k1 = ko = k1o = m; = mo =1,
kni = 2, c1 = c2 = 0.05, ¢12 = 0 and two sets of initial conditions, x(0) = 0.5 and z(0) = 1, and all other
initial conditions set to zero. Because the extrema of the transient responses must be correctly identified in
the EMD, a fair number of data points per oscillation is required. In the present study, the sampling frequency
is set to 10 Hz. The system response for x(0) = 1 is displayed in Figure 1.

Parameter estimation is carried out using the SFMI method, and the results are listed in Table 1, respectively.
A satisfactory identification of the stiffness and damping parameters is realized. The remaining small errors
are attributed to the inherent approximations of the CxA process.



| ky N/m) ko (N/m) k(N/m) Ky (N/m®) ¢; (Ns/m) ¢ (Ns/m) 12 (Ns/m)

Exact values 1 1 1 2 0.05 0.05 0
Identification 0.995 0.983 1.000 2.143 0.044 0.047 0.003
z(0) = 0.5
Identification 1.001 0.976 1.006 2.107 0.047 0.048 0.001
z(0) =1

Table 1: Parameter estimation results for system (8).
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Figure 6: Schematic of the experimental fixture.

6 The Slow-Flow Model Identification Method:
Experimental Demonstration

6.1 Description of the experimental fixture

To support the previous theoretical findings, experimental measurements were carried out using the fixture
depicted in Figure 6. This fixture realized the system described by equations

miE + 1@ + c12( — 9) + b1z + kio(x —y) =
mafi + c12(y — ) + coy + k12(y — ) + ky® = 0 (14)

and comprised two cars made of aluminum angle stock which were supported on a straight air track. The first
car (i.e, the left car in the upper picture in Figure 6) of mass m; was grounded by means of a linear spring
k1, and the second car of mass mo was connected to the first car by means of a linear coupling stiffness k12.
The leaf springs k1 and k12 were built to be identical. An essential cubic nonlinearity k,,; was realized by a
thin wire with no pretension, as detailed in [25]. A long-stroke electrodynamic shaker was used to excite the
first car.

The response of both oscillators was measured using accelerometers. Estimates of the corresponding dis-
placements were obtained by integrating twice the measured accelerations. The resulting signals were then



Table 2: Parameters of the experimental fixture identified using the stochastic subspace identification and

restoring force surface methods.

Parameter Value
Stiffness kq 427.2 N/m
Coupling stiffness, k12 421.1 N/m
Cubic stiffness k,,; | 5.77 10 N/m?
Damping c; 0.13Ns/m
Damping c 0.05Ns/m

Parameter Value
Stiffness % 447.3 N/m
Coupling stiffness, k12 402.9 N/m
Stiffness ko 4.4 N/m
Cubic stiffness k,; | 6.1510% N/m?
Damping c; 0.39 Ns/m
Damping c 0.35Ns/m
Damping cj2 0.01 Ns/m

Table 3: Parameters of the experimental fixture identified using the SFMI method.

high-pass filtered to remove the spurious components introduced by the integration procedure.

6.2 Separate identification of the system components

Before treating the system of coupled cars using the SFMI method, a separate identification of the different
components was carried out:

o The first car was disconnected from the second car, and linear modal analysis was performed on the dis-
connected first car using the stochastic subspace identification technique [26]. The natural frequency
and the viscous damping ratio were estimated to be 4.49 Hz and 0.42%, respectively. Because the
mass of the first car was known, the stiffness and damping parameters k; and ¢; were easily deduced
from this modal analysis. A similar procedure was undertaken to estimate coefficient k5.

o The second car was disconnected from the first car with the aim of estimating the nonlinear coefficient
ky;. To this end, the restoring force surface method [3] was employed. Further details are available in
[22].

The values of the parameters identified using this two-step procedure are listed in Table 2.

Finally, the wire was disconnected, and a modal analysis of the coupled linear system was performed. The
natural frequencies predicted by the previously identified parameters overestimated the measured ones by
3%. To get a better match between measured and predicted frequencies, the estimate of the coupling stiff-
ness k1o was decreased to 395 N/m. Rigorously, however, one should introduce a detailed modeling of the
connection between the two cars which comprises ball joints (see Figure 6).

6.3 Nonlinear system identification using the SFMI method

The identification of the coupled nonlinear system is now undertaken using the 6-step procedure introduced
in Section 4.
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Figure 9: Measured instantaneous frequencies of the first car. (a) First IMF; (b) second IMF.
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Figure 11: Comparison of the predicted and measured displacements. (a,c) First car; (b,d) second car.

The displacement signals computed from the measured accelerations are depicted in Figure 7; the partici-
pation of both the in-phase and anti-phase modes in the system response is evident. The wavelet transform
(not depicted herein) shows two dominant frequency components in the vicinity of the natural frequencies
of the underlying linear system. Processing the measured displacements through the EMD, one obtains the
dominant IMFs in Figure 8. The 2 leading IMFs account for 99.8 and 99.9% of the total variance of the
displacement of the first and second cars, respectively. The Hilbert transform is then applied sequentially
to each identified IMF. Figure 9 depicts the instantaneous frequencies of the IMFs of the first car. The fre-
quency of the in-phase mode decreases from 3.8 Hz att = 0.5 5 to 2.9 Hz at ¢ = 5 s, which is an indication
of a strongly nonlinear system. We note that, due to the end effects of the EMD and the Hilbert transform,
the first half second of data is systematically discarded in what follows.

The next step in the nonlinear system identification process is the estimation of the system parameters . We
note that the measured phase differences 31 — 83 and B3 — (34 in Figure 10 are close to 7 and 0. Table 3
summarizes the results of the linear least-squares fitting, and the resulting parameters can be compared to
those obtained from the separate identification of the system components:

e The identified stiffnesses k; and k5 differ from the values in Table 2 by a few percent. As discussed
in the previous section, a decrease in the value of k15 was expected due to the presence of ball joints
in the connection between the two cars.

"Prior to system identification, both cars were weighed. Their masses were found to be m; = 0.632kg and m2 = 0.558 kg.



e The nonlinear coefficient is in close agreement with the value previously identified. Moreover, because
ko takes a very small value, the SFMI method is able to retrieve that the nonlinearity is essential; that
is there is no linear spring in parallel with the nonlinear spring.

e Estimated damping is somewhat higher compared to that in Table 2.

The predicted and measured displacements are compared in Figure 11, which highlights the predictive capa-
bility of the identified model.

The SFMI method was also tested in [22] for another impulsive force with an amplitude reduced by 30%.
Despite some slight discrepancies, the identified parameters agree well with those in Table 3.

Because a strongly nonlinear system is investigated and because damping estimation is a difficult problem in
this fixture, all these results can be considered as satisfactory and demonstrate the effectiveness of the SFMI
method.

7 Concluding Remarks

This paper focuses on the relation between the theoretical CxA approach and the computational HHT with
the aim of bringing to light a better understanding of this time-frequency transform and developing a new
nonlinear system identification approach of rather general applicability in nonlinear structural dynamics. A
one-to-one relationship between the analytically realized slow-flow dynamics of the system and the IMFs
derived directly from the measured time series is demonstrated. Based on the theoretical link between the
two approaches, the SFMI method is proposed. This method has several interesting features:

e Because it is based on the HHT, the SFMI method fully embraces both the nonlinearity and nonstation-
arity of operating dynamical systems. Moreover, a multiscaled identification is performed, because the
method identifies the dominant characteristic time scales of the system response and establishes the
dimensionality of the dominant dynamics.

e The Hilbert transform gives sharper frequency and time resolutions compared to other time-frequency
decompositions. Another distinct advantage is that ridge extraction, which is necessary when using
the wavelet and Gabor transforms for nonlinear system identification is avoided.

e Due to its specific time-frequency representation, the SFMI method certainly offers a different perspec-
tive on the dynamics. For instance, the computation (and subsequent comparison) of the instantaneous
frequencies of the IMFs can reveal possible nonlinear resonant interactions between the system’s com-
ponents that might be embedded and, thus, hidden in the signal [27].

e The SFMI method is a ‘linear-in-the-parameters’ method and does not rely on nonlinear optimization
techniques, which greatly facilitates parameter estimation.

Mode mixing may potentially be an issue when using the HHT, especially in the case of noisy data and signals
with substantially different modal participations. Use of the HHT intermittency test or appropriate filtering
should resolve this difficulty. The fact that the slow-flow model of the dominant dynamics computed through
the CxA approach is an approximation of the true dynamics may also be seen as a limitation. However, the
predictive accuracy of the slow-flow model can be as good as desired by including the necessary number of
harmonic components in the ansatz.

In summary, the numerical and experimental application examples in this study show that the SFMI method
yields quite accurate results and offers an effective tool for parameter estimation of MDOF nonlinear dy-
namical structures.
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