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As we know, there are known knowns; there are things we know we
know. We also know there are known unknowns; that is to say we

know there are some things we do not know. But there are also
unknown unknowns – the ones we don’t know we don’t know [...]

– D.R.
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Systematic uncertainties – the known unknowns in science

• In science, the data generation process is often not uniquely
specified or known exactly, hence to the presence of
systematic uncertainties.

• Data generation processes are rather formulated as a family of
data generation processes parametrized by nuisance
parameters.

• One of the challenges of applying machine learning to
scientific problems is the need to incorporate systematics.
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Problem statement

• Let us assume a family of data generation processes
p(X ,Y ,Z ) where

X are the data,
Y are the target labels,
Z are the nuisance parameters specifying systematic
uncertainties.

• We want to learn a regression function f : X 7→ S of
parameters θf .

• We want inference based on f (X ; θf ) to be robust to the
value z ∈ Z of the nuisance parameter – which remains
unknown at test time.

We want a classifier that does not change with systematic
variations, even though the data might.
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Pivot

• We define robustness as requiring the distribution of f (X ; θf )
conditional on Z (and possibly Y ) to be invariant with the
nuisance parameter Z . That is, such that

p(f (X ; θf ) = s |z) = p(f (X ; θf ) = s |z ′)

for all z , z ′ ∈ Z and all values s ∈ S of f (X ; θf ). If f satisfies
this criterion, then f is known as a pivotal quantity.

• Alternatively, this amounts to find f such that f (X ; θf ) and Z
are independent random variables.
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Adversarial Networks

• Let consider a classifier f built as usual, minimizing the
cross-entropy

Lf (θf ) = Ex∼XEy∼Y |x [− log pθf (y |x)].

• We pit f against an adversary network r producing as output
a function pθr (z |f (X ; θf ) = s) modeling the posterior
probability density of the nuisance parameter conditional on
f (X ; θf ) = s. We set r to minimize the cross entropy

Lr (θf , θr ) = Es∼f (X ;θf )Ez∼Z |s [− log pθr (z |s)].

If the adversary can predict the nuisance parameter from the
classifier’s output, then it means that some information about
the nuisance parameter is carried out through it: the classifier
is dependent on the systematics.
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Classifier f

X

θf

f (X ; θf )

Lf (θf )

...

Adversary r

γ1(f (X ; θf ); θr )

γ2(f (X ; θf ); θr )

. . .

θr

...

Z

pθr (Z |f (X ; θf ))

P(γ1, γ2, . . . )

Lr (θf , θr )
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Z can be either categorical or continuous

• If Z is categorical, then the
posterior can be modeled with a
standard (probabilistic) classifier.

• If Z is continuous, then the
posterior can be modeled with a
mixture density network.

• No constraint on the prior p(Z ).

Mixture density network
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Adversarial training

What if the classifier forces the adversary to
perform worse by simultaneously maximizing
Lr? It should reduce its dependence on the
nuisance parameter, shouldn’t it?

Formally, let us consider the value function

E (θf , θr ) = Lf (θf ) − Lr (θf , θr )

that we optimize by finding the minimax solution

θ̂f , θ̂r = arg min
θf

max
θr

E (θf , θr ).
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Theoretical motivation

Proposition. If there exists a minimax solution (θ̂f , θ̂r ) such that
E (θ̂f , θ̂r ) = H(Y |X ) − H(Z ), then f (·; θ̂f ) is both an optimal
classifier and a pivotal quantity.

Proof (sketch):

min
θf

max
θr

Lf (θf ) − Lr (θf , θr )

=min
θf

Lf (θf ) − Es∼f (X ;θf )
[H(Z |f (X ; θf ) = s)]

=min
θf

Lf (θf ) − H(Z |f (X ; θf ))

≥H(Y |X ) − H(Z )

where the equality holds when

• f is an optimal classifier (in which case Lf (θf ) = H(Y |X ));

• f (X ; θf ) and Z are independent random variables (in which
case H(Z |f (X ; θf )) = H(Z )).
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Alternating stochastic gradient descent

1: for t = 1 to T do
2: for k = 1 to K do . Update r
3: Sample minibatch {xm, zm, sm = f (xm ; θf )}

M
m=1 of size M;

4: With θf fixed, update r by ascending its stochastic gradient ∇θr E (θf , θr ) :=

∇θr

M∑
m=1

log pθr (zm |sm);

5: end for
6: Sample minibatch {xm, ym, zm, sm = f (xm ; θf )}

M
m=1 of size M; . Update f

7: With θr fixed, update f by descending its stochastic gradient ∇θf
E (θf , θr ) :=

∇θf

M∑
m=1

[
− log pθf

(ym |xm) + log pθr (zm |sm)
]
,

where pθf
(ym |xm) denotes 1(ym = 0)(1 − sm) + 1(ym = 1)sm;

8: end for
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Accuracy versus robustness trade-off

• The assumption of existence of a classifier that is both
optimal and pivotal may not hold.

• However, the value function E can be rewritten as

Eλ(θf , θr ) = Lf (θf ) − λLr (θf , θr )

where λ is a hyper-parameter controlling the trade-off
between the performance of f and its independence with
respect to the nuisance parameter.

Setting λ to a large value enforces f to be pivotal.
Setting λ close to 0 constraints f to be optimal.
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Toy example

• Binary classification of 2D data drawn from
multivariate gaussians with equal priors, such
that

x ∼ N
(
(0, 0),

[
1 −0.5

−0.5 1

])
when Y = 0,

x ∼ N
(
(1, 1 + Z ),

[
1 0
0 1

])
when Y = 1.

• The continuous nuisance parameter Z represents
in this case our uncertainty about the exact
location of the mean of the second gaussian. We
assume a gaussian prior z ∼ N (0, 1).

• We assume training data
{xi , yi , zi }

N
i=1 ∼ p(X ,Y ,Z ).
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Standard training without the adversary r
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(Left) The conditional probability distributions
of f (X ; θf )|Z = z changes with z .

(Right) The decision surface strongly depends on X2.
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Reshaping f with adversarial training
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(Left) The conditional probability distributions
of f (X ; θf )|Z = z are now (almost) invariant with z!

(Right) The decision surface is now independent of X2.
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Dynamics of adversarial training
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High energy physics example

• Discriminate between QCD jets
(Y = 0) and W -jets (Y = 1) from
high-level features (data from Baldi
et al, arXiv:1603.09349).

• Taking some liberty, we consider an
extreme categorical nuisance
parameter where

Z = 0 corresponds to events
without pileup,
Z = 1 corresponds to events with
pileup, for which there are an
average of 50 independent pileup
interactions overlaid.
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Maximizing significance by tuning λ

• Since we do not expect to find a classifier f that is both
optimal and pivotal, we optimize the accuracy-independence
trade-off by tuning λ with respect to a higher level objective.

• Cut and count analysis: A natural higher-level context is a
hypothesis test of a null with no signal events against an
alternate hypothesis that is a mixture of signal and
background events.

Background = 1000 weighted QCD jets, Signal = 100
weighted boosted W’s.
Without systematics, optimizing Lf indirectly optimizes the
power of a classical hypothesis test.
With systematics, we need to balance classification
performance against robustness to the nuisance parameter.
To this end, we use the Approximate Median Significance
(AMS) as higher-level objective.
Note that since we are performing a hypothesis test of the
null, we only wish to impose the pivotal property on
background events.
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λ = 0|Z = 0: standard training from p(X ,Y ,Z = 0).
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Summary

• We proposed a principled approach based on adversarial
networks for building a model whose output can be
constrained to be independent of a chosen nuisance parameter
(or any random variable).

• The method supports both categorical and continuous
nuisance parameters.

• Control is offered to tune the accuracy versus robustness
trade-off in order to maximize a higher-level objective.

• We are looking for opportunities of (real) physics use cases!
Come talk to us if interested!
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