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As we know, there are known knowns; there are things we know we
know. We also know there are known unknowns; that is to say we
know there are some things we do not know. But there are also
unknown unknowns — the ones we don’t know we don’t know |[...]
-D.R.



Systematic uncertainties — the known unknowns in science

e In science, the data generation process is often not uniquely
specified or known exactly, hence to the presence of
systematic uncertainties.

e Data generation processes are rather formulated as a family of
data generation processes parametrized by nuisance
parameters.

e One of the challenges of applying machine learning to
scientific problems is the need to incorporate systematics.
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Problem statement

e Let us assume a family of data generation processes
p(X,Y,Z) where
m X are the data,
m Y are the target labels,

m Z are the nuisance parameters specifying systematic
uncertainties.

e We want to learn a regression function f : X — S of
parameters Oy.

e We want inference based on f(X;0¢) to be robust to the
value z € Z of the nuisance parameter — which remains
unknown at test time.

m We want a classifier that does not change with systematic
variations, even though the data might.



Pivot

e \We define robustness as requiring the distribution of f(X;0¢)
conditional on Z (and possibly Y) to be invariant with the
nuisance parameter Z. That is, such that

p(f(X;0¢) = slz) = p(f(X;0r) = sl|z’)

for all z,z’ € Z and all values s € S of f(X;0¢). If f satisfies
this criterion, then f is known as a pivotal quantity.

e Alternatively, this amounts to find f such that f(X;0¢) and Z
are independent random variables.
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Adversarial Networks

e Let consider a classifier f built as usual, minimizing the
cross-entropy

Lf(0f) = Ex-xE, y[—log pe, (yIx)].

e We pit f against an adversary network r producing as output
a function py, (z|f(X;0¢) = s) modeling the posterior
probability density of the nuisance parameter conditional on
f(X;0f) =s. We set r to minimize the cross entropy

Er(ef) 0,) = Es~f{X;6f)Ez~Z\s[_ log pG,(Z|5)]-

m If the adversary can predict the nuisance parameter from the
classifier's output, then it means that some information about
the nuisance parameter is carried out through it: the classifier
is dependent on the systematics.
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Z can be either categorical or

e If Z is categorical, then the
posterior can be modeled with a
standard (probabilistic) classifier.

e |f Z is continuous, then the
posterior can be modeled with a
mixture density network.

¢ No constraint on the prior p(Z).
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Mixture density network
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Adversarial training

What if the classifier forces the adversary to
perform worse by simultaneously maximizing
L, ? It should reduce its dependence on the

nuisance parameter, shouldn't it?

Formally, let us consider the value function
E(ef) er) = Ef(ef) - ﬁr(eﬁ er)
that we optimize by finding the minimax solution

/G\f, 0, = argminmax E(0¢,0,).
0r O



Theoretical motivation
Proposition. [f there exists a minimax solution (8¢, 9,) such that
E(6f,6,) = H(Y|X) — H(Z), then f(-;8¢) is both an optimal
classifier and a pivotal quantity.

Proof (sketch):
ngifn max L(0f) — Lr(0r,0/)
= ngifn Ls(0f) — Esor(x;0,) [H(ZIF(X;05) = s)]
= rgifn Ls(0f) — H(ZIF(X;0¢))

>H(YIX) - H(Z)

where the equality holds when
e f is an optimal classifier (in which case Lf(0f) = H(Y|X));

e f(X;0f) and Z are independent random variables (in which
case H(Z|f(X;0f)) = H(Z)).
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Alternating stochastic gradient descent

1l: fort=1to T do

2 for k=1 to K do > Update r
3: Sample minibatch {xm, zm,sm = f(xm;ef)}%:l of size M;

4 With 0 fixed, update r by ascending its stochastic gradient Vg, E(0¢,0,) :=

M
Vo, ) log pe, (zmlsm);

m=1

5: end for
6: Sample minibatch {xm, Ym, Zm, Sm = f(xm; 6f) [‘n”:l of size M, > Update f
7: With 6, fixed, update f by descending its stochastic gradient Vo, E(8¢,6,) :=
M
Vo, ) [~log po, (ymbxm) + log po, (zmlsm)] ,
m=1
where pg, (ym|xm) denotes 1(ym = 0)(1 — sm) + L(ym = 1)sm;

8: end for
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Accuracy versus robustness trade-off

e The assumption of existence of a classifier that is both
optimal and pivotal may not hold.

e However, the value function E can be rewritten as
Ex(0f,0,) = L¢(0f) — AL,(0,0,)

where A is a hyper-parameter controlling the trade-off
between the performance of f and its independence with
respect to the nuisance parameter.

m Setting A to a large value enforces f to be pivotal.
m Setting A close to 0 constraints f to be optimal.
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Toy example

e Binary classification of 2D data drawn from
multivariate gaussians with equal priors, such

that
x~N ((0,0), [73 5 _2'5}) when Y =0,
XNN((l,lJrZ), {(1) ﬂ) when Y =1.

e The continuous nuisance parameter Z represents
in this case our uncertainty about the exact
location of the mean of the second gaussian. We
assume a gaussian prior z ~ N(0,1).

e We assume training data
(xiyyir ziYleq ~ p(X, Y, 2).
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Standard training without the adversary r
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(Left) The conditional probability distributions
of f(X;0¢)|Z = z changes with z.

(Right) The decision surface strongly depends on X>.
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Reshaping f with adversarial training
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(Left) The conditional probability distributions

of f(X;0¢)|Z = z are now (almost) invariant with z!

(Right) The decision surface is now independent of Xj.
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Dynamics of adversarial training
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High energy physics example

e Discriminate between QCD jets of A e £ oof —
) R I B
(Y =0) and W-jets (Y =1) from T AT B o
. . edd N § TN
high-level features (data from Baldi Ly Eop N
et al, arXiv:1603.09349). i
_ _ _ oy W] G 0N W
e Taking some liberty, we consider an PN g o *\ .
extreme categorical nuisance i N Gt |
B=1
parameter where Y - il
5 oo S o
m Z = 0 corresponds to events R g
without pileup, § ot /I
. & oo/ \\\
m Z =1 corresponds to events with A

pileup, for which there are an
average of 50 independent pileup
interactions overlaid.
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http://arxiv.org/abs/1603.09349

Maximizing significance by tuning A

e Since we do not expect to find a classifier f that is both
optimal and pivotal, we optimize the accuracy-independence

trade-off by tuning A with respect to a higher level objective.

e Cut and count analysis: A natural higher-level context is a
hypothesis test of a null with no signal events against an
alternate hypothesis that is a mixture of signal and
background events.

Background = 1000 weighted QCD jets, Signal = 100
weighted boosted W's.

Without systematics, optimizing L¢ indirectly optimizes the
power of a classical hypothesis test.

With systematics, we need to balance classification
performance against robustness to the nuisance parameter.
To this end, we use the Approximate Median Significance
(AMS) as higher-level objective.

Note that since we are performing a hypothesis test of the
null, we only wish to impose the pivotal property on
background events.
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AMS
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A = 0[Z = 0: standard training from p(X, Y,Z =0).

A = 0: standard training from p(X, Y, Z).

A = 10: trading accuracy for robustness wrt pileup results in a net
benefit in terms of maximum statistical significance.
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Summary

e We proposed a principled approach based on adversarial
networks for building a model whose output can be
constrained to be independent of a chosen nuisance parameter
(or any random variable).

e The method supports both categorical and continuous
nuisance parameters.

e Control is offered to tune the accuracy versus robustness
trade-off in order to maximize a higher-level objective.

e We are looking for opportunities of (real) physics use cases!
Come talk to us if interested!
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