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Problem statement

e Assume training samples D = {X|x ~ pgata,X € X'} ;

e We want a generative model pyodel that can draw new
samples X ~ Pmodel ;

e Such that pmodel &~ Pdata-
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Maximum likelihood approach

e Assume some form for pmodel, as derived from knowledge and
parameterized by 0,

e Find the maximum likelihood estimator

0" = argmax Y _ 10g(Pmodel (X; 0));
x€D

e Draw samples from py- (e.g., with MCMC in case pmodel is
known only up to a constant factor).

Modern alternatives: Variational Auto-Encoders (VAEs),
Generative Adversarial Networks (GANSs)



Catch me if you can

Leo forges fake bank notes
Tom tries to detect them
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Generative adversarial nets (Goodfellow et al., 2014)

Do not assume any form, but use a neural network to produce
similar samples.

e Two-player game:
m a generator G;
m a discriminator D,

e G is a generator Z — X trained to produce samples G(z) (for
Z ~ ppoise) that are difficult for D to distinguish from data.

e D is a classifier X — {0,1} that tries to distinguish between

m a sample from the data distribution (D(x) = 1, for X ~ pgata),
m and a sample from the model distribution (D(G(z)) = 0, for

Z ~ Phoise ) '
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Objective
e Consider the value function
V(D, G) = Exvpy[108(D(x))] + Eznp,ic [l0g8(1 — D(G(2)))];

¢ We want to

m Find D which maximizes V(D, G),
m Find G which minimizes V(D, G);

e In other words, we are looking for the saddle point

(D*,G*) = max min V(D, G).
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Learning process

Assuming D and G are neural networks parameterized by 6p and
f¢, backpropagation can be used to optimize D's and G's
objectives alternatively until convergence.
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Theoretical guarantees

e Unique global optimum ;
* At the optimum, pmodel = Pdata;

e Convergence guaranteed.

(assuming infinite data and enough model capacity)
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Conditional generative adversarial nets (Mirza and
Osindero, 2014)

e The GAN framework can be extended to learn a
parameterized generator pmodel(X|0);

m D is trained on (x, 6) pairs,
m G gets (z,6) as inputs;

e Useful to obtain a single generator object for all #
configurations;

e Can be used to interpolate between distributions.
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In practice
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None of these are real pictures!
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Software

e Generative adversarial nets are good old neural nets;

e Therefore, the deep learning software stack can be leveraged
m E.g. TensorFlow
e Python and C++ compatible,
e Compatible with single/multi/distributed CPUs/GPUs,
e Active and strong community, backed by Google and others;
e Disentangle training from predictions for easier integration.

m E.g. Using lwtnn to integrate a trained NN into any C++
framework, with minimal dependencies.
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https://github.com/dguest/lwtnn

Generative models for simulation?

e For fast approximations of otherwise heavy computations;

m for either small or longer steps in the simulation pipeline (e.g. a
generator for hits in a calorimeter, across one or several layers)

e For unknown processes for which we only have data
m e.g. some old equipment for which no simulator was ever
written;

e For interpolating between parameterized distributions.
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Proof of concept: generating shower shape data

D = {x|x = (radius, angle, log(energy)),x € RT x [0; 27r] x R}

X ~ Pdata X ~ Pmodel
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Proof of concept: generating shower shape data
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Summary

e GANs can be used to learn a generator, from data only;
e GANs come with theoretical guarantees;

e GANSs can be used to learn to sample from conditional
distributions;
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