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Abstract

We discuss the stability of hexaquark systems of type uuddsQ (Q=c or

b) within a chiral constituent quark model which successfully describes the

baryon spectra including the charmed ones. We find these systems highly un-

stable against strong decays and give a comparison with some of the previous

literature.

I. INTRODUCTION

According to QCD rules, systems such as tetraquarks, pentaquarks or hexaquarks can,

in principle, exist. Their study is important in disentangling between various QCD inspired

models. Here we are mainly concerned with non-relativistic models, which simulate the low-

energy limit of QCD. In these models, the central part of the interquark potential usually

contains a linear term which describes the QCD confinement and a Coulomb term generated

by the long-range one-gluon exchange (OGE) interaction. The spin part is usually described

by the chromo-magnetic part of the one-gluon exchange interaction, analogous to the Fermi-

Breit interaction of QED [1,2].
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An interest in the constituent quark model has recently been revitalized [3] after recog-

nition of the role of the spontaneous chiral symmetry of the QCD vacuum. This implies

that the valence quarks acquire a constituent dynamical mass related to the quark conden-

sate < qq̄ > and that the Goldstone bosons π,K, η couple directly to constituents quarks

[4]. It has been shown that the hyperfine splitting and especially the correct ordering of

positive and negative parity states of baryons with u,d and s quarks are produced by the

short-range part of the Goldstone boson exchange (GBE) interaction [3,5,6], instead of the

OGE interaction.

In Ref. [7], we studied the stability of the H-particle, a uuddss system, with JP = 0+

and I=0, in the frame of the chiral constituent quark model of Ref. [8]. We found that

the GBE interaction induces a strong repulsion in the flavour singlet uuddss system with

JP = 0+ and I=0, i.e. this system lies 847 MeV above the ΛΛ threshold. This implies that

the model of Ref. [8] predicts that the H-particle should not exist, in contrast to Jaffe’s [9]

or many other studies based on conventional one-gluon exchange models [10]. In the model

used by Jaffe, the chromomagnetic interaction, gave more attraction for the flavour singlet

state than for two well separated lambda baryons. In Jaffe’s picture the H-particle should

be a compact object, in contrast to the molecular-type deuteron.

In a recent study by Lichtenberg, Roncaglia and Predazzi [11], the uuddss system is

discussed in the context of a diquark model and it is found unstable, in contrast to Jaffe’s

result. The above authors also discuss hexaquarks in which one of the s quarks is replaced

by a c quark, the Hc particle, or by a b quark, the Hb particle. The charmed hexaquark is

found unstable but the bottom hexaquark is found stable by about 10 MeV with respect to

the Λ + Λb threshold. Based on the concept of dynamical hadron supersymmetry, Ref. [11]

predicts the exotic masses from the ones of ordinary mesons and baryons as input, with no

free parameters. On the other hand, more sophisticated calculations within a constituent

quark model with chromomagnetic interaction give both Hc(I=0, J=3) and Hb(I=0, J=2

or 3) stable by 7.7 MeV up to 13.8 MeV [12]. In fact, from general grounds [13,14] one

expects that the stability of multiquark systems should increase with the mass asymetry
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of the constituent quarks and this was tested for tetraquarks systems, in a conventional

constituent quark model with chromomagnetic interaction [15–17].

Here we focus our attention on hexaquarks and in particular on the uuddsQ (Q=c or

b) system, which results as a promising candidate from the above models. We study the

stability of the uuddsQ system within the chiral constituent quark model [8] used previously

in the study of the H-particle [7] and of heavy tetraquarks as well [18]. An essential difference

with respect to Refs [12,15–17] is that the spin-spin interaction of [8] is flavour-dependent.

In Ref. [18] we found that the Goldstone boson exchange interaction between quarks binds

strongly both the ccq̄q̄ system and the bbq̄q̄ system. Within conventional models based on

one-gluon exchange, the ccq̄q̄ was found unstable and bbq̄q̄ stable [16].

In section 2, we establish the basis states required by the internal symmetries of the

system under discussion and, based on simple group theory arguments, we indicate the

most important basis states for a given isospin I and total angular momentum J. In section

3, we briefly describe the Hamiltonian of the chiral constituent quark model used in the

calculations. In section 4, we present our results and the last section is devoted to a summary.

II. BASIS STATES

In principle the GBE interaction contains all pairs ij of particles. But the exchange of a

heavy pseudoscalar meson, between a light and a heavy quark Q, can in practice be neglected

[18]. For example, it was explicitly shown in Ref. [19] that the dominant contribution to the

masses of C=+1 charmed baryons is due to meson exchange between light quarks and that

the exchange of D and Ds mesons is negligible, of the order of few MeV. Inasmuch as the

quark-quark interaction [3,8] is inverse proportional to the masses of the interacting quarks,

the exchange of B or Bs meson can further be neglected. Neglecting the contribution of

D,Ds, B and Bs mesons, the GBE interaction in the uuddsQ system, with Q=c or b, reduces

to the interaction between light quarks q=u, d or s.

We adopt this point of view, i.e. we neglect the contribution of heavy meson-exchange.
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Then similarly to the study of the H-particle or of the NN system [20] it is useful to have a

qualitative insight about the uuddsQ system by first considering a schematic quark-quark in-

teraction which simplifies the GBE interaction of Ref. [8], by removing its radial dependence.

The schematic interaction reads:

Vχ = −Cχ

∑

i<j

λFi .λ
F
j ~σi.~σj , (1)

where λFi (F=1,2,...,8) are the quark-flavour Gell-Mann matrices (with an implied summa-

tion over F) and ~σ are the spin matrices. The minus sign of the interaction (1) is related to

the sign of the short-range part of the GBE interaction, crucial for the hyperfine splitting in

baryon spectroscopy. This feature of the short-range part of the GBE interaction is clearly

discussed at length by Glozman and Riska [3]. A typical order of magnitude for the constant

Cχ is about 30 MeV.

In order to calculate the expectation value of (1) for the remaining light pentaquark

system q5 we have to give a classification of its states. In the colour space this system is

described by the state [221]C compatible with the colourless state [222]C of q5Q. Here and

below [f] stands for the corresponding Young diagram in the colour (C), spin (S) or flavour

(F) space.

We first assume that u,d and s are identical. If the quarks are all in the ground state the

orbital part of the wave function is symmetric. Then the only q5 flavour-spin state allowed

by the Pauli principle is [32]FS. By using inner product rules [21] one can find the flavour

[f ]F and spin [f ]S symmetries compatible with [32]FS. These are listed in Table 1, together

with the corresponding isospin I and spin S associated with these states. We also give the

total angular momentum ~J = ~S + ~SQ of the q5Q system. The last column reproduces the

expectation value of (1) in units of Cχ. This has been calculated using the formula given

in the Appendix A of Ref. [20], containing the Casimir operators of SU(6)FS, SU(3)F and

SU(2)S. The multiplicity of a given IJ state is consistent with Table 3 (Y=2/3) of Ref.

[12]. From Table 1, one can see that the most favourable candidate for stability (the most

negative eigenvalue of (1)) should have I=0 (flavour symmetry [221]F ) and J=0 or 1. In the
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numerical calculations given below, different flavour symmetries will be mixed by the GBE

interaction (1).

In the diagonalization procedure of the GBE Hamiltonian given below, we truncate the

basis for various sectors IJ, by retaining only the lowest states. The mixture with the others

is expected to be small. Note also that the flavour spin interaction of type (1) does not mix

[f ]S 6= [f ′]S. In numerical calculations, we therefore restrict the basis states to the following

ones :

I=0, J=0 or 1

|1 >= |[221]F [32]S >; |2 >= |[32]F [32]S > (2)

I=1, J=0 or 1

|1 >= |[311]F [32]S >; |2 >= |[32]F [32]S > (3)

I=2, J=0 or 1

|1 >= |[41]F [32]S >; |2 >= |[5]F [32]S > (4)

III. HAMILTONIAN

The Hamiltonian to be diagonalized is [19] :

H =
∑

i

mi +
∑

i

~p2i
2mi

− (
∑

i ~pi)
2

2
∑

imi
+

∑

i<j

Vconf(rij) +
∑

i<j

Vχ(rij) (5)

with the linear confining interaction :

Vconf(rij) = −3

8
λci · λcj C rij (6)

and the spin-spin component of the GBE interaction in its SUF (3) form :

Vχ(~rij) =

{

3
∑

F=1

Vπ(~rij)λ
F
i λ

F
j

+
7

∑

F=4

VK(~rij)λ
F
i λ

F
j + Vη(~rij)λ

8
iλ

8
j + Vη′(~rij)λ

0
iλ

0
j

}

~σi · ~σj , (7)

5



with λ0 =
√

2/3 1, where 1 is the 3×3 unit matrix. The interaction (7) contains γ = π,K, η

and η′ exchanges and the form of Vγ(rij) is given explicitly in Ref. [8] as the sum of two

distinct contributions : a Yukawa type potential containing the mass of the exchanged

meson and a short-range contribution, of opposite sign, the role of which is crucial in baryon

spectroscopy. For a given meson γ, the meson exchange potential is :

Vγ(~rij) =
g2γ
4π

1

3

1

4mimj

{µ2
γ

e−µγrij

rij
− 4√

π
α3 exp(−α2(r − r0)

2)}, (γ = π,K, η, η′) (8)

For the Hamiltonian (5)-(8), we use the parameters of Ref. [8]. These are :

g2πq
4π

=
g2ηq
4π

=
g2Kq

4π
= 0.67;

g2η′q
4π

= 1.206

r0 = 0.43 fm, α = 2.91 fm−1, C = 0.474 fm−2, mu,d = 340MeV.

µπ = 139MeV, µη = 547MeV, µη′ = 958MeV, µK = 495MeV. (9)

They provide a very satisfactory description of low-lying nonstrange baryons, extended to

strange baryons in [6] in a fully dynamical three-body calculations as well. The latter

reference gives ms = 0.440 GeV. For the masses of the heavy quarks we take mc = 1.35 GeV,

mb = 4.66 GeV in agreement with Ref. [18] where these masses are adjusted to reproduce

the average mass M̄ = (M+3M∗)/4 of M = D and B mesons respectively. Note that within

the spirit of the model of Glozman and Riska there is no meson exchange between a quark

and a antiquark.

IV. RESULTS

First we discuss the spin S=1/2 baryons needed to calculate the threshold energy. Us-

ing the Hamiltonian (5)-(8), we have performed variational estimates with a general wave

function of the form ψ ∼ exp [−(ax2 + by2)] where ~x = ~r1 − ~r2, ~y = (~r1 + ~r2 − 2~r3)/
√
3.

To the nucleon mass, only π, η and η′ exchange contribute. To the mass of Λ or Σ, there

is a contribution from K-exchange as well. In the case of heavy baryons Λc,Λb,Σc,Σb,Ξc
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and Ξb we neglect any meson exchange between a light and a heavy quark, in the spirit

of the above discussion. The results are presented in Table 2, where for N, Λ and Σ we

made the simplification a=b. The expectation values lie typically about 50 MeV above the

experimental value. The results for Σ could be improved by taking a 6=b and those for Λb

made more realistic by tuning the mass of mb. But, for the present purpose, as will be seen

below, these estimates are quite satisfactory.

For the hexaquarks discussed here, it is useful to introduce the following system of Jacobi

coordinates (where i=1,2,...,5 are associated with light quarks and i=6 with the heavy one):

~x = ~r1 − ~r2

~y = ~r3 − ~r4

~z = 1√
2
(~r1 + ~r2 − ~r3 − ~r4)

~t = 1√
10
(~r1 + ~r2 + ~r3 + ~r4 − 4~r5)

~w = 1√
15
(~r1 + ~r2 + ~r3 + ~r4 + ~r5 − 5~r6)

~RCM = (m~r1 +m~r2 +m~r3 +m~r4 +ms~r5 +mQ~r6)/(4m+ms +mQ)

(10)

Moreover, in the kinetic term only, we use the average mass :

m̄ = (4m+ms)/5 (11)

for all light quarks.

By assuming a ground state variational wave function of the form:

ψ = (
a

π
)3(

b

π
)3/4 exp [−a

2
(x2 + y2 + z2 + t2)− b

2
w2] (12)

the expectation value E0 of the spin-independent part of the Hamiltonian becomes:

E0 =
6

m̄

h̄2c2

2a2
+ (

1

m̄
+

5

mb
)
h̄2c2

8b2

+
4

5
C[10

√

1

πa
+ 5

√

1

5π
(
2

a
+

3

b
)]

(13)

For the matrix elements of the spin-dependent part, the fractional parentage technique [21]

has been used. Details are given in Appendix A.
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In Table 3, we present results from the diagonalization of the Hamiltonian (5)-(8) for

the bases (2)-(4). The column-heading M represents the lowest expectation value obtained

in that sector. The next column gives the lowest theoretical threshold compatible with a

given IJ. We also indicate the next to the lowest threshold whenever it is close to the lowest

one. Note that using the experimental masses, Table 2, last column, the two thresholds

may interchange their position. The last column is the lowest eigenvalue from which the

threshold mass MT obtained from Table 2 has been subtracted. The lowest eigenvalue is

the equilibrium value obtained by minimizing with respect to the variational parameters

a and b of (12). In each case it turns out that b at equilibrium is approximately equal

to the value of b given in Table 2, associated to the heavier of the threshold baryons. At

equilibrium, we also find that the off-diagonal matrix elements of the GBE interaction are

typically one order of magnitude smaller than the diagonal ones so that the lowest state

does not change much through the coupling to the next state. A typical change is of a few

MeV. This also proves that the truncation of the bases as in (2)-(3) is safe. The smallest

M −MT corresponds to IJ=00 or 01, as expected from the discussion following Table 1. In

all cases M −MT is positive and very large which means that none of the considered system

is stable against strong decays. Actually, there is a substantial amount of repulsion, similar

to the case of the H-particle [7]. Thus within the GBE model used here, the heavy compact

hexaquark uuddsb is highly unstable, contrary to the findings of Ref. [11] or [12]. In the

latter reference the system with I=0, J=2 is bound by 13.8 MeV for the most favourable

choice of the model parameters.

The amount of repulsion found depends, of course, on the approximations used, and in

particular on the treatment of the kinetic energy. A better treatment, where instead of the

mass average (11) the kinetic energy is expressed in terms of the average of the inverse of

the reduced masses , may slightly decrease the kinetic contribution but certainly will not

change the above conclusion. The expectation is that the incorporation of the D or B meson

exchange will not change the conclusion either. But in cases where uuddsQ is found to have

a mass close to the lowest threshold, as for example Ref [12], a proper treatment of the
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kinetic energy is much more important in drawing a conclusion about stability under strong

interactions. In a shell model description where one assumes that all the quarks are in an s

state, as in [12], one can make an estimate of the kinetic energy of a system of six identical

quarks from which one can subtract the kinetic energy of two separate clusters of three

quarks each. This gives 3/4h̄ω [7], i.e. a positive contribution, which may counterbalance

the binding found in Ref. [12].

One can also raise the question whether or not by increasing the number of heavy quarks

the stability would increase. In [18], we also investigated the system qqqqQQ in the Glozman

et al. model [8], by using a similar procedure. There the most favourable configuration has

I=0, J=1. For Q=c we obtainedM−MT = 0.523 GeV and for Q=b,M−MT = 0.515 GeV.

In both cases MT corresponds to the lowest threshold qQQ + qqq where m(ccu) = 3.514

GeV and m(bbu) = 10.066 GeV. Therefore, these systems are also unbound in a compact

configuration.

V. SUMMARY

In a chiral constituent quark model which successfully describes the light, strange and the

presently known charmed and b-baryons, we have calculated the mass M of the hexaquarks

Hc (uuddsc) and Hb (uuddsb) for various IJ sectors and compared it to the mass MT of the

corresponding lowest threshold. We found that the smallest M −MT value is associated to

the IJ=00 or 01 sector. The quantity M −MT is always positive and of the order of few

hundreds MeV. This indicates that Hc and Hb cannot exist as compact systems.

However, the existence of a weakly bound, molecular-type heavy hexaquark system,

like the deuteron, cannot be excluded. The GBE interaction [3] generates a long-range

attraction due to its Yukawa-potential tail and in principle, it can also produce a medium-

range attraction from correlated two-pseudoscalar meson exchange. It is certainly interesting

to pursue investigations in this direction, in a dynamical approach as the resonating group or

the generator coordinate method, by incorporating six-quark states with orbital excitations,
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as in the NN case [20].
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APPENDIX A:

The calculation of the matrix elements of the interaction potential (7) between five

light quarks is based on the fractional parentage technique described in Ref. [21]. Through

this technique each five-body matrix element reduces to a linear combination of two-body

matrix elements of the pair, 4 and 5, of quarks. This is possible due to the fact that each

part (orbital, spin, flavour, colour) of the wave function is written as a sum of products

of the first three and of the pair (45) wave functions. These functions have a definite

permutation symmetry [f] and [f’] respectively, where [f’]=[2] or [11]. The coefficients of

these linear combinations have been obtained from the isoscalar factors of the Clebsch-

Gordan coefficients of S5 as calculated in Ref. [22].

The calculation of the spin-spin matrix elements is trivial. Below we give the flavour wave

functions which we derived in the Rutherford-Young-Yamanouchi representation, where the

pair 45 is either in a symmetric or an antisymmetric state, as mentioned above. We denote

by p and q the row of the 5th and 4th particle in a Young tableau and by p̄q and p̃q a

symmetric and an antisymmetric state respectively. Then the uudds states required in these

calculations are:

|[5]1̄1 > =
√

1
5
ψ[3](uud)φ[2](ds) +

√

1
5
ψ[3](udd)φ[2](us)

+
√

2
5
ψ[3](uds)φ[2](ud) +

√

1
10
ψ[3](dds)φ[2](uu)

+
√

1
10
ψ[3](uus)φ[2](dd)

(A1)

|[41]1̄1 > = −
√

4
6
ψρ,Σ0

[21] (uds)φ[2](ud) +
√

1
6
ψρ
[21](dsd)φ[2](uu)

+
√

1
6
ψρ
[21](usu)φ[2](uu)

(A2)
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|[41]1̄2 > =
√

3
10
ψ[3](uud)φ[2](ds) +

√

3
10
ψ[3](udd)φ[2](us)

−
√

4
15
ψ[3](uds)φ[2](ud)−

√

1
15
ψ[3](dds)φ[2](uu)

−
√

1
15
ψ[3](uus)φ[2](dd)

(A3)

|[41]1̃2 >= −
√

1

2
ψ[3](uud)φ[11](ds)−

√

1

2
ψ[3](udd)φ[11](us) (A4)

|[32]2̄2 > = 1
3
ψ[3](uud)φ[2](ds)− 1

3
ψ[3](udd)φ[2](us)

−
√
2
3
ψ[3](uds)φ[2](ud) +

1√
2
ψ[3](dds)φ[2](uu)

+ 1
3
√
2
ψ[3](uus)φ[2](dd)

(A5)

|[32]1̄2 > = 2
3
ψρ
[21](udu)φ[2](ds) +

1
3
ψρ
[21](dud)φ[2](us)

−
√
2
3
ψρ
[21](uds)φ[2](ud) +

√
2
3
ψρ
[21](usu)φ[2](dd)

(A6)

|[32]1̃2 >=
√

1

3
ψρ
[21](dud)φ[11](us)−

√

2

3
ψρ
[21](uds)φ[11](ud) (A7)

|[311]1̄1 > = ψ[111](uds)φ[2](ud) (A8)

|[311]1̄3 > =
√
15
10
ψρ
[21](udu)φ[2](ds)−

√
15
10
ψρ
[21](dud)φ[2](us)

−
√

1
10
ψρ,Λ0

[21] (uds)φ[2](ud) +
√

3
10
ψρ
[21](dsd)φ[2](uu)

−
√

3
10
ψρ
[21](usu)φ[2](dd)

(A9)

|[311]1̃3 > = −1
2
ψρ
[21](udu)φ[11](ds) +

1
2
ψρ
[21](dud)φ[11](us)

−
√

1
2
ψρ,Σ0

[21] (uds)φ[11](ud)
(A10)

|[311]2̃3 > =
√

2
5
ψ[3](uud)φ[11](ds)−

√

2
5
ψ[3](udd)φ[11](us)

+
√

1
5
ψ[3](uds)φ[11](ud)

(A11)
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|[221]2̄3 > =
√
2
4
ψρ
[21](udu)φ[2](ds) +

√
2
4
ψρ
[21](dud)φ[2](us)

−1
2
ψρ,Σ0

[21] (uds)φ[2](ud)− 1
2
ψρ
[21](dsd)φ[2](uu)

−1
2
ψρ
[21](usu)φ[2](dd)

(A12)

|[221]2̃3 > = −
√
6
4
ψρ
[21](udu)φ[11](ds)−

√
6
4
ψρ
[21](dud)φ[11](us)

−1
2
ψρ,Λ0

[21] (uds)φ[11](ud)
(A13)

|[221]1̃2 > = ψ[111](uds)φ[11](ud) (A14)

The states ψ[2](ab) and ψ[11](ab) are the symmetric and antisymmetric two-particle states.

The ψ[3](abc) is the symmetric three particle states. For mixed symmetry states ψρ
[21] some

care should be taken. As usually [21] one has :

ψρ
[21](udu) =

1

2
(udu− duu) (A15)

ψρ,Λ0

[21] (uds) =
1√
12

(2uds− 2dus+ sdu− sud+ usd− dsu) (A16)

ψρ,Σ0

[21] (uds) = −1

2
(usd+ dsu− sdu− sud) (A17)

However, it turns out that the states |[32]1̄2 > and |[32]1̃2 > contain the function ψρ
[21],

the definition of which is :

ψρ
[21](uds) =

√
3

2
ψρ,Λ0

[21] − 1

2
ψρ,Σ0

[21] (A18)

i.e. a linear combination of (A16) and (A17). While the states (A15)- (A17) have a definite

isospin the state (A18) is a mixture of I=0 and I=1. Thus the states |[32]1̄2 > and |[32]1̃2 >

do not have a definite isospin. Therefore one has to project into a specific value of I in the

calculation of matrix element of these two states. Calculation with or without projection

indicate a difference of few MeV which is insignificant in the context of the present study.
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TABLES

TABLE I. Expectation value of the operator (1) in units of Cχ for all flavour [f ]F and spin

[f ]S symmetries compatibles with [32]FS . The corresponding spin S and isospin I, together with

the total angular momentum J are also given.

[f ]F [f ]S S J I < Vχ >

[221] [41] 3/2 1,2 0 -12

[221] [32] 1/2 0,1 0 -16

[311] [32] 1/2 0,1 1 -12

[32] [32] 1/2 0,1 0,1 -8

[311] [41] 3/2 1,2 1 -8

[32] [41] 3/2 1,2 0,1 -4

[41] [32] 1/2 0,1 1,2 -2

[41] [41] 3/2 1,2 1,2 2

[32] [5] 5/2 2,3 0,1 8/3

[5] [32] 1/2 0,1 2 8
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TABLE II. Variational solution of the Hamiltonian (5)-(7) for spin S=1/2 low lying baryons

compared to experimental masses

Baryon Variational parameters (fm) Expectation value Experimental mass (GeV)

a b (GeV) [23]

N 0.4376 0.9696 0.940

Λ 0.4486 1.1654 1.1156

Σ 0.4625 1.2354 1.193

Λc 0.4683 0.7099 2.3268 2.2849

Σc 0.6320 0.7201 2.4889 2.452

Ξc 0.5705 0.6967 2.5494 2.470

Λb 0.4678 0.6509 5.6147 5.641

Σb 0.6292 0.6623 5.7775 ?

Ξb 0.5683 0.6339 5.83629 ?
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TABLE III. Masses M and mass differences M − MT (MT - the threshold mass) of heavy

hexaquark systems uuddsQ (Q=c or b) of given isospin I and total angular momentum J

System I J M Threshold M −MT

(GeV) (GeV)

uuddsc 0 0,1 4.144
N + Ξc

Λ + Λc

0.625

0.652

1 0,1 4.304
Σ + Λc

N + Ξc

0.742

0.785

2 0,1 4.496 Σ + Σc 0.772

uuddsb 0 0,1 7.425
N + Ξb

Λ + Λb

0.619

0.645

1 0,1 7.586
Σ + Λb

N + Ξb

0.736

0.780

2 0,1 7.780 Σ + Σb 0.767
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