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Studying the constituents of the universe

(c) Jorge Cham
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Collecting data

(c) Jorge Cham
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Testing for new physics

(c) Jorge Cham

p(data|theory + X )

p(data|theory)
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Likelihood-free setup

• Complex simulator p parameterized by θ;

• Samples x ∼ p can be generated on-demand;

• ... but the likelihood p(x|θ) cannot be evaluated!

p = ⊗
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Simple hypothesis testing

• Assume some observed data D = {x1, . . . , xn};
• Test a null θ = θ0 against an alternative θ = θ1;

• The Neyman-Pearson lemma states that the most powerful
test statistic is

λ(D; θ0, θ1) =
∏
x∈D

pX(x|θ0)

pX(x|θ1)
.

• ... but neither pX(x|θ0) nor pX(x|θ1) can be evaluated!
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Straight approximation

1. Approximate pX(x|θ0) and pX(x|θ1) individually, using density
estimation algorithms;

2. Evaluate their ratio r(x; θ0, θ1).

Works fine for low-dimensional data, but because of the curse of
dimensionality, this is in general a difficult problem! Moreover, it is
not even necessary!

pX(x|θ0)
pX(x|θ1) = r(x; θ0, θ1)

/

When solving a problem of interest, do not solve a more general problem

as an intermediate step. – Vladimir Vapnik
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Likehood ratio invariance under change of variable

Theorem. The likelihood ratio is invariant under the change of
variable U = s(X), provided s(x) is monotonic with r(x).

r(x) =
pX(x|θ0)

pX(x|θ1)
=

pU(s(x)|θ0)

pU(s(x)|θ1)
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Approximating likelihood ratios with classifiers

• Well, a classifier trained to distinguish x ∼ p0 from x ∼ p1

approximates

s∗(x) =
pX(x|θ1)

pX(x|θ0) + pX(x|θ1)
,

which is monotonic with r(x).

• Estimating p(s(x)|θ) is now easy, since the change of variable
s(x) projects x in a 1D space, where only the informative
content of the ratio is preserved.

This can be carried out using density estimation or calibration
algorithms (histograms, KDE, isotonic regression, etc).

• Disentangle training from calibration.
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Inference and composite hypothesis testing

Approximated likelihood ratios can be used for inference, since

θ̂ = arg max
θ

p(D|θ)

= arg max
θ

∏
x∈D

p(x|θ)

p(x|θ1)

= arg max
θ

∏
x∈D

p(s(x; θ, θ1)|θ)

p(s(x; θ, θ1)|θ1)
(1)

where θ1 is fixed and s(x; θ, θ1) is a family of classifiers
parameterized by (θ, θ1).

Accordingly, generalized (or profile) likelihood ratio tests can be
evaluated in the same way.
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Parameterized learning

For inference, we need to build a family s(x; θ, θ1) of classifiers.

• One could build a classifier s independently for all θ, θ1. But
this is computationally expensive and would not guarantee a
smooth evolution of s(x; θ, θ1) as θ varies.

• Solution: build a single parameterized classifier instead, where
parameters are additional input features (Cranmer et al.,
2015; Baldi et al., 2016).

T := {};
while size(T ) < N do

Draw θ0 ∼ πΘ0
;

Draw x ∼ p(x|θ0);
T := T ∪ {((x, θ0, θ1), y = 0)};
Draw θ1 ∼ πΘ1

;
Draw x ∼ p(x|θ1);
T := T ∪ {((x, θ0, θ1), y = 1)};

end while
Learn a single classifier s(x; θ0, θ1) from T .
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Example: Inference from multidimensional data

Let assume 5D data x generated
from the following process p0:

1. z := (z0, z1, z2, z3, z4), such that
z0 ∼ N (µ = α, σ = 1),
z1 ∼ N (µ = β, σ = 3),
z2 ∼ Mixture( 1

2
N (µ = −2, σ =

1), 1
2
N (µ = 2, σ = 0.5)),

z3 ∼ Exponential(λ = 3), and
z4 ∼ Exponential(λ = 0.5);

2. x := Rz, where R is a fixed semi-positive
definite 5× 5 matrix defining a fixed
projection of z into the observed space.

Our goal is to infer the values α and
β based on D.
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Check out (Louppe et al., 2016) to reproduce this example.
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Example: Inference from multidimensional data

Recipe:

1. Build a single parameterized classifier s(x; θ0, θ1), in this case
a 2-layer NN trained on 5+2 features, with the alternative
fixed to θ1 = (α = 0, β = 0).

2. Find the approximated MLE α̂, β̂ by solving Eqn. 1.

Solve Eqn. 1 using likelihood scans or through optimization.
Since the generator is inexpensive, p(s(x; θ0, θ1)|θ) can be
calibrated on-the-fly, for every candidate (α, β), e.g. using
histograms.

3. Construct the log-likelihood ratio (LLR) statistic

−2 log Λ(α, β) = −2 log
p(D|α, β)

p(D|α̂, β̂)
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Exact −2 log Λ(α, β)
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Diagnostics
In practice r̂(ŝ(x; θ0, θ1)) will not be exact. Diagnostic procedures
are needed to assess the quality of this approximation.

1. For inference, the value of the MLE θ̂ should be independent
of the value of θ1 used in the denominator of the ratio.

2. Train a classifier to distinguish between unweighted samples
from p(x|θ0) and samples from p(x|θ1) weighted by
r̂(ŝ(x; θ0, θ1)).
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Density ratio estimation

Approximating likelihood ratios relates to many other fundamental
statistical inference problems, including

• transfer learning,

• outlier detection,

• divergence estimation,

• ...



Transfer learning: ptrain 6= ptest

As training data increases, i.e. as N →∞,

1

N

∑
xi

L(ϕ(xi ))→
∫

L(ϕ(x))ptrain(x)dx.

We want to be good on test data, i.e., minimize∫
L(ϕ(x))ptest(x)dx.

Solution: importance weighting.

ϕ∗ = arg min
ϕ

1

N

∑
xi

ptest(xi )

ptrain(xi )
L(ϕ(xi ))



Summary

• We proposed an approach for approximating LR in the
likelihood-free setup.

• Evaluating likelihood ratios reduces to supervised learning.
Both problems are deeply connected.

• Alternative to Approximate Bayesian Computation, without
the need to define a prior over parameters.
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