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ABSTRACT

In an earlier work it was assumed that the imaginary part of
the optical potential due to nucleon transfer could be
described by a proximity type formula. Here we derive such a
formula starting from the transfer probabilities between

specific quantum states and assuming leptodermous nuclei.
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1. INTRODUCTION

In recent years some more progress has been made in
understanding the imaginary part of the nucleus-nucleus
optical potential from a microscopic point of view. According
to Ref. 1 one can distinguish two major contributions to the
imaginary potential : a volume part WV due to the mean free

path and a surface part

Ws B winel * Wtrans (1.1
due to the additional contribution of inelastic and transfer
channels. The volume part has the shortest range and has
been studied by solving the Bethe-Goldstone equation for two
nuclear matter systems in relative motion.2 Approximate
methods based on a complex energy functionals have also
been investigated.3 Quantitative studies of winel and Wtrans

based on the formalism of Ref. 1 have been recently performed4

for 160 colliding on various targets as 2851, 4UCa, BBSr and

2UBPb. These studies involve rather elaborate numerical
calculations depending on details of nuclear structure.

In Ref. 5 we adopted a much simpler model for calcu-
lating the nucleon transfer contribution to the imaginary
part of the optical potential. The nuclei were treated by
the Fermi gas model and the flux of nucleons from one
nucleus to the other was calculated by taking into account
the Pauli allowed region in momentum space and the tunneling

through the barrier formed between the single particle wells.

As in Refs. 1 and 4 the resulting potential has a long range,



reflecting the peripheral aspect of the process of depopulation
of the entrance channel through single particle transfer.

The present work is entirely devoted to the derivation
of wtrans and is intended to be a link between microscopic
calculation56’7 based on transition amplitudes between
specific states and barrier penetrability models.5 In other
words , taking the sum of transition probabilities between
various available states as a starting point we try to find
out under which conditions a proximity type formula based
on nuclear current across the barrier can be derived for

wtrans'

In Sec. 2 we define W in a semi-classical approximation.

trans
In Sect. 3 we derive a general analytic form for the total
transfer probability for peripheral collisions between large
leptodermous nuclei. In Sect. 4 we obtain a formula for
— which is compared to the proximity approximation of

Ref. 5.

2. DEFINITION OF W

In the following we shall assume that the nucleus 1 has
a straight line trajectory and a uniform velocity v with
respect to nucleus 2 which is fixed. The geometry is shown
in Fig. 1. The origin of coordinates is positioned at the
centre of the nucleus 2 and the nucleus 1 moves along the
y-axis, the distance of closest approach being z = d. The
transition amplitude A(2f,1i) of a nucleon from nucleus 1

to nucleus 2 can be written perturbatively as 1,8



o

A(2F,1i) = é% f (wZF, v1 w1i)dt (2.1)

-0

where wTi and are the wave functions of a bound state

wa
nucleon in nuclei 1 and 2, respectively. A similar expression
can be written for transfer from 2 to 1.
Assuming that the depopulation of the entrance channel
due to particle transfer between the colliding nuclei contributes

to the imaginary potential W such a potential can be related

trans

to the total transfer probability

Poa = Z |A(bf,ai)|2 (a,b = 1,2) (2.2)
i, f

through the relation

2
z J Wy ane (RCED)DE = Py P (2.3)
where R is a point on the straight trajectory followed by
the projectile.
The main purpose of the present work is to relate the

quantal approach for calculating W from Egs. (2.1)-(2.3)

trans

to the proximity approximation used in Ref. 5. As in the

proximity method we start from Eq. (2.3) and derive an

expression for W in terms of the flux of nucleons ¢
trans

through an element of unit area of one nucleus separated

by the distance s from the corresponding element of unit

area of the other nucleus. According to Fig. 1 this distance

can be written as

s = 51(X,Y) + SZ(X,YW 3 Y'= Y- vt (2.4)



where 84 and s, are the distances between the surface
elements of nuclei 1 and 2, respectively and a surface I

This is arbitrarily chosen in the region where the potentials
V1 and V2 describing each nucleus separately vanish.
Accordingly & becomes a function of X,Y,Y' or alternatively

X,Y,t. We want to express the total transition probability

P =P, + P (2.5)
in the form
P = J ¢ (X,Y,t)dXdY dt

J o) [51(X,Y) + SZ(X,Y')]dXdeY'

<|-=

where
+ & = (2:7)
If we consider a point

— = =

R(t) = d + vt

on the trajectory of the projectile the equations (2.3) and

(2.6) give

trans (R(t)) :-g J o (X,Y,t)dxdy . (2.8)

In the following we aim at finding an expression for 9@



by assuming that the nuclei are leptodermous. We note that
the surface £ in Fig. 1 does not normally appear in the
proximity method, but it plays an important role in the

quantal treatment.6 This point will be discussed in Sect. 3.

3. THE TRANSITION AMPLITUDE

For deriving W(R) from (2.3) we need to evaluate
A(2f,11i) of (2.1). We rely on the assumption that the transfer
is a peripheral process so that between the nuclei there 1is
a region where the potentials V1 and V2 both vanish. The

plane I is situated at z = z (see Fig. 1) in this region.

Then the transition amplitude takes the form

0 *
. Ay, (2) 3v. (1)
A(2F,11) = %% j dt f dxdy (—55——— v (1) - wi(z) ——) {3.1)
0 0

z
where ¢i(1) and @F(Z) are the initial and final wave functions
of the nucleon which is transferred from the orbit i in the
nucleus 1 to the orbit f in the nucleus 2. The single particle

wave functions are

%[m'v.% - (ei + 3 my?)t]
-3
b, (1) = @i(?-R(t)) e (3.2)
i
-= €t
be(2) =g (@) e T (3.3)
where P: s wj are the eigenstates of each nucleus at rest.

Equation (3.2) expresses the fact that nucleus 1 is moving



uniformly on a straight line with respect to 2, i.e.
E(t) :-3 + Vt.

By using the notation

= 1 2
k,l = W (E‘F - Ei - 3 M V }
(3.4)
-] 1 2
kz = o (Ef - €, vz MV )
and making the change of variable
1 [

t =< (y-y") (3.5)

the transition amplitude takes the following form
P 3 ~ide, v o ik,y
N | [ ' 4 J 2
A(2f,11) = vaj' de dy' e , dy e
* d ; )
[(PF(XJY9ZD)W CPi(X,Y ’Zo_d) - azo (PF(X,Y,ZO)
mi(x,y',zo—d)] (3.6)
By introducing the Fourier transform
o i(kxx+kyy)
o (x,y,2) = > f e F (k_,k_,z)dk_dk (3.7)
o (27) a XY S
for @ = i,f we can rewrite
oy _ iK (" © . 3
ALZF, 140 = T 7 | de dk [ff(kx,kz,zo) 5 fl(kx,k,],zo
(27) o . 0
3 %
- az— Ff_‘(kxgkzyzo) fl(kx,k1’zo_d)] (3-8)



Using the WKB expression of the wave function Py at
distances z beyond the turning point one can show that

(see Ref. 6 for details)

-y(d-z ) :
_ o’ 21
Fl = CQ_ e = YR. .(k1)
i ivi
(3.9)
-Yz A
fo=C, e ©° 2Ly, (k,)
f Fl e
where CR are normalization constants and
o
2 o 2 2 _ .z 2 2
Y2 =kl o+ ki o+ vl o= koo ko o+ Yg (3.10)
§1 P (kg s i) : ﬁz = (K, k,,iY) (3.11)
Yoi YOF
with
2
Yoy = - %? e, (3.12)
A ~

The z-components of k1 and k2 are imaginary because they
represent momentum components under the barrier. With the
help of the expressions (3.9) one can reduce the transition

amplitude to a simpler form

. i 1 *
A(2f,11) = 2F ﬁj die, YU ) Frll ,k

=

,zD) fi(kx,k1,zo—d) ({3.43)

3

2

—-Co

where y of eq. (3.10) has been written as a function of k_.

Taking as quantum numbers i = (e,, &., m;),

f = { & ,mF) and assuming that the single particle energy

€pr ~f

o varies continuously the total transfer probability from



nucleus 1 to nucleus 2 becomes

w €F1 o ®
I LI I | [ [ , ;
EFZ 0 - -
F* ( 1 i
0e (K ,kx,zo) F1E.(kx’kx’zo_d) (3.14)
f i
Here

*
Foe (K skps2) = z Fo(k, sks2) £ (kK ,2) 8le-e ) (n=1,2)  (3.15)
o

takes into account the summation over all states a = (&,m)
of energy e¢. Note that in Eq. (3.14) the integration limits
for €5 and €p are consistent with the Pauli principle. In the
l.h.s. of (3.15) we have omitted the argument k_ for simpli-
city.

At this stage we want to derive an approximate expression
for Fne valid for leptodermous nuclei. If we use the inverse

of the Fourier transform (3.7) the function FnE becomes

“ —i(k x+k y) i(k!'x'+k_y')
Foodk k'yz) = [ dx dx' dy dy' e A n e X n
ne  x’ X
p (Z,T") (3.16)

0 (T,T) = ) 8(e-e,) ¢ (T) ¢ (F') (3.17)

o



In the Appendix A we derive an analytic expression
for pE valid for points r and r' just outside the surface
of a large leptodermous nucleus. The essential ingredients
of the derivation are the WKB approximation and the use of
phase space coordinates directly related to the angular
momentum.9 For finite nuclei this expression reads

n k;, =-w_(r)-w_(r'")
s IE 30 & b I dk, — e °© € J (kg © R (3.18)

where © is the angle between T and ', R, (n=1,2) is the

nuclear radius. In Eq. (3.18)

ky = VkZ + KZ (3.19)
represents the component of the nucleon momentum perpendicular
on the z-axis as it can be seen from Eq. (3.11). The upper
limit of integration on k; can be found from the energy
balance in a region in the nucleus where the kinetic energy
reaches a maximum, i.e. where Vn (n = 1,2) reaches the

maximum depth Von' There we have

]7{2 2 2)_V
ﬁ(k—l--kkz = —|€

on D!.l

Hence

Ky, = Max k; = [ﬁ% (Very ~ [ea|)]% {3.20)



By analogy with the derivation ﬁade in the Appendix A
for finite nuclei one can obtain a density matrix for semi-
infinite nuclear matter described by the wave function.

i(k x + k_y)
_1 y
(pkx’ky’e(x,y’Z) =T * (PE(Z)
where L is the quantization box size along the x and y axis
and Qe(z) is defined by the semiclassical expressions (A.2)

with r replaced by z. The result is very similar to (3.18)

J (k. e) (3.21)

where the x,y dependence comes only through the vector
ﬁ = (x-x',y-y'). One can pass from (3.18) to (3.21) and vice-

versa by the replacements

; R 0 <+ p (3.22)

The physical content of the similarity of the density
matrices (3.18) and (3.21) is that the surface properties
of a large finite nucleus are essentially the same as those
of nuclear matter.

Substituting Eq. (3.18) into (3.16) and making the

change of variables

1
=
Pl
s
+
L
g

X = +(x+x") : Y

P = x-x' i o = y-y' (3.23)



we obtain at the surface %

co -in X
X
Fne(k ,k!',d ) = J F E(KX,X,Y,dn) e dXxdy (3.24)
where
Y y2 2
1T m _Zwe(d ) 1 _Rn(x o)
F (K ,X,Y,d ) = =— 2~ 8(KZ - K2 - k?) e 2 g
ne . x n 2T 2 M % n Y
# n
(3.25)

The step function © results from the integration over k;.
The exponential dependence on X and Y follows from the

approximation

2

we(r) = We(dn) + 7R (x

+ y?) (3.26)

obtained for we(r} in the Appendix A. The X and Y dependence
reflects the geometry of a spherical leptodermous nucleus.

Now we can express the total probability P21 of the

Eq. (3.14) in a convenient form by using the Eq. (3.24)

and introducing the approximation
y(k, ) = Y(kx) & Y(Kx) = ¥ . (3.27)

The result is

o €F1 o
_ ] IRy 2
P21 - (zm) (mv) f dEF j dEi j de Y (Kx)
€rp 0

—QoC

(K s X, ¥,dy) Fo (K ,%, Y1 ,d,) (3.28)

[ 'F
j X dY dY'F i

e Teg



This formula will be used in the next section for deriving

trans’

4. FORMULA FOR W
trans

At present we have all ingredients for deriving an

expression for W There are two steps in the arguments.

trans’

Starting from Egs. (2.6) and (3.28) for P21 we obtain an

equation for the flux ®21 and compare it with the one-sided

flux of Ref. 5. Then we calculate Wt and discuss its
rans

relation to the proximity result of Ref. 5. Substituting

(3.25) in (3.28) and using (2.6)

o €
F s
o, (X,Y,Y') = | de r de. [ dKk M. (e.,e..K ,s)
21 . ) i) 29 E PPy
F g -
2
-Y(é X4 %— Y2 & %— VEES:
s B z ! (4.1)
where
My, (ecre; K ,8) = —— —— 8(T? - K§>e‘2”8) (4.2)
- (2m)3 H2v
with
T2 = Max(Kﬁ - kZ) (4430
n
— R
_ % Mg
R = 7= (4.4)



and

) o+ w_ (d.) (4.5)

The quantity Y(s) can be easily recognized as the penetrability
integral (B.12) if one uses the definition (A.3) for wef(d )
and w ‘(d1) and replaces r by z.In agreement with Fig. 2

one ha;

2

s = d, + d, - R, - R (4.6)

We note that in writing (4.1) we have made use of the appro-
ximations (3.27) and (A.14) which imply y(d) = Y(KX).

O0f particular interest is the quantity
oY - o __(0,0,0) (4.7)
217 - 217777 ’

This is just the flux between two semi-infinite slabs of

nuclear matter separated by the distance s between surfaces.

It can be obtained from (3.21) in a similar way to ®21(X,Y,Y').
For two identical nuclei the fluxes from both sides are

equal
(4.8)

In Ref. 5 we calculated W by assuming a proximity

trans
type formula for the nucleon current. This reduced the
calculation of the potential to the knowledge of the one

sided current between two semi-infinite slabs. In Appendix B



we rewrote the one sided-flux of Ref. 5 in the form (B.15).
This is identical to @31 if the penetrability P(kx,s)
defined in (B.2) is approximated by the WKB formula

P(kx,s) = e_ZY(S) (4.9)

with Y(s) given by (B.12)-(B.14).

The last step towards obtaining an expression for the
imaginary potential from the definition (2.8) is to
change the variable Y' = Y - vt and integrate ®21 + @12
over X and Y. At the distance of closest approach when

t =0 and R = d one has

) EF ©
W (d) = AR [ de J' " e J’ .
trans - J f i X ZYfoj
€F 0 —co
2
[MZT(Ef’Ei’Kx’S) + M12(EF’€i’Kx’S)] (4.10)

For values of s beyond which £ (V, + V,) = 0 on the surface

F{Z 1 2
Z and for fixed energies €;9€p the distance b,I - b2 varies
linearly with s. Hence
dY(s)
T (4.11)
which leads to the identity
1
L. 2Vs) | [ 28et) o (4.12)
2y J
s

By permuting integrals in (4.10) and using Eq. (4.12)

we obtain



trans = TAR I(s) (4.13)
with
1(s) = [ ds'0),(s') + @0, (s)] (4.14)
21 12 :
S
Equation (4.13) for Wi ans 18 essentially the same as the

equation (4) of Ref. 5. When the separation between the
nuclei is large enough the fluxes @21 and @?2 derived here
are the same as the one sided fluxes between two semi-
infinite slabs as introduced in Ref. 5. For smaller sepa-
rations there is a difference because the present approach
leads to a penetration factor P = e_ZY which is the WKB
limit of Eq. (B.2).

The original aspect of the present work is that we
have proved the validity of the proximity method for
deriving wtrans from the one-sided currents between inter-
acting nuclei. Our evaluation is based on a quantum mecha-
nical expression of the transition amplitude and we obtain
the same result as in Ref. 5 which relied on the classical

10 An essential step is the

concept of Swiatecki and Randrup.
similarity of the density matrices (3.18) and (3.21). The

physical content of this similarity is that a large finite
nucleus has the same surface properties as nuclear matter.
This is a generalization of the assumption about densities
made in deriving proximity potentials. Off-diagonal matrix
elements are required for calculating proximity currents.

Pollarolo et al.4 obtained W by directly evaluating

trans

(2.2). The method involves extensive computation but it



includes shell and curvature effects. In our method such
effects are averaged out by the Eq. (3.18) which is an
approximation of the exact density matrix. It would therefore
be interesting to make some quantitative comparisons of

these two methods.



APPENDIX A

In this Appendix we use a semi-classical approach to

derive a formula for the density matrix of a nucleus
DE(E,,E') = z 6(e - e ) 9,(r) ox(z") (A.1)
o

at a given energy €. We assume that the nuclei are spherical
and first concentrate on the radial part Fl(r) of ma{r). We

recall that the WKB approximation’l,I gives

f r
f. . () ~ sin(j k. (r)dr + 1) a <t <b
el L 4
kg b
_ (A.2)
[ -w_(r)
N%_ﬂ' e € E > b
/i
where kg = 1 Yo » @ and b are the turning points and
P
W (r) = Jr v, (r)dr (A.3)
b
with
1
('QJ + _)2 1
Yolr) = [ y2 + 20 v(r) + —2 72 (A.4)
ﬁ: U ﬁz rz
¥4 = - 2Zm (A.5)
Mz

The normalization constant EQ can be related to the period

ZTR of the specific orbit €,2 . If we assume that the main



contribution to the norm comes from the interval (a,b) and
average over the periodical function we have
™ b

1wz [ dx _ 1 =2 H
7 [:9“ ] k;@ =i C2 =Ty (A.6)
a

Hence
=2 _ 2m 1
Co = E’_—Tﬁ (A.7)

In our discussion we are interested in points r,r'
situated just outside the nuclear surface. If the nuclei

are leptodermous this region is narrow and we can approximate

(A.4) by
142
(% + _) 1
Yo (m) = [y + 22 V(r) + ——27? (A.8)
%2 RZ

where R is the nuclear radius.

The points of interest © or r' are located on the
surface I perpendicular to the z axis at z = d. Due to the
sphericity of the nuclei only points close to d bring
important contributions. In such a region w_.(r) of Eq. (A.3)

can be approximated by

wE(r) & wE(d) + (r - d) y(d) (A.9)

where

(x* + y*%) (A.10)

M| =
o



and

(%

v(d) = [¥3 + -

= 9 =

+ %)

M=

]
RZ

(A.

because the surface £ is defined such as

V(d)

In the classical limit we can take

ﬂ,+-;-:

= 0

k, R

and from (3.10) and (3.19) we obtain

y(d)

i.e. independent of d.

~

v

(A.

(A.

Throughout this paper we shall use

the expression (A.9) for we(r) where wE(d) is given by (A.3)

and y(d) by (A.14).

Let us now discuss the angular part of the density

matrix. In Eq. (A.1) the index o runs over all occupied

degenerate states 4m of energy €.

Z Yoo (8) Y, (en)
m

where § is the angle between T and r

(22 + 1)

by the asymptotic form12

4

(large &)

Summing over m gives

P

~

ol

cos %)

We replace Pi(cos 9)

11)

.12)

13)

14)



= 97 -

p 1e] (A.15)

gleos &) ~ J [(& + 5

where Jo(x) is the zeroth order Bessel function and take

the continuous limit

z - J d? n(e, ) , | (A.16)
2

where n(e,%) is the density of states. Then we have

PelEsr') = gy | 42 % n(e,8) Fp(e) F(et) 30(RD)8]  (A.17)
To be consistent with the semi-classical form (A.2) for Feg
we shall derive below an expression for n(e,%) in the
classical limit.
We follow the approach used by Horiuchi (see e.g.
Ref. 9) and write the volume element of the momentum space

in terms of the variables E, a, , a¢ where

&

; 1
ag = AL + 7) >0 (A.18)
@y = fim ; -ag < %y < ag (A.19)
which are related to the momentum components P.» Pg pw

through the relations

1 1 1 2
€ = 5— (p2 + — p2 4+ ——— p?) (A.20)
£l o s & r? sin? § ¢
p2 1
a, = (p2 + 22— )2 (A.21)
9 ) . 5
sin® &
@ = p (A.22)



s

This amounts to write the volume element in the phase

space as

1

dn = — dr d& do dp_ dp, dp
(21 K)? T e
1 -1
= ———— J7 dr d% dp de dog da (A.23)
(21H)° ¥

where J is the Jacobian

B(E’a&’u¢) P. Py

- A.24
(pr,ps,p¢) m g ( )

Integrating over & and ¢ gives 2m?. An extra factor of 2
appears from taking into account both the positive and

negative values of P at a fixed energy . The result is

4 m? m dr
3
(21K) |Pr|

de da

s dOLCP (A.25)

The integration over a¢ gives ZQS' By introducing the radial

velocity v_ = [p_|/m and recalling that
b
([ dr
—_ = T (A.26)
J V. 2
a

where the period T depends on & through ay = £ + = one

obtains for the density of states n(e,%)

Ty
nle,2) = =2 (A.27)

By using (A.2), (A.7) and (A.27) we obtain for the density

matrix (A.1) outside the outer turning point.



1 ~m_ [ (R+3)dR e—we(r)-we(r')

g e, gty = —————
= (2m)%rr' K2 J Yy

JD[(R+%)%]
(A.28)

For points r,r' situated near the nuclear surface wa can take

-
Q
!
o

o

and using (A.13) we obtain

Ky

k, dk -w_(r)-w_(r')
1 m j Sl € I (k; & R)
S (2m)2 W2 Yy, 0

0 (A.29)

This expression is used in Section 3 for deriving the flux
®(X,Y,t). The upper limit Ky is defined by the equation
(3.20). The index & of y can be removed if one bears in

mind that y depends on k; through (A.13).



APPENDIX B

In this Appendix we bring the formula for the one-sided
flux used in Ref. 5 to a form comparable to the one derived
in the present paper.

In Ref. 5 the one-sided flux from the slab 1 to the
slab 2 was defined as

n ok

_ 1 [ z
B9 = Py J d®k P(k_,8) —= n (|k[)(1-n,(|k[)) (B.1)
k_>0

where z is the axis perpendicular to the nuclear surfaces,
n, and n, are the occupation probabilities of a state of
momentum W k in 1 and 2 respectively and P(kz,s) is the
transmission coefficient for a nucleon with momentum

component W k, in the slab 1. The following semi-classical

approximation was chosen to describe P

1

P(kz’s) =T F exp 2Y(s) (B.2)
where Y is the penetrability integral
b1
2m 213
) = [ [ (V(z,8) - K217 dz (B.3)
b #
2
between the turning points of the barrier
V(z,s) = VD o V1(z,s) * Vz(z,s) (B.4)

with Woods-Saxon forms for V,I and V2 having surfaces separated



- 25 -

by a distance s . The formula (B.2) reduces to the standard

WKB expression when Y is large. The flux ® is obtained

12
from (B.1) by interchanging 1 and 2 and by integrating OVEer
kz < 0 . A factor of 2 x 2 is necessary if the spin and
isospin degrees of freedom are included.

In order to make contact with the present work we
wish to make a change of variables in Eg. (B.1). The new

variables €, and €_ are the binding energies of a nucleon

£
in the slabs 1 and 2, respectively. If VD > 0 1is the
potential depth of both V,I and VZ’ € and € can be related
to‘g through the energy balance in each slab. If the slab 1
moves parallel to the slab 2 with the momentum W g along

the y-axis this reads

ﬁz

_ n- 2 B 2 2
€; + VU = g [kX + (ky q)?® + kz] (B.5)
and
eow Vo 2 B2 (Rt 4 kP 4 K@) (B.6)
f 0 2m X y z '

which indicates that ai < 0 and EF <0

For changing variables we need the Jacobian
B(Ei,a

] ¢ —2 2 (B.7)

dk dk dk = —— de. de. dk (B.8)
Y z x X



- P =

On the other hand by substracting Egs. (B.5) and (B.6)

and introducing the relative velocity

v :M- (B.9)

one obtains

kyzﬁ"—v (ep - e, + 4 m v?) (B.10)

This expression is identical to k, of (3.4) and one can also

1

to k, and k, through conservation laws. Using (B.6) we

rewrite in the integrand of (B.3)

see that k, = ky - g which gives a physical significance

2m VU

T-k;:ki+k;-—~—e1,:y (B.11)

In writing the second equality we have made use of (3.10)

and (3.12). Hence

b1
( 2 2m 3
Y(s) = ] {y* + = [Vq(z,s) $ Vz(z,s)}} dz (B.12)
b
Replacing (B.10) in (B.11) we obtain
— 2 3
v = [- 28 g - B p2yge (B.13)
12 Zm X
The energy
2l ~ €a)%
| Ikt M B A
g = Z(Ei + Ej) - 3 [ - + oz mov 1 (B.14)



is negative because € < 0, € <0
Equation (B.13) shows that Y and hence P of (B.1)
can be expresses in terms of the integration variable

k, only. By using (B.8) one can finally write

€

F o fo)

1
1 1 ( [ ( 2m =y .2
o} = de. de dk_ o[— (V_+e)-k2]IP(k ,s)
21 (ZTF)S %2 vV _JU 1 i f 'Jm X Mz D X X

F - (B.15)

where the oeccupation probabilities n, and n, have imposed

the above limits for €; and e, and the step function ©
fixes the limits of kx at fixed € . The argument of the
step functions in Egs. (4.2) and (B.15) are the same. This

can be proved by using Eqs. (3.4), (3.20) and (4.3).
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