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ABSTRACT

Nonlinear system identification aims at developing high-fidelity mathematical models in the presence of nonlin-
earity from input and output measurements performed on the real structure. The present paper is a discussion of the
recent developments in this research field. Three of the latest approaches are presented, and application examples
are considered to illustrate their fundamental concepts, advantages and limitations. Another objective of this paper
is to identify future research needs, which would make the identification of structures with a high modal density in a
broad frequency range viable.

1 INTRODUCTION

The demand for enhanced and reliable performance of vibrating structures in terms of weight, comfort, safety, noise and durability
is ever increasing while, at the same time, there is a demand for shorter design cycles, longer operating life, minimization of
inspection and repair needs, and reduced costs. With the advent of powerful computers, it has become less expensive both in
terms of cost and time to perform numerical simulations, than to run a sophisticated experiment. The consequence has been a
considerable shift toward computer-aided design and numerical experiments, where structural models are employed to simulate
experiments, and to perform accurate and reliable predictions of the structure’s future behavior.

Even if we are entering the age of virtual prototyping, experimental testing and system identification still play a key role because
they help the structural dynamicist to reconcile numerical predictions with experimental investigations. The term ‘system iden-
tification’ is sometimes used in a broader context in the technical literature and may also refer to the extraction of information
about the structural behavior directly from experimental data, i.e., without necessarily requesting a model (e.g., identification
of the number of active modes or the presence of natural frequencies within a certain frequency range). In the present paper,
system identification refers to the development (or the improvement) of structural models from input and output measurements
performed on the real structure using vibration sensing devices.

Linear system identification is a discipline that has evolved considerably during the last thirty years. Modal parameter estimation
— termed modal analysis — is indubitably the most popular approach to performing linear system identification in structural
dynamics. The popularity of modal analysis stems from its great generality; modal parameters can describe the behavior of a
system for any input type and any range of the input. Numerous approaches have been developed for this purpose [1, 2]. It is



important to note that modal identification of highly damped structures or complex industrial structures with high modal density
and large modal overlap are now within reach.

The focus in this overview paper is on structural system identification in the presence of nonlinearity. Nonlinearity is generic in
Nature, and linear behavior is an exception. In structural dynamics, typical sources of nonlinearities are:

– Geometric nonlinearity results when a structure undergoes large displacements and arises from the potential energy.
Large deformations of flexible elastic continua such as beams, plates and shells are also responsible for geometric non-
linearities.

– Inertia nonlinearity derives from nonlinear terms containing velocities and/or accelerations in the equations of motion,
and takes its source in the kinetic energy of the system (e.g., convective acceleration terms in a continuum and Coriolis
accelerations in motions of bodies moving relative to rotating frames).

– A nonlinear material behavior may be observed when the constitutive law relating stresses and strains is nonlinear. This
is often the case in foams [3] and in resilient mounting systems such as rubber isolators [4].

– Damping dissipation is essentially a nonlinear and still not fully modeled and understood phenomenon. The modal damp-
ing assumption is not necessarily the most appropriate representation of the physical reality, and its widespread use is to
be attributed to its mathematical convenience. Dry friction effects (bodies in contact, sliding with respect to each other)
and hysteretic damping are examples of nonlinear damping [5]. It is important to note that dry friction affects the dynamics
especially for small-amplitude motion, which is contrary to what might be expected by conventional wisdom.

– Nonlinearity may also result due to boundary conditions (for example, free surfaces in fluids, vibro-impacts due to loose
joints or contacts with rigid constraints, clearances, imperfectly bonded elastic bodies), or certain external nonlinear body
forces (e.g., magnetoelastic, electrodynamic or hydrodynamic forces). Clearance and vibro-impact nonlinearity possesses
nonsmooth force-deflection characteristic and generally requires a special treatment compared with other types of nonlin-
earities [6].

Many practical examples of nonlinear dynamic behavior have been reported in the engineering literature. In the automotive
industry, brake squeal which is a self-excited vibration of the brake rotor related to the friction variation between the pads and the
rotor is an irritating but non-life-threatening example of an undesirable effect of nonlinearity. Many automobiles have viscoelastic
engine mounts which show marked nonlinear behavior: dependence on amplitude, frequency and preload. In an aircraft, besides
nonlinear fluid-structure interaction, typical nonlinearities include backlash and friction in control surfaces and joints, hardening
nonlinearities in the engine-to-pylon connection, and saturation effects in hydraulic actuators. In mechatronic systems, sources of
nonlinearities are friction in bearings and guideways, as well as backlash and clearances in robot joints. In civil engineering, many
demountable structures such as grandstands at concerts and sporting events are prone to substantial structural nonlinearity as
a result of looseness of joints. This creates both clearances and friction and may invalidate any linear model-based simulations
of the behavior created by crowd movement. Nonlinearity may also arise in a damaged structure: fatigue cracks, rivets and bolts
that subsequently open and close under dynamic loading or internal parts impacting upon each other.

With continual interest to expand the performance envelope of structures at ever increasing speeds, there is the need for design-
ing lighter, more flexible, and consequently, more nonlinear structural elements. It follows that the demand to utilize nonlinear
(or even strongly nonlinear) structural components is increasingly present in engineering applications. Therefore, it is rather
paradoxical to observe that very often linear behavior is taken for granted in structural dynamics. Why is it so ? It should be
recognized that at sufficiently small-amplitude motions, linear theory may be accurate for modeling, although it is not always
the case (e.g., dry friction). However, the main reason is that nonlinear dynamical systems theory is far less established than
its linear counterpart. Indeed, the basic principles that apply to a linear system and that form the basis of modal analysis are
no longer valid in the presence of nonlinearity. In addition, even weak nonlinear systems can exhibit extremely interesting and
complex phenomena which linear systems cannot. These phenomena include jumps, bifurcations, saturation, subharmonic,
superharmonic and internal resonances, resonance captures, limit cycles, modal interactions and chaos. Readers who look for
an introduction to nonlinear oscillations may consult [7−10]. More mathematically inclined readers may refer to [11, 12]. A tutorial
which emphasizes the important differences between linear and nonlinear dynamics is available in [13].

This is not to say that nonlinear systems have not received considerable attention during the last decades. Even if, for years, one
way to study nonlinear systems was the linearization approach [14, 15], many efforts have been spent in order to develop theories
for the investigation of nonlinear systems in structural dynamics. A nonlinear extension of the concept of mode shapes was
proposed in [16, 17] and further investigated in [18−20]. Weakly nonlinear systems were thoroughly analyzed using perturbation



theory [7]. Perturbation methods include for instance the method of averaging, the Lindstedt-Poincaré technique and the method
of multiple scales and aim at obtaining asymptotically uniform approximations of the solutions. During the last decade or so,
one has witnessed a transition from weakly nonlinear structures to strongly nonlinear structures (by strongly nonlinear systems,
a system for which the nonlinear terms are the same order as the linear terms is meant) thanks to the extension of classical
perturbation techniques.

Focusing now on the development (or the improvement) of structural models from experimental measurements in the presence
of nonlinearity, i.e., nonlinear system identification, one is forced to admit that there is no general analysis method that can
be applied to all systems in all instances, as it is the case for modal analysis in linear structural dynamics. In addition, many
techniques which are capable of dealing with systems with low dimensionality collapse if they are faced with system with high
modal density. Two reasons for this failure are the inapplicability of various concepts of linear theory and the highly ‘individualistic’
nature of nonlinear systems. A third reason is that the functional S[•] which maps the input x(t) to the output y(t), y(t) = S[x(t)],
is not known beforehand. For instance, the ubiquitous Duffing oscillator, the equation of motion of which is mÿ(t)+cẏ(t)+ky(t)+
k3y

3(t) = x(t), represents a typical example of polynomial form of restoring force nonlinearity, whereas hysteretic damping is an
example of nonpolynomial form of nonlinearity. This represents a major difficulty compared with linear system identification for
which the structure of the functional is well defined.

Even if there is a difference between the way one did nonlinear system identification ‘historically’ and the way one would do
it now, the identification process may be regarded as a progression through three steps, namely detection, characterization
and parameter estimation, as outlined in Figure 1. Once nonlinear behavior has been detected, a nonlinear system is said
to be characterized after the location, type and functional form of all the nonlinearities throughout the system are determined.
The parameters of the selected model are then estimated using linear least-squares fitting or nonlinear optimization algorithms
depending upon the method considered.

Nonlinear system identification is an integral part of the verification and validation (V&V) process. According to [21], verification
refers to solving the equations correctly, i.e., performing the computations in a mathematically correct manner, whereas validation
refers to solving the correct equations, i.e., formulating a mathematical model and selecting the coefficients such that physical
phenomenon of interest is described to an adequate level of fidelity. The discussion of verification and validation is beyond the
scope of this overview paper; the reader may consult for instance [21−23].

2 NONLINEAR SYSTEM IDENTIFICATION IN STRUCTURAL DYNAMICS: CURRENT STATUS

Nonlinear structural dynamics has been studied for a relatively long time, but the first contributions to the identification of nonlinear
structural models date back to the 1970s [24, 25]. Since then, numerous methods have been developed because of the highly
individualistic nature of nonlinear systems. A large number of these methods were targeted to single-degree-of-freedom (SDOF)
systems, but significant progress in the identification of multi-degree-of-freedom (MDOF) lumped parameter systems has been
realized during the last ten years. To date, continuous structures with localized nonlinearity are within reach. Part of the reason
for this shift in emphasis is the increasing attention that this research field has attracted, especially in recent years. We also note
that the first textbook on the subject was written by Worden and Tomlinson [26].

The present paper is a discussion of the recent developments in this research field. For a review of the past developments, the
reader is referred to the companion paper [27] or to the more extensive overview [13]. In particular, this paper aims at discussing
three techniques that show promise in this research field. One of their common features is that they are inherently capable
of dealing with MDOF systems. Numerical and/or experimental examples are also presented to illustrate their basic concepts,
assets and limitations.

2.1 A frequency-domain method: the conditioned reverse path method

Spectral methods based on the reverse path analysis were developed and utilized for identification of SDOF nonlinear systems
in [28−34]. The concept of reverse path is discussed at length in [35], and for its historical evolution, the reader may refer to
the extensive literature review provided by Bendat [36]. A generalization of reverse path spectral methods for identification of
MDOF systems was first proposed by Rice and Fitzpatrick [37]. This method determines the nonlinear coefficients together
with a physical model of the underlying linear structure and requires excitation signals at each response location. A second
alternative referred to as the conditioned reverse path (CRP) method was developed in [38] and is exposed in this section. It
estimates the nonlinear coefficients together with a FRF-based model of the underlying linear structure and does not ask for a



1. Detection Y es or No ?

Aim: detect whether a nonlinearity is present or not (e.g., Yes)

2. Characterization What ? Where ? How ?

Aim: a. determine the location of the non-linearity (e.g., at the joint)

b. determine the type of the non-linearity (e.g., Coulomb friction)

c. determine the functional form of the non-linearity

[e.g., fNL(y, ẏ) = α sign(ẏ)]

3. Parameter estimation How much ?

Aim: determine the coefficient of the non-linearity (e.g., α = 5.47)

fNL(y, ẏ) = 5.47 sign(ẏ) at the joint

?

?

?

Figure 1: Identification process.



particular excitation pattern [we note that a physical model of the underlying structure can also be built using structural model
updating techniques as discussed in [39]]. A detailed discussion of the fundamental differences between the two techniques is
given in [40−42]. The CRP method was compared to the RFS method using numerical examples in [43] whereas it was used for
identification of experimental systems in [44−47].

Another interesting method in this context is the nonlinear identification through feedback of the output (NIFO) method introduced
in [48]. As for the CRP method, the central issue is to eliminate the distortions caused by the presence of nonlinearities in FRFs.
It exploits the spatial information and treats the nonlinear forces as internal feedback forces in the underlying linear model of the
system.

2.1.1 THEORY

Frequency-domain modal parameter estimation techniques are extensively used to identify the properties of linear systems.
They extract modal parameters from H1 and H2 estimated FRFs [1]

H1(ω) =
Syx(ω)

Sxx(ω)
, H2(ω) =

Syy(ω)

Syx(ω)
(1)

where Syy(ω), Sxx(ω) and Syx(ω) contain the PSD of the response (e.g., acceleration signal), the PSD of the applied force and
the cross-PSD between the response and the applied force, respectively. In the presence of nonlinear forces, the H1 and H2

estimators cannot be used because nonlinearities corrupt the underlying linear characteristics of the response.

The CRP method was therefore introduced to accommodate the presence of nonlinearity. It employs spectral conditioning
techniques to remove the effects of nonlinearities before computing the FRFs of the underlying linear system. The key idea
of the formulation is the separation of the nonlinear part of the system response from the linear part and the construction of
uncorrelated response components in the frequency domain. The nonlinear coefficients are estimated during the second phase
of the method.

Estimation of the underlying system properties

The vibrations of a nonlinear system are governed by the following equation

Mÿ(t) + Cẏ(t) + Ky(t) +
n�

j=1

Ajzj(t) = x(t) (2)

where M, C and K are the structural matrices; y(t) is the vector of displacement coordinates; zj(t) is a nonlinear function
vector; Aj contains the coefficients of the term zj(t); x(t) is the applied force vector. For example, in the case of a grounded
cubic stiffness at the ith DOF, the nonlinear function vector is

z(t) = [0 ... yi(t)
3 ...0]T (3)

In the frequency domain, equation (2) becomes

B(ω)Y(ω) +

n�
j=1

AjZj(ω) = X(ω) (4)

where Y(ω),Zj(ω) and X(ω) are the Fourier transform of y(t), zj(t) and x(t), respectively; B(ω) = −ω2M + iωC + K is the
linear dynamic stiffness matrix.

Without loss of generality, let us assume that a single nonlinear term Z1 is present. The spectrum of the measured responses
Y can be decomposed into a component Y(+1) correlated with the spectrum of the nonlinear vector Z1 through a frequency
response matrix L1Y , and a component Y(−1) uncorrelated with the spectrum of the nonlinear vector; i.e., Y = Y(+1) + Y(−1).
In what follows, the minus (plus) sign signifies uncorrelated (correlated) with. Likewise, the spectrum of the external force X can
be decomposed into a component X(+1) correlated with the spectrum of the nonlinear vector Z1 through a frequency response
matrix L1X , and a component X(−1) uncorrelated with the spectrum of the nonlinear vector; i.e., X = X(+1) +X(−1). Since both
vectors Y(−1) and X(−1) are uncorrelated with the nonlinear vector, they correspond to the response of the underlying linear
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Figure 2: Decomposition of the force and response spectra in the presence of a single nonlinearity .

system and the force applied to this system, respectively; as a result, the path between them is the linear dynamic stiffness
matrix B

X(−1)(ω) = B(ω)Y(−1)(ω) (5)

The whole procedure is presented in diagram form in Figure 2.

The generalization to multiple nonlinearities is straightforward. In this case, the spectra of the response and the force need to be
uncorrelated with all n nonlinear function vectors�� � Y(−1:n) = Y − � n

j=1 Y(+j) = Y − � n

j=1 LjY Zj(−1:j−1)

X(−1:n) = X− � n

j=1 LjXZj(−1:j−1)

(6)

Y(−1:n) and X(−1:n) are both uncorrelated with the nonlinear function vectors; the path between them is the linear dynamic
stiffness matrix B

X(−1:n)(ω) = B(ω)Y(−1:n)(ω) (7)

By transposing equation (7), premultiplying by the complex conjugate of Y (i.e., Y∗) taking the expectation E[•] and multiplying
by 2/T , the underlying linear system can be identified without corruption from the nonlinear terms

Syx(−1:n) =
2

T
E[Y∗

X
T
(−1:n)] =

2

T
E[Y∗(BY(−1:n))

T ]

=
2

T
E[Y∗

Y
T
(−1:n)B

T ] = Syy(−1:n)B
T (8)

where Syx(−1:n) and Syy(−1:n) are conditioned PSD matrices. Calculation of these matrices is laborious and involves a recursive
algorithm. For the sake of conciseness, only the final formulae are given herein. In [49], it is shown that

Sij(−1:r) = Sij(−1:r−1) − Sir(−1:r−1)L
T
rj (9)

where
L

T
rj = S

−1
rr(−1:r−1)Srj(−1:r−1) (10)

It follows from equation (8) that the dynamic compliance matrix H which contains the FRFs of the underlying linear system takes
the form

Hc2 : HT = S
−1
yx(−1:n)Syy(−1:n) (11)



This expression is known as the conditioned Hc2 estimate. If relation (7) is multiplied by the complex conjugate of X instead of
Y, the conditioned Hc1 estimate is obtained

Hc1 : HT = S
−1
xx(−1:n)Sxy(−1:n) (12)

When FRFs of linear systems are estimated, H1 always produces better estimates when there is measurement noise on the
outputs, and H2 produces better estimates when the noise is on the input measurements. Intuition may lead us to expect the
Hc2 estimate to perform better than the Hc1 estimate in the presence of uncorrelated noise only in the excitation. Likewise, the
Hc1 estimate is expected to perform better than the Hc2 estimate in the presence of uncorrelated noise only in the response.
However, experience shows that the Hc2 estimate gives more accurate estimation of the FRFs of the underlying linear system in
both situations. This may be a result of the conditioning required to calculate these estimates.

Estimation of the nonlinear coefficients

Once the linear dynamic compliance H has been computed by solving equation (11) or (12) at each frequency, the nonlinear
coefficients Aj can be estimated. By applying to equation (4) the same procedure as the one used for obtaining equation (8)
from equation (7), the following relationship is obtained

Six(−1:i−1) = Siy(−1:i−1)B
T +

n�
j=1

Sij(−1:i−1)A
T
j (13)

It should be noted that Sij(−1:i−1) = E � Z∗

i(−1:i−1)Z
T
j � = 0 for j < i since Z∗

i(−1:i−1) is uncorrelated with the spectrum of the
nonlinear function vectors Z1 through Zi−1. If equation (13) is premultiplied by S−1

ii(−1:i−1), the first term in the summation is AT
i .

Equation (13) is then transformed into

A
T
i = S

−1
ii(−1:i−1) � Six(−1:i−1) − Siy(−1:i−1)B

T −

n�
j=i+1

Sij(−1:i−1)A
T
j � (14)

Because the expression of the linear dynamic compliance has been computed, equation (14) is rewritten in a more suitable form

A
T
i H

T = S
−1
ii(−1:i−1)(Six(−1:i−1)H

T − Siy(−1:i−1) −
n�

j=i+1

Sij(−1:i−1)A
T
j H

T ) (15)

The identification process starts with the computation of An working backwards to A1. As for the reverse path method, the
nonlinear coefficients are imaginary and frequency dependent. The imaginary parts, without any physical meaning, should be
negligible when compared to the real parts. On the other hand, by performing a spectral mean, the actual value of the coefficients
should be retrieved.

Coherence functions

The ordinary coherence function can be used to detect any departure from linearity or to detect the presence of uncorrelated
noise on one or both of the excitation and response signals.

For a multiple input model with correlated inputs, the sum of ordinary coherences between the inputs and the output may be
greater than unity. To address this problem, the ordinary coherence function has been superseded by the cumulative coherence
function γ2

Mi

γ2
Mi(ω) = γ2

yix(−1:n)(ω) + γ2
zx(ω) = γ2

yix(−1:n)(ω) +
n�

j=1

γ2
jx(−1:j−1)(ω) (16)

γ2
yix(−1:n) is the ordinary coherence function between the ith element of Y(−1:n) and excitation X

γ2
yix(−1:n) = 		 Syix(−1:n) 		 2Syiyi(−1:n)Sxx

(17)

It indicates the contribution from the linear spectral component of the response of the ith signal. γ2
jx(−1:j−1) is the ordinary

coherence function between the conditioned spectrum Zj(−1:j−1) and excitation X

γ2
jx(−1:j−1) = 		 Sjx(−1:j−1) 		 2Sjj(−1:j−1)Sxx

(18)
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Figure 3: Cantilever beam connected to a thin, short beam (ECL benchmark; COST Action F3): (a) experimental fixture;
(b) close-up of the connection.

and
n�

j=1

γ2
jx(−1:j−1) indicates the contribution from the nonlinearities.

The cumulative coherence function is always between 0 and 1 and may be considered as a measure of the model accuracy; it is
a valuable tool for the selection of an appropriate functional form for the nonlinearity.

2.1.2 APPLICATION EXAMPLE

The CRP method was applied to the experimental structure depicted in Figure 3 in [45]. A cantilever beam is connected at its
right end to a thin, short beam that exhibits a geometric nonlinearity when large deflections occur. The identification was carried
within the range 0-500 Hz in which three structural modes exist. For more details about this experiment, the reader is invited to
consult [45]. This structure was also investigated within the framework of the European COST Action F3 [50].

Figures 4, 5 and 6 summarize the results obtained. Figure 4 represents three different FRFs in the vicinity of the first two
resonances: (a) the FRF measured using the classical H2 estimate at low level of excitation (i.e., 1.4 Nrms) for which the
geometric nonlinearity is not activated; it should therefore correspond to the FRF of the underlying linear system; (b) the FRF
measured using the classical H2 estimate at high level of excitation (i.e., 22 Nrms); (c) the FRF measured using the Hc2 estimate
at high level of excitation (i.e., 22 Nrms). It can clearly be observed that the FRF measured using H2 estimate at 22 Nrms is
contaminated by the presence of the geometric nonlinearity whereas the FRF measured using Hc2 estimate at 22 Nrms is a
very accurate estimation of the FRF of the underlying linear system. The accuracy of the identification is confirmed in Figure 5;
overall, the cumulative coherence is close to 1. Figure 6 represents the real part of the nonlinear coefficient A, and its spectral
mean performed within the range 10-250 Hz is equal to 1.96 109 + i 1.55 107 N/m2.8. As expected, the imaginary part of the
coefficient is two orders of magnitude below the real part and can be safely neglected.

A final remark concerns the functional form of the nonlinearity. Although a cubic nonlinearity was expected due to the presence
of a geometric nonlinearity, the model f(yc) = A |yc|

α sign(yc) where yc is the response at the bolted connection between the
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two beams was considered during the identification for greater flexibility. The exponent α was determined by maximizing the
spectral mean of the cumulative coherence function and was found to be 2.8.

2.1.3 ASSESSMENT

Although it is difficult to draw general conclusions from a single example, it turns out that the CRP method is a very appealing and
accurate method for parameter estimation of nonlinear structural models. In addition, the cumulative coherence is a valuable tool
for the characterization of the nonlinearity. The formulation of the method is such that it targets identification of MDOF systems,
which enabled the identification of a numerical model with 240 DOFs and two localized nonlinearities in [39].

An extension of the method to the identification of physical models instead of FRF-based models is discussed in [39]. In this
study, a finite element model of the underlying linear structure is built from the knowledge of the geometrical and mechanical
properties of the structure and is updated using linear model updating techniques based upon FRFs [51−53].

A possible drawback of the method is that it requires the measurements of the structural response at the location of the nonlin-
earity, which is not always feasible in practice. Also, it is not yet clear how the method would perform in the presence of several
nonlinearities, which is typical of a structure with a large number of discrete joints. Finally, future research should investigate
how the method could deal with distributed nonlinearities and hysteretic systems modeled using internal state variables (e.g, the
Bouc-Wen model).

2.2 A modal method: the nonlinear resonant decay method

2.2.1 THEORY

Classical force appropriation methods [54, 55] are used in the identification of linear systems to determine the multi-point force
vector that induces single-mode behavior, thus allowing each normal mode to be identified in isolation. For a proportionally
damped linear structure, the final model consists of a set of uncoupled SDOF oscillators in modal space.

An extension of the force appropriation approach to the identification of nonproportionally damped linear systems, termed the
resonant decay (RD) method, is presented in [56]. An appropriated force pattern with a single sine wave is applied as a ‘burst’ to
excite a given mode of interest. Once the excitation ceases, the free decay of the system includes a response from any modes
coupled by damping forces to the mode being excited. A curve fit to a limited subset of modes can then be performed to yield



any significant damping terms which couple the corresponding SDOF oscillators.

A generalization of this methodology for identification of nonlinear systems is described in this section. For the analysis of large
nonlinear structures with high modal density in a broad frequency range, an enormous number of parameters is to be identified
because the nonlinear modal restoring forces fm(u, u̇) are potentially functions of the many modal displacements ui(t) and/or
velocities u̇i(t) (in other words, the nonlinearity may be responsible for many terms coupling the SDOF oscillators); this renders
parameter estimation intractable.

The method developed in [57] offers a practical solution to this critical issue by proposing a multi-stage identification of the linear
modal space-based model in which the initial estimation problem is replaced by a sequence of low-dimensional problems. At
this point, we note that the selective sensitivity approach developed in [58] also proposes to identify the entire system via a
sequence of low-dimensional estimation problems through the use of selective excitation. In [57], the scale of the identification
problem is reduced by classifying the modes1 into different categories: (i) linear proportionally damped modes, well separated
in frequency; (ii) linear proportionally damped modes, very close in frequency; (iii) linear nonproportionally damped modes;
(iv) modes influenced by nonlinear effects with no significant nonlinear coupling to other modes; and (v) modes influenced by
nonlinear effects with significant nonlinear coupling to other modes. The set of uncoupled SDOF oscillators in modal space
is therefore enhanced by the inclusion of modal damping cross-coupling terms for nonproportionally damped modes, ‘direct’
nonlinear terms fm(uj , u̇j) if the jth mode behaves nonlinearly and nonlinear cross-coupling terms fm(ui, u̇i, uj , u̇j) if the ith
and jth modes are nonlinearly coupled.

Modes of type (i) may be identified using classical curve-fitting methods. Modes of type (ii) may benefit from identification using
force appropriation. Force appropriation and the RD method are suitable for modes of type (iii). Anticipating that only a relatively
small portion of modes will actually behave in a nonlinear fashion for most structures (this assumption implies that the method
targets weakly nonlinear systems), two methodologies which enable the treatment of modes affected by nonlinearity [i.e., modes
of type (iv) and (v)] individually or in small groups were developed:

– The FANS method [59] extends the classical linear force appropriation approach to nonlinear systems through the use of a
force pattern that includes higher harmonic terms. The parameters are optimized such that the nonlinear coupling terms
are counteracted, which prevents any response other than the mode of interest. The direct linear and nonlinear terms for
that mode may be estimated using a classical SDOF RFS identification.

– The nonlinear resonant decay (NLRD) method [57] is an extension of the RD method to nonlinear systems and enables
small groups of modes to be excited. A classical appropriated force pattern with a single sine wave is applied as a
‘burst’ to excite a given mode of interest ‘approximately’. If the mode is uncoupled nonlinearly, then it should dominate
the response in the steady-state phase. If it is nonlinearly coupled, other modes may also exhibit a significant response.
During the decay, the presence of linear damping couplings as well as nonlinear couplings between the modes is apparent.
A ‘low-order’ regression analysis in modal space using the RFS method is then carried out for identification of direct and
cross-coupling terms.

2.2.2 APPLICATION EXAMPLE

The NLRD method is applied in [57] to a 5-DOF spring-mass system clamped at both extremities and designed to be symmetric
in its linear components. The system has a cubic stiffness nonlinearity between the second and fourth DOFs. The system is
linear in modes 1, 3 and 5; modes 2 and 4 are nonlinear and coupled together. In order to illustrate the burst principle, a burst
is applied to excite mode 5 as shown in Figure 72. Because mode 5 behaves linearly and the correct appropriated force vector
is used, no modal force is input to the other modes, and only mode 5 responds. Consider now a burst applied to mode 4 as
shown in Figure 8. There is only a modal force for mode 4 but now mode 2 responds due to the nonlinear coupling. Modes 1, 3
and 5 are not excited because of the force appropriation. A curve fitting can then be carried out for mode 4 using only the modal
responses associated with modes 2 and 4; the scale of the identification has been effectively reduced.

1It is emphasized that a mode refers to the mode of the underlying linear system; the discussion does not refer to the nonlinear normal

modes
2The results in Figures 7 and 8 were obtained by Dr. Jan Wright and co-workers — the authors are very grateful for permission to use them.
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Figure 7: Modal forces and responses to burst excitation of mode 5 using perfect appropriation [(Wright et al., 2001)].
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Figure 8: Modal forces and responses to burst excitation of mode 4 using perfect appropriation [(Wright et al., 2001)].



2.2.3 ASSESSMENT

Although this nonlinear system identification technique has not yet been applied to large continuous structures, the authors
believe that it paves the way for the analysis of practical systems with high modal density. Because modes are treated individually
or in small groups, the method has the inherent ability to ‘split’ the original and complex identification problem into a sequence
of much simpler and smaller problems. One may also account for nonproportional damping, which is another interesting feature
of the method.

Imperfection force appropriation and modal matrix may reduce the accuracy of the identification as discussed in [57]. As a result,
the number, location and pattern of excitation sources should be determined in a judicious manner in order for this process to be
successful; shaker-structure interaction may also be an issue for light-weight structures.

2.3 A finite element method: structural model updating

For the investigation of more complex structures in a wider frequency range, resorting to models with many DOFs is inevitable.
However, the estimation of all the model parameters from experimental measurements may quickly become intractable. A
solution to this problem is to use structural modeling techniques which compute the model parameters based on the knowledge
of the geometrical and mechanical properties of the structure.

Despite the high sophistication of structural modeling, practical applications often reveal considerable discrepancies between
the model predictions and experimental results, due to three sources of errors, namely modeling errors (e.g, imperfect boundary
conditions or assumption of proportional damping), parameter errors (e.g., inaccuracy of Young’s modulus) and testing errors
(e.g, noise during the measurement process). There is thus the need to improve structural models through the comparison with
vibration measurements performed on the real structure; this is referred to as structural model updating.

Very often, the initial model is created using the finite element method (see, e.g., [60]), and structural model updating is termed
finite element model updating. Finite element model updating was first introduced in the 1970s for linear structures [61, 62].
For a detailed description of this field of research and the issues commonly encountered (e.g., model matching step and error
localization), the reader is invited to consult [63−65].

The literature on methods that propose to update nonlinear dynamic models is rather sparse. In [66], parameters of nonlinear
elements are updated by fitting simulated time history functions and the corresponding measurement data. The problem of
estimating the initial values as well as the problem of increasing error between simulated and measured time history functions
is overcome by using the method of modal state observers. Kapania and Park [67] proposed to compute the sensitivity of the
transient response with respect to the design parameters using the time finite element method. The minimum model error
estimation algorithm is exploited in [68] to produce accurate models of nonlinear systems. In this algorithm, a two-point BVP
is solved in order to obtain estimates of the optimal trajectories together with the model error. In [69, 70], model updating is
realized through the minimization of an objective function based on the difference between the measured and predicted time
series. The optimization is achieved using the differential evolution algorithm which belongs to the class of genetic algorithms.
The formulation proposed by Meyer and co-authors [71, 72] involves a linearization of the nonlinear equilibrium equations of the
structure using the harmonic balance method. Updating of the finite element model is carried out by minimizing the deviations
between measured and predicted displacement responses in the frequency domain. In [73], model updating is performed in
the presence of incomplete noisy response measurements. A stochastic model is used for the uncertain input, and a Bayesian
probabilistic approach is used to quantify the uncertainties in the model parameters. In [39], a two-step methodology which
decouples the estimation of the linear and nonlinear parameters of the finite element model is proposed. This methodology
takes advantage of the CRP method and is applied to a numerical application consisting of an aeroplane-like structure.

Due to the inapplicability of modal analysis, test-analysis correlation which is inherent to structural model updating is a difficult
task in the presence of nonlinearity. Several efforts have been made in order to define features (i.e., variables or quantities
identified from the structural response that give useful insight into the dynamics of interest) that facilitate correlation. In the case
of pyroshock response, NASA has proposed criteria such as peak amplitude, temporal moments and shock response spectra as
appropriate features of the response signal [74]. In [75, 76], the peak response and time of arrival are defined as features in order
to study the transient dynamics of a viscoelastic material. In [77], the envelope of transient acceleration responses is considered
as the best information to identify joint parameters associated with adjusted Iwan beam elements. The proper orthogonal (POD)
method, also known as Karhunen-Loève transform or principal component analysis, has been investigated in several studies
[78−81]. Specifically, the modes extracted from the decomposition, the proper orthogonal modes (POMs), have been shown



to be interesting features for the purpose of test-analysis correlation. In [82, 83], the POMs together with the wavelet transform
of their amplitude modulations are considered for finite element model updating. Although it is frequently applied to nonlinear
problems, it should be borne in mind that the POD only gives the optimal approximating linear manifold in the configuration
space represented by the data. This is the reason why finite element model updating was performed in [84, 85] using the features
extracted from a nonlinear generalization of the POD, termed nonlinear principal component analysis [86]. In [87], the POD is
coupled with neural network and genetic algorithms for approximation and calibration of nonlinear structural models.

A statistics-based model updating and validation philosophy is proposed in [75, 76]. The motivation for including statistical analysis
is driven by the desire to account for the effects of environmental and experimental variability. The feature comparison is
implemented using metrics such as Mahalanobis distance and Kullback-Leibler relative entropy function. In addition, the finite
element model is replaced by an equivalent meta-model with a much smaller analytical form. This strategy aims at reducing the
number of computer simulations required during optimization while maintaining the pertinent characteristics of the problem. The
demonstration application consists in analyzing the response of a steel/polymer foam assembly during a drop test.

2.3.1 THEORY

The structural model updating process is presented in diagram form in Figure 9. It can be decomposed into four steps: (1)
experimental measurements and structural modeling; (2) feature extraction and correlation study; (3) selection of the updating
parameters and (4) minimization of the objective function. The success of model updating is conditional upon each step being
properly carried out.

It is noted that the emphasis in the present section is put upon model updating using time-domain measurements.

Experimental measurements and structural modeling

Experiment design (e.g, selection of excitation sources, number and location of sensors) is a crucial step but it is not discussed
herein. It is therefore assumed that vibration tests have been performed on the real structure; a matrix Y(t) containing m
samples of the response (e.g., acceleration data) measured at n different locations on the structure is formed

Y(t) = [y(t1) · · · y(tm)] = 
� y1(t1) · · · y1(tm)
· · · · · · · · ·

yn(t1) · · · yn(tm) �
 (19)

From the knowledge of the geometrical and mechanical properties of the structure, a structural model can be created. By
imposing in this model the same excitation conditions x(t) as for the real structure, the structural response can be predicted
using time-integration algorithms; the matrix Ŷ(t) is obtained. At this stage, verification, i.e., ‘solving the equations correctly’ [21],
is necessary, but its description would take us too far afield.

Feature extraction and correlation study

Matrix Ŷ(t) generally differs from Y(t) due to three sources of errors, namely modeling errors (e.g, imperfect boundary conditions
or assumption of proportional damping), parameter errors (e.g., inaccuracy of Young’s modulus) and testing errors (e.g, noise
during the measurement process). However, estimating the predictive capability of a structural model based only on its ability
to match measured time series may be hazardous. The comparison between experimental features fi and predicted features f̂i
should be preferred. In linear dynamics, natural frequencies and mode shapes provide a sound basis for ascertaining whether
the prediction of the model will adequately represent the overall dynamic response of the structure. Another well established
technique is to use data in the frequency domain because the effort of experimental modal analysis is avoided, and averaging to
reduce noise effects is straightforward.

When performing test-analysis correlation for nonlinear structures, the features commonly defined for linear structures do no
longer provide an accurate characterization of the dynamics, as explained in the tutorial section. The definition of features that
enhance the effect of nonlinearity on the structural behavior is therefore necessary. NNMs provide a valuable theoretical tool for
understanding dynamic phenomena such as mode bifurcations and nonlinear mode localization but it is a little early to tell if they
will be of substantial help for structural model updating. For this reason, other features have been considered in the technical
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literature.

Selection of the updating parameters

If correlation is not satisfactory, the structural model is to be updated. The correction of the model begins with the selection of
the updating parameters. Parameter selection is a difficult and critical step, and the success of the model updating process is
conditional upon the ability to identify the adequate parameters. For this purpose, error localization techniques and sensitivity
analysis may be useful [64, 65], but physical understanding of the structural behavior and engineering judgment play the key role
(see for instance [88]).

Minimization of the objective function

New values of the updating parameters are computed through the minimization of an objective function J

minp J = ‖R(p)‖2 (20)

where vector p contains the updating parameters. The residue R(p) may simply be the norm of the difference between the
predicted and experimental features. The objective function is generally nonlinear with respect to the updating parameters, and
it is necessary to use optimization algorithms to perform the minimization.

2.3.2 APPLICATION EXAMPLE

Structural model updating was applied to the experimental system depicted in Figure 3 in [83]. This structure was also investigated
within the framework of the European COST Action F3 [50]. An impulsive force was imparted to the cantilever beam using an
impact hammer, and the structural response was measured using seven accelerometers evenly spaced across the beam.

A structural model was created using the finite element method, and the effect of the geometric nonlinearity was modeled with a
grounded spring at the connection between the cantilever beam and the short beam. The accelerations of the numerical model
were computed using Newmark’s method.

The correlation study was performed by comparing experimental and predicted POMs. Although the POMs do not have the
theoretical foundations of the NNMs, they do provide a good characterization of the dynamics of a nonlinear system. Another
advantage is that their computation is straightforward; it involves a singular value decomposition of the response matrix Y(t)

Y = UΣV
T (21)

where each column of matrix U contains a POM. Matrix Σ gives information about the participation of the POMs in the system
response whereas their amplitude modulations are contained in matrix V. Insight into the frequency of oscillation of the POMs is
available by applying the wavelet transform to matrix V. For a detailed description of the POD, the reader is invited to consult [89],
and an overview of the POD for dynamical characterization of nonlinear structures is available in [81]. Figure 10 shows that the
first two POMs predicted by the initial finite element model are not in close agreement with those of the experimental structure.
Because these two POMs account for more than 90% of the total energy contained in the system response, the model must be
improved.

Several parameters were not known precisely in the initial model, especially the stiffness of the bolted connection between the two
beams and the coefficient and exponent of the nonlinearity; they were thus selected as updating parameters. After optimization,
the coefficient and exponent of the nonlinearity were 1.65 109 N/m2.8 and 2.8, respectively, which is in good concordance with
the estimates given by the CRP method (see Section 2.1.2). There is now a satisfactory match between the experimental POMs
and those predicted by the updated finite element model as shown in Figure 10. Figure 11 displays the wavelet transform of the
amplitude modulation of the first POM; the dominant frequency component is around 50 Hz, but harmonics — a typical feature
of nonlinear systems — can also clearly be observed. There is also a good agreement between the experimental and numerical
results in Figure 11, which confirms that the updated model has a good predictive accuracy.
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2.3.3 ASSESSMENT

Structural model updating has the inherent ability to provide reliable models of more complex nonlinear structures. For instance,
numerical examples with a few hundred DOFs are investigated in [71, 79, 84, 85], whereas a fully integrated experimental system is
considered in [80].

However, several crucial issues remain largely unresolved, and there is much research to be done:

– There are no universal features applicable to all types of nonlinearities; test-analysis correlation is still a difficult process.

– It is generally assumed that the analyst has the ability to formulate an appropriate initial model and to identify precisely
the source and location of the erroneous parameters; these are extremely challenging tasks when dealing with complex
structures.

– Many of the error criteria formulations lead to objective functions with a highly nonlinear solution space; multiple parameter
sets may potentially yield equally good reproduction of the experimental measurements, especially when limited measure-
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Figure 11: Wavelet transform of the amplitude modulation of the first POM. Top plot: experimental structure; bottom
plot: updated finite element model.

ment data is available [We note that info-gap models may offer an elegant solution to this problem [90]]. In addition, the
initial model cannot be assumed to be close to the ‘actual’ model because a priori knowledge about nonlinearity is often
limited; the starting point of the optimization may be far away from the sought minimum. For all these reasons, objective
function minimization may be challenging and time consuming.

3 SUMMARY AND FUTURE RESEARCH NEEDS

This paper reviews some of the recent developments in nonlinear system identification, the objective of which is to produce high
fidelity models that may be used for purposes such as

– Virtual prototyping; this encompasses the selection of optimal system parameters in order to meet specific design goals,
the prediction of the occurrence of undesirable instabilities and bifurcations (e.g., aeroelastic instabilities), the impact of
structural modifications and the study of the effects of structural, environmental or other types of uncertainties on the
robustness of operation;



– Development of diagnostic and prognostic tools that enable simple, accurate, economic, and preferably on-line detection
of structural faults at an early stage of their developments before they become catastrophic for the operation of the system;

– Structural control, e.g, the control of mechatronic systems or of structural vibrations produced by earthquake or wind.

Because of the highly individualistic nature of nonlinear systems and because the basic principles that apply to linear systems
and that form the basis of modal analysis are no longer valid in the presence of nonlinearity, one is forced to admit that there
is no general analysis method that can be applied to all systems in all instances. As a result, numerous methods for nonlinear
system identification have been developed during the last three decades. A large proportion of these methods were targeted to
SDOF systems, but significant progress in the identification of MDOF lumped parameter systems has been realized recently. To
date, continuous structures with localized nonlinearity are within reach.

For simple structures or approximate models of more complex structures, it is reasonable to estimate all the model parameters.
However, for the analysis of structures with a large number of DOFs and with a high modal density in a broad frequency range,
resorting to multi-parameter complex structural models is inevitable. This critical issue begins to be resolved by several recent
approaches among which we can cite:

– Frequency-domain methods such as the CRP and NIFO methods have, in principle, the capability of identifying the dy-
namics of large structures. In addition to the nonlinear coefficients, they compute a FRF-based model of the underlying
linear structure directly from the experimental data, which facilitates the identification process.

– The NLRD method proposes to classify the modes into different categories (i.e., influenced or not by nonlinear effects,
coupled or uncoupled in damping and/or nonlinearity), which enables the treatment of modes individually or in small
groups. This technique does not decrease the number of parameters to be estimated, but it simplifies the parameter
estimation process by targeting a multi-stage identification.

– Structural model updating techniques exploit the knowledge of the geometric and mechanical properties to determine an
initial model of the structure, many parameters of which are usually accurately computed and do not have to be identified
from experimental data.

All these methods have their own drawbacks, but they show promise in the challenging area of nonlinear system identification.

Besides rendering parameter estimation tractable, other important issues must be addressed adequately to progress toward the
development of accurate, robust, reliable and predictive models of large, three-dimensional structures with multiple components
and strong nonlinearities. The following discussion presents some of the key aspects that, we believe, will drive the development
of nonlinear system identification in the years to come.

(i) We cannot stress enough the importance of having an accurate characterization of the nonlinear elastic and dissipative
behavior of the physical structure prior to parameter estimation. Without a precise understanding of the nonlinear mechanisms
involved, the identification process is bound to failure. Characterization is a very challenging step because nonlinearity may
be caused by many different mechanisms and may result in plethora of dynamic phenomena. Some ‘real-life’ nonlinear effects
only begin to be adequately modeled (e.g., the dynamics of structures with bolted joints [77, 91, 92]); some are still far from being
understood [e.g, experiments reported in [93] showed that quasiperiodic responses in a frictionally excited beam may involve very
low frequencies at subharmonic orders of 20 to 130]. The lack of knowledge about nonlinearity is sometimes circumvented by
nonlinear black-box models such as those proposed in [94−96], but, in our opinion, a priori information and physics-based models
should not be superseded by any ‘blind’ methodology. Careful and systematic studies of nonlinear dynamical effects such as
those carried out in [4, 97, 98] are strongly encouraged and are a necessary step toward the development of accurate nonlinear
structural models. Improving our knowledge and our modeling capabilities of the range of possible nonlinear behaviors [this
also reduces the level of uncertainty and increases our confidence in the model; see (iii)] is therefore a crucial need, especially
because structural dynamics is becoming increasingly nonlinear, addressing multi-physics phenomena [80, 99].

(ii) Most of the analytical techniques currently available are limited to the steady-state response of weakly nonlinear oscillators.
On the other hand, because strong nonlinearity is more and more encountered in practical applications, new dynamical phe-
nomena are observed that have to be accounted for. For example, it is only recently that resonance capture phenomena which
are mainly of a transient nature have been reported in the structural dynamics literature [100−102]. As a result, there is the need



for new analytical developments enabling the study of the transient dynamics of strongly nonlinear oscillators. Such develop-
ments will provide better insight into the dynamics of interest, thereby facilitating the characterization of the nonlinear behavior
discussed in (i).

(iii) The concept of NNM offers a solid theoretical and mathematical framework for analyzing and interpreting a wide class (but
not the entirety!) of nonlinear dynamical phenomena, and yet it has a clear and simple conceptual relation to the classical linear
normal mode, with which practicing vibration engineers are familiar. Viewed in this context, the concept of NNM can provide
the appropriate framework for closer collaboration and mutual understanding between Academia and Industry. To formulate
practical NNM-based nonlinear system identification techniques, advances in a number of critical research areas need to be
accomplished including

– The development of efficient computational algorithms for studying the NNMs of practical (multi-DOF, flexible or large-
scale) mechanical systems and their bifurcations;

– The study of possible exact or approximate (for example, asymptotic) NNM-based superposition principles for expressing
nonlinear responses as nonlinear superpositions of component responses;

– The study of possible exact or approximate (energy dependent) orthogonality relations satisfied by NNMs that would permit
their use as bases for order reduction of the nonlinear dynamics; we mention at this point the computational studies of S.
Shaw, C. Pierre and co-workers [103−107] that show that (ad hoc) NNM-based Galerkin expansions lead to more accurate
numerical computations of the responses of flexible systems, compared to linear eigenfunction-based expansions;

– The examination of the relation of NNMs to computational bases extracted by techniques such as wavelet analysis and lin-
ear or nonlinear POD [some preliminary results on relation between NNMs and POMs, and between NNMs and nonlinear
POMs are reported in [108−111]];

– The examination of the relation between NNMs and Volterra series expansions / HOFRFs; also, of the relation of NNMs to
already studied nonlinear superposition techniques for special classes of dynamical systems.

(iv) All systems referenced in this paper are assumed to be deterministic. Because there will always be some degree of un-
certainty in the numerical models due to unknown physics, environmental variability, economics of modeling for parameter
estimation, uncertain inputs, manufacturing tolerances, assembly procedures, idealization errors, etc., the issues of uncertainty
quantification and propagation, and of numerical predictability are central questions when it comes to assessing whether a sim-
ulation is capable of reproducing with acceptable accuracy the experiment it is supposed to replace. To this end, fundamental
questions such as the following need to be addressed [112]:

1. Are the experiments and simulations consistent statistically speaking ?

2. What is the degree of confidence associated with the first answer ?

3. If additional data sets are available, by how much does the confidence increase ?

Such questions are progressively being addressed in the structural dynamics community by considering nonlinear system iden-
tification as an integral part of the V&V process.

(v) Research should focus more on testing of practical structures in their own operating environment, rather than on laboratory
tests of representative structures. Algorithms for optimally deploying sensors and exciters along the structure are not yet fully
developed. The ability to use vibrations induced by ambient environmental or operating loads is an area that merits further
investigation; this will demand to reduce the dependence upon measurable excitation forces, as attempted in [73, 113]. On-line
identification is also important for applications such as structural health monitoring [114, 115].

To conclude this paper, it is fair to say that, even if one cannot foresee the arrival of a paradigm shift, it can be safely predicted
that during the next ten years a ‘universal’ technique capable of addressing nonlinear dynamical phenomena of every possible
type in every possible structural configuration will not be developed. It is therefore likely that nonlinear system identification
will have to retain its current ‘toolbox’ philosophy, with (hopefully) more powerful methodologies, techniques and algorithms of
increased sophistication being added. In the future, the stage will be (hopefully) reached, where attempts to unify and combine
the most powerful and reliable methods will be initiated.
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