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ABSTRACT

The Hilbert transform is one of the most successful approaches to tracking the varying nature of vibration of a
large class of nonlinear systems, thanks to the extraction of backbone curves from experimental data. Because
signals with multiple frequency components do not admit a well-behaved Hilbert transform, this transform is inher-
ently limited to the analysis of single-degree-of-freedom systems; this shortcoming is potentially overcome by the
Hilbert-Huang transform (HHT). In this study, the joint application of the complexification-averaging method and the
HHT enables us to develop a new technique, the slow-flow model identification method. Through an experimental
application, we demonstrate that the proposed method is adequate for characterizing and identifying multi-degree-
of-freedom nonlinear systems.

1 INTRODUCTION

Nonlinear dynamics has been studied for a relatively long time, but the first contributions to the identification of nonlinear structural
models date back only to the 1970s. Since then, numerous methods have been developed because of the highly individualistic
nature of nonlinear systems. A large number of these methods were targeted at single-degree-of-freedom (SDOF) systems, but
significant progress in the identification of multi-degree-of-freedom (MDOF) lumped-parameter systems was realized during the
last ten years. However, it is fair to say that there is no general analysis method that can be applied to all nonlinear systems in all
instances. For a review of the literature on the subject, the reader is invited to consult the monograph [1] or the recent overview
[2].

One of the most successful approaches to nonlinear system identification is the restoring force surface method, introduced in the
late 1970s by Masri and Caughey [3]. The technique is appealing in its simplicity, the starting point being Newton’s second law.
Another attractive technique, which uses the Hilbert transform and the slow-flow dynamics for nonlinear system identification,
dates back to the early 1990s. SDOF systems were first studied in the ‘FREEVIB’ method [4], and the generalization to 2DOF
systems soon followed [5]. That procedure tracks the varying nature of vibration of a large class of nonlinear systems thanks
to the extraction of backbone curves from experimental data. Because multicomponent signals do not admit a well-behaved
Hilbert transform, the ‘FREEVIB’ method is best exploited for SDOF systems or for single-mode resonance of MDOF systems.
Alternative approaches for slow-flow-based identification were developed, using, for instance, the wavelet [6] and Gabor [7]

transforms.



Recognizing the limitation of the Hilbert transform for signals with multiple frequency components, Huang et al. introduced the
Hilbert-Huang transform (HHT) in 1998 in [8]. It decomposes signals in terms of elemental components, termed intrinsic mode
functions (IMFs), through what has been called the empirical mode decomposition (EMD). Its capability to analyze nonlinear
and nonstationary data, utilized in several applications such as plasma diagnostics [9] and financial time series [10], makes it
potentially superior to the Fourier and wavelet transforms. This is discussed in detail in the monograph [11]. Several applications
of the HHT to structural dynamics recently appeared, including damage detection [12], gearbox and roller bearings fault diagnosis
[13], aeroelastic flight data analysis [14], and nonlinear vibration characterization [15]. Yang et al. also related the IMFs to the modal
properties, providing a clear interpretation of the relationship of HHT to linear dynamics [16, 17]. However, a complete analytical
foundation is still lacking in the presence of nonlinear effects.

As shown for the first time in [18], the lack of this fundamental understanding of the HHT in nonlinear structural dynamics can be
addressed by linking its outcome to the slow-flow dynamics of the system. The slow-flow model is established by performing a
partition between slow and fast dynamics using the complexification-averaging (CxA) technique, resulting in a reduced dynamical
system described by slowly-varying amplitudes and phases. Moreover, these slowly-varying variables can be extracted directly
from experimental measurements using the Hilbert transform coupled with the EMD. The comparison between experimental
and analytical results forms the basis of a novel parameter estimation method, termed the slow-flow model identification (SFMI)
method. The SFMI method can be viewed as an effective generalization of the FREEVIB approach to MDOF systems.

This paper is organized as follows. In the next section, the CxA method is briefly presented. In Section 3, the HHT and the
concept of an IMF are introduced; their use for nonlinear signal characterization is also detailed. The intimate relation between
the CxA method and the HHT, which forms the basis of the SFMI method, is discussed in Section 4. The SFMI method is then
demonstrated using an experimental application example in Section 5. Finally, the method’s strengths as well as its limitations
are outlined in the conclusions of Section 6.

2 MODELING THE SLOW FLOW OF NONLINEAR SYSTEMS: THE CXA METHOD

The slow-flow model of a nonlinear system is established by partitioning its response in terms of slow and fast components,
assuming that such decomposition is possible. This is the case when the time series of the dynamics are composed of a number
of well separated dominant frequency components, which can be regarded as the fast frequencies of the response; the slow
dynamics then provide the slowly-varying modulations of the fast-frequency components. The resulting equations govern the
slow-flow variables, namely amplitudes and phases, and describe a dynamical system which is a good approximation to the
original system under certain assumptions [19].

There are important motivations for studying the slow flow. One of them is that the slowly-varying amplitudes and phases
represent meaningful features of the response and offer a sharper and clearer characterization of the system dynamics than
the original time series. One possible method for deriving the slow dynamics of structural systems is the classical method of
averaging [19]. In this study, a variant of this technique, the CxA method [20], is considered. There are basically four steps in
the method: (i) complexification of the equations of motion; (ii) partition of the dynamics into slow and fast components; (iii)
averaging of the fast-varying terms; and (iv) extraction of the slow-flow variables from the averaged system.

Because the primary focus of this paper is on MDOF nonlinear system identification, a 2DOF system is now investigated with
equations of motion given by

m1ẍ+ c1ẋ+ c12(ẋ− ẏ) + k1x+ k12(x− y) = 0,

m2ÿ + c12(ẏ − ẋ) + c2ẏ + k2y + k12(y − x) + knly
3 = 0. (1)

The system response should comprise two dominant fast components with frequencies ω1 and ω2. Four complex variables are
therefore introduced in this case,

ψ1 = ẋ1 + jω1x1, ψ2 = ẋ2 + jω2x2, ψ3 = ẏ1 + jω1y1, ψ4 = ẏ2 + jω2y2, (2)

such that x(t) = x1(t) + x2(t) and y(t) = y1(t) + y2(t). By substituting this ansatz into (1), applying multiphase averaging [21]

over the fast-frequency components and expressing the complex amplitudes in polar form, the slow-flow model is derived (see
[22] for the detailed computations).

Figure 1 shows the comparison between the system response predicted by the CxA method and the response computed using
numerical simulation of the original equations of motion (1) with k1 = k2 = k12 = m1 = m2 = 1, knl = 2, c1 = c2 = 0.05,
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Figure 1: Approx. of the response of a 2DOF nonlinear system using the CxA method. (a) x(t); (b) y(t).

c12 = 0 and zero initial conditions except for x(0) = 1. Because the nonlinear coefficient and the initial displacement are O(1)
quantities, this is a strongly nonlinear system. Satisfactory agreement between prediction and numerical simulation is observed
throughout the responses of the two oscillators. The good predictive capability of the CxA method for strongly nonlinear systems
was previously discussed in [23], despite the absence of proof of asymptotic validity [19].

3 CHARACTERIZATION OF A MULTICOMPONENT SIGNAL: THE HHT

The Hilbert transform characterizes a time-domain signal x(t) through the extraction of its envelope A(t) and instantaneous
phase Φ(t), x(t) = A(t) cos Φ(t). However, one intrinsic limitation of the method is that it is only truly suitable for monocomponent
signals, i.e., those possessing a single dominant harmonic component.

This limitation has been recently addressed through a process known as empirical mode decomposition (EMD) [8]. The basic
idea of the EMD is to decompose the original signal in a sum of elemental components, termed intrinsic mode functions (IMFs).
To be amenable to the Hilbert transform, each IMF must satisfy two properties: (i) the number of extrema and zero-crossings can
differ by no more than one; and (ii) at any point, the mean value of the envelope defined by the local maxima and the envelope
defined by the local minima should be zero. It follows that an IMF is a monochromatic signal, the amplitude and frequency of
which can be modulated, unlike harmonic functions. Moreover, the signal can be reconstructed as a linear superposition of its
IMFs. Taken collectively, the Hilbert spectra of the IMFs give a complete characterization of a multicomponent signal in terms of
amplitude and phase variables, or equivalently in terms of amplitudes and instantaneous frequencies. The approach coupling
the EMD with the Hilbert transform has been termed the Hilbert-Huang Transform (HHT).

Given a signal x(t), the EMD algorithm seeks for its characteristic time scales, which are defined by the time lapse between
successive extrema [8]. A systematic means of extracting the different time scales, designated the sifting process, is as follows:
(i) identify all local extrema; (ii) interpolate the maxima and the minima by spline approximations to produce the upper and lower
envelopes, respectively; (iii) compute m(t), the mean of the upper and lower envelopes; (iv) compute h(t) = x(t) −m(t); (v) if
h(t) is not an IMF, restart the procedure by treating h(t) as the signal.

Once the first IMF h1(t) has been computed, the second IMF can be extracted from the residue r1(t) = x(t) − h1(t). By
construction, the number of extrema in the residue decreases with the number of IMFs, and the iterative process stops when the
residue after n iterations rn(t) becomes a monotonic function. By summing up all the IMFs and the last residue, the complete
signal decomposition is obtained:

x(t) =

n�

k=1

hk(t) + rn(t). (3)

Because the EMD explores sequentially the different time scales in the data, going from the finest scale (i.e., the highest-
frequency component) to the coarsest scale (i.e., the lowest-frequency component), it is characterized by an inherent multireso-
lution.

For illustration, the multicomponent signal y(t) in Figure 1(b) is considered. The application of the HHT begins with the decom-
position of the signal in terms of its IMFs using EMD. The 3 leading IMFs are displayed in Figure 2. The first 2 IMFs are related to
the fundamental frequency components and account for more than 99.5% of the total variance in the signal, which confirms that
y(t) can be approximated using a two-component signal. The last IMF can be physically interpreted by considering its harmonic



content; in particular, its characteristic frequency is equal to 2 times that of the second IMF minus that of the first IMF. The Hilbert
transform can now be safely applied to each of the IMFs. The final outcome of the HHT in terms of amplitude and instantaneous
frequency of the first two IMFs is shown in Figure 3.

0 20 40 60 80 100
−0.5

0

0.5

Time (s)

IM
F1

(a)

0 20 40 60 80 100
−0.5

0

0.5

Time (s)

IM
F2

(b)

0 20 40 60 80 100
−0.5

0

0.5

Time (s)

IM
F3

(c)

Figure 2: Application of the EMD to signal y(t) in Figure 1(b). (a) First IMF; (b) second IMF; (c) third IMF.
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Figure 3: Final outcome of the HHT applied to a two-component signal. (a) Envelope of the first IMF; (b) envelope of
the second IMF; (c) instantaneous frequency of the first IMF; (d) instantaneous frequency of the second IMF

In summary, the HHT represents an important addition to the structural dynamicist’s signal processing toolbox. What makes
the HHT so attractive is that it eliminates the need for an a priori defined functional basis, as is generally required for traditional
signal analysis techniques (e.g., the Fourier transform expresses a signal in terms of global harmonic basis functions, and the
wavelet transform in terms of local basis functions). Being purely data-driven, the HHT precisely determines the most appropriate
empirical but adaptive basis. This ability to adapt is crucial, given the individualistic nature of nonlinear systems.

4 THE INTIMATE RELATION BETWEEN THE CXA METHOD AND THE HHT

The proposed nonlinear system identification technique, termed the slow-flow model identification (SFMI) method, integrates
elements of the previously discussed CxA process and the HHT-based slow-flow reduction of the dynamics. Before we proceed
to describe the detailed tasks that need to be undertaken in order to develop and test the SFMI method, it is necessary to
establish a relationship between the theoretical CxA approach and the computational HHT method. The missing link between
these two seemingly distinct approaches was first revealed in [18].

Both approaches share a common basis by expanding a multifrequency signal in terms of a series of simple, monocomponent
oscillatory modes, which are related to the dominant fast-frequency components of the signal. On the one hand, the CxA method
transforms the equations of motion of a nonlinear system into a set of approximate equations that govern the slow flow. Two
equations, one for the amplitude and one for the phase, are derived for each modeled fast-frequency component, governing the
slow modulation of that fast harmonic. On the other hand, the HHT characterizes a signal through the amplitude and phase of
the elemental oscillatory components, the IMFs.

Hence, the link between the methods is clear: the slow-flow model derived using the CxA method corresponds to the equations

governing the amplitude and phase of the dominant IMFs computed from the signal by applying the HHT; the CxA method therefore

provides a rigorous theoretical framework for the HHT. A numerical verification of this conjecture is given in [22].

Based on this theoretical link, the SFMI method is formulated with the following steps:



1. Perform experimental measurements of the transient response of the tested system to obtain a set of local time series at
different sensing positions throughout the system.

2. Analyze each individual time series using the wavelet transform to identify the dominant frequency components and their
temporal evolution.

3. Apply the HHT to the measured time series.
4. By comparing the wavelet spectrum to the individual plots of the instantaneous frequencies of the extracted IMFs, deter-

mine the dominant IMFs of the structural response and categorize them in terms of their characteristic time scales.
5. Based on the slow-flow model of the CxA method, perform a curve-fitting of the measured instantaneous frequencies and

amplitudes of the IMFs using a classical linear least-squares procedure; doing so, the physical parameters are identified.
6. Assess the accuracy of the identification process by comparing the measured and reconstructed time series.

One key feature of the SFMI method is that it performs a multiscaled identification, because it employs the characteristic time
scales of the dominant dynamics at different phases (time windows) of the system response at different sensing locations.

5 THE SLOW-FLOW MODEL IDENTIFICATION METHOD: EXPERIMENTAL DEMONSTRATION

5.1 Description of the experimental fixture

The effectiveness of the SFMI method for characterization and parameter estimation of MDOF nonlinear systems was demon-
strated in [22] using numerical experiments. To further support the previous theoretical findings, experimental measurements
were carried out using the fixture depicted in Figure 4. This fixture realized the system described by equations

m1ẍ+ c1ẋ+ c12(ẋ− ẏ) + k1x+ k12(x− y) = 0

m2ÿ + c12(ẏ − ẋ) + c2ẏ + k12(y − x) + knly
3 = 0 (4)

and comprised two cars made of aluminum angle stock which were supported on a straight air track. The first car (i.e, the left car
in the upper picture in Figure 4) of mass m1 was grounded by means of a linear spring k1, and the second car of mass m2 was
connected to the first car by means of a linear coupling stiffness k12. The leaf springs k1 and k12 were built to be identical. An
essential cubic nonlinearity knl was realized by a thin wire with no pretension, as detailed in [25]. A long-stroke electrodynamic
shaker was used to excite the first car. The response of both oscillators was measured using accelerometers. Estimates of the
corresponding displacements were obtained by integrating twice the measured accelerations. The resulting signals were then
high-pass filtered to remove the spurious components introduced by the integration procedure.

Before treating the system of coupled cars using the SFMI method, a separate identification of the different components was
carried out. The values of the parameters identified are collected in Table 1. Further details are available in [22]. A modal analysis
of the coupled linear system was also performed. The natural frequencies predicted by the previously identified parameters
overestimated the measured ones by 3%. To get a better match between measured and predicted frequencies, the estimate
of the coupling stiffness k12 was decreased to 395 N/m. Rigorously, however, one should introduce a detailed modeling of the
connection between the two cars which comprises ball joints (see Figure 4).

Figure 4: Schematic of the experimental fixture.



Parameter Value
Stiffness k1 427.2 N/m

Coupling stiffness, k12 421.1 N/m
Cubic stiffness knl 5.77 106 N/m3

Damping c1 0.13 Ns/m
Damping c2 0.05 Ns/m

TABLE 1: Parameters of the experimental fixture (separate identification of the different components).

Parameter Value
Stiffness k1 447.3 N/m

Coupling stiffness, k12 402.9 N/m
Stiffness k2 4.4 N/m

Cubic stiffness knl 6.15 106 N/m3

Damping c1 0.39 Ns/m
Damping c2 0.35 Ns/m
Damping c12 0.01 Ns/m

TABLE 2: Parameters of the experimental fixture identified using the SFMI method.

0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8
x 10

−3

Time (s)

D
is

pl
ac

em
en

t (
m

)

0 2 4 6 8
−0.01

−0.005

0

0.005

0.01

0.015

Time (s)

D
is

pl
ac

em
en

t (
m

)

(a) (b)

Figure 5: Measured displacement signals. (a) First car; (b) second car.

5.2 Nonlinear system identification using the SFMI method

The identification of the coupled nonlinear system is now undertaken using the 6-step procedure introduced in Section 4. The
displacement signals computed from the measured accelerations are depicted in Figure 5; the participation of both the in-phase
and anti-phase modes in the system response is evident. The wavelet transform (not depicted herein) shows two dominant
frequency components in the vicinity of the natural frequencies of the underlying linear system. Processing the measured
displacements through the EMD, one obtains the dominant IMFs in Figure 6. The 2 leading IMFs account for 99.8 and 99.9% of
the total variance of the displacement of the first and second cars, respectively. The Hilbert transform is then applied sequentially
to each identified IMF. Figure 7 depicts the instantaneous frequencies of the IMFs of the first car. The frequency of the in-phase
mode decreases from 3.8 Hz at t = 0.5 s to 2.9 Hz at t = 5 s, which is an indication of a strongly nonlinear system. We note
that, due to the end effects of the EMD and the Hilbert transform, the first half second of data is systematically discarded in what
follows.

The next step in the nonlinear system identification process is the estimation of the system parameters 1. We note that the
measured phase differences β1 − β3 and β2 − β4 in Figure 8 are close to π and 0. Table 2 summarizes the results of the linear
least-squares fitting, and the resulting parameters can be compared to those obtained from the separate identification of the
system components:

1Prior to system identification, both cars were weighed. Their masses were found to be m1 = 0.632 kg and m2 = 0.558 kg.
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Figure 6: EMD applied to the measured displacements. (a,b) First car; (c,d) second car
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Figure 7: Measured instantaneous frequencies of the first car. (a) First IMF; (b) second IMF.
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Figure 8: Measured phase differences. (a) Anti-phase mode: β1 − β3; (b) in-phase mode: β2 − β4.
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• The identified stiffnesses k1 and k12 differ from the values in Table 1 by a few percent. As discussed in the previous
section, a decrease in the value of k12 was expected due to the presence of ball joints in the connection between the two
cars.

• The nonlinear coefficient is in close agreement with the value previously identified. Moreover, because k2 takes a very
small value, the SFMI method is able to retrieve that the nonlinearity is essential; that is there is no linear spring in parallel
with the nonlinear spring.

• Estimated damping is somewhat higher compared to that in Table 1.

The predicted and measured displacements are compared in Figure 9, which highlights the predictive capability of the identified
model.

6 CONCLUDING REMARKS

This paper focuses on the relation between the theoretical CxA approach and the computational HHT with the aim of bringing to
light a better understanding of this time-frequency transform and developing a new nonlinear system identification approach of
rather general applicability in nonlinear structural dynamics. A one-to-one relationship between the analytically realized slow-flow
dynamics of the system and the IMFs derived directly from the measured time series is demonstrated. Based on the theoretical
link between the two approaches, the SFMI method is proposed. This method has several interesting features:

• Because it is based on the HHT, the SFMI method fully embraces both the nonlinearity and nonstationarity of operating
dynamical systems. Moreover, a multiscaled identification is performed, because the method identifies the dominant
characteristic time scales of the system response and establishes the dimensionality of the dominant dynamics.

• The Hilbert transform gives sharper frequency and time resolutions compared to other time-frequency decompositions.
Another distinct advantage is that ridge extraction, which is necessary when using the wavelet and Gabor transforms for
nonlinear system identification is avoided.

• The SFMI method is a ‘linear-in-the-parameters’ method and does not rely on nonlinear optimization techniques, which
greatly facilitates parameter estimation.

Mode mixing may potentially be an issue when using the HHT, especially in the case of noisy data and signals with substantially
different modal participations. Use of the HHT intermittency test or appropriate filtering should resolve this difficulty. The fact that
the slow-flow model of the dominant dynamics computed through the CxA approach is an approximation of the true dynamics
may also be seen as a limitation. However, the predictive accuracy of the slow-flow model can be as good as desired by including
the necessary number of harmonic components in the ansatz.
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