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FIG. 1

fying image data and a related computer program product are disclosed. A labelled input
data set comprising a plurality of labelled image data samples is provided together with
a neural network. The neural network comprises an input layer, at least one intermediate
layer, and an output layer having one channel per label class. Each channel comprises
a plurality of neurons of the output layer and is generating a multidimensional feature
vector in response to an image data sample presented to the input layer of the neural net-
work. Furthermore, the input layer of a decoder network for reconstructing image data
samples at its output is connected to the output layer of the neural network. A classifier
predicts class labels as the labels of those channels for which a normed distance of its
corresponding feature vector relative to a pre-determined reference point is smallest. A
loss function for the neural network is suitable for steering, for each channel, the feature
vectors onto which image data samples of the associated class are mapped, into a convex
region around the pre-determined reference point.
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Image classification using neural networks
Field of the invention
The present invention relates to the field of image classification devices and methods.

More particularly it relates to image classification devices and methods using neural networks.

Background of the invention

Convolutional neural networks are amongst state-of-the-art image classifying computer
implemented methods. Receiving an image at its input, a convolutional neural network is trained
to predict a correct output label for a class representing the received image. It is possible to obtain
classification of hundreds or thousands of different objects. Yet successful training state-of-the-
art convolutional neural networks is often presented as a tedious task requiring long training
times, important computational resources, and very large data sets. This is partly due to the
enormous amount of adjustable network parameters, the values of which require careful
optimization; this is particularly true for deep networks with many hidden layers stacked between
its input and output layer. Hence there is room for improved neural network architectures, in
particular architectures with less adjustable network parameters that still yield excellent

classification performances.

Summary of the invention

It is an object of embodiments of the present invention to provide accurate and easy-to-
train neural networks for classifying images.

The above objective is accomplished by a method and computer program code according
to the present invention.

In a first aspect the present invention relates to a computer-implemented method for
training a neural network for classifying image data. Alabelled input data set comprising a plurality
of labelled image data samples is provided, wherein labels correspond to a set of C image data
classes. Typically, there is one label attributed to each image data sample as a whole, in which
case multiple objects in the same image data sample and belonging to different image data classes
are attributed a single label. As this is not always the most pertinent or the only labelling choice,
labelled input data sets may also comprise image data samples having multiple labels attributed
to each image data sample.

A neural network, comprising an input layer, at least one intermediate (hidden) layer, and
an output layer comprising a plurality of output neurons organized into a set of C channels

corresponding to the set of C image data classes, is also provided. Each image data sample, when
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presented to the input layer of the neural network, is functionally mapped onto a point in a
multidimensional intermediate representation space. Such a mapped point may represent the
applied image data sample in an encoded manner, i.e. the outputs generated at the at least one
intermediate layer of the neural network may be comparable to those of an autoencoder network.
For each channel, each of the plurality of labelled image data samples applied at the input layer
of the neural network is generating a multidimensional feature vector. The multidimensional
feature vectors for an image data sample are generated by subsequently applying the mapped
point in the intermediate representation space to the output neurons of the output layer, which
are individually determining output activations. The output activations of the output neurons that
belong to a same channel in the set of C channels form the components of the multidimensional
feature vector corresponding to that same channel. Each of the C multidimensional feature
vectors generated in response to an image data sample applied to the input layer of the neural
network is embedded in a corresponding, independent feature space, which may be determined
by the codomain of the feature vector mapping, an Euclidean space of dimension n corresponding
to the number of feature vector components d, or any other suitably determined feature space
for that channel. Preferably, the generated feature vectors are embedded in respective feature
spaces of same dimension for all the C channels or have the same number of vector components
d throughout all the C channels. However, embodiments of the present invention are not limited
to respective feature spaces of same dimension for all the C channels. For instance, there may be
C-2 channels with feature vector space dimension d, one channel with feature vector space
dimension d+1, and another one channel with feature vector space dimension d-1. Furthermore,
the output layer of the neural network is connected to an input layer of a layered decoder
network, wherein image data samples are reconstructed at an output of the layered decoder
network. A classifier for predicting class labels may also be provided for predicting class labels.
Predicted class labels are selected as the labels of those classes for which a normed distance of
the corresponding feature vector of the associated channel is smallest relative to a pre-
determined reference point for that channel. For each channel, an individual pre-determined
reference point is provided in an associated feature space. In particular embodiments, the pre-
determined reference points are similarly pre-determined for each channel, for instance, may be
pre-determined as the centres of C equivalent d-dimensional unit hypercubes. A loss function for
the neural network and a loss function for the decoder network are provided and combined into
a cost function. The loss function for the decoder network quantifies a deviation between
reconstructed image data samples and corresponding image data samples applied at the input

layer of the neural network. This quantification then allows for a subsequent reduction of the
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deviation between reconstructed image data samples and corresponding image data samples
during training. The loss function for the neural network is constructed in such a way that it defines
a convex region for each channel. The convex region of each channel surrounds the pre-
determined reference point for this channel. Furthermore, the loss function for the neural
network defines penalization factors for each channel that are associated with the endpoints of
the generated feature vectors. The reference point for each channel serves as a point of origin for
the generated feature vectors. For each channel the following is also verified: the endpoints of
feature vectors that correspond to that channel and that are generated in response to image data
samples belonging to the class the channel is associated with receive a greater penalization factor
outside the convex region for that channel as compared to inside the convex region; and the
endpoints of feature vectors that correspond to that channel and that are generated in response
to image data samples not belonging to the class the channel is associated with receive a
penalization factor that is zero or that is greater inside the convex region for that channel as
compared to outside the convex region. Or, expressed differently, the generated feature vectors
for each channel which are true class instances in respect of that channel are penalized more
strongly outside the convex region for that channel than inside the convex region. Likewise, the
generated feature vectors for each channel which are false class instances in respect of that
channel are either not penalized (e.g. zero-penalized) or are penalized more strongly inside the
convex region for that channel than outside the convex region. The loss function for the neural
network has the advantage that it results in a steering, for each channel, of the feature vectors
generated for image data samples of the class corresponding to this channel, into the convex
region around the pre-determined reference point, whereas the feature vectors generated for
image data samples of at least one of the other classes not corresponding to this channel, are
steered away from the convex region. The steering action of the loss function for the neural
network on the generated feature vectors in a given feature space is understood as the tendency
of feature vectors in that feature space, which are generated in respect of identical or sufficiently
close image data samples, to move towards a preferred region of the feature space (e.g. into or
out of the convex region) as a result of the supervised learning process of the neural network, e.g.
by reinforcing in a sequence of updates those neural network weights that would lead to a
movement of the generated feature vectors towards said preferred region. On the contrary,
feature vectors in that feature space, which are generated in respect of dissimilar image data
samples, experience the steering action as the tendency to move towards different regions in each
feature space (e.g. into the convex region and out of the convex region, respectively) as a result

of the supervised learning process of the neural network, e.g. by penalizing in a sequence of
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updates, or ignoring updates to, those neural network weights that would lead to a joint
movement of the generated feature vectors towards a same region in each feature space.
Preferably, there is a plurality of associable penalization factors for each channel, which
penalization factors are varying continuously inside and outside the convex region, respectively.
Even more preferably, the plurality of penalization factors associated with the feature vector
endpoints of true class instances for each channel are identical and constant inside the convex
region for that channel, whereas they embody a monotonically increasing function outside the
convex region for that channel; similarly, the plurality of penalization factors associated with the
feature vector endpoints of false class instances for each channel are identical and constant in a
region of the feature space outside the convex region, but embody a monotonically increasing
function inside the convex region, unless they are zero. In particular embodiments of the
invention, a further convex region is defined around the pre-determined reference point for each
channel and comprising the earlier defined one. Then the generated feature vectors for each
channel which are false class instances in respect of that channel are either not penalized (e.g.
zero-penalized) or are penalized more strongly inside the further convex region for that channel
than outside the further convex region. Such embodiments have the advantageous effect of
decoupling the loss regions for true class instances and false class instances for each channel,
whereby a more flexible margin loss for improved classification scores can be defined in respect
of true class instances and false class instances, respectively. Network parameters of the neural
network and the decoder network are trained simultaneously with a training algorithm using the
cost function and at least a subset of the labelled input data set as inputs.

It is an advantage of embodiments of the invention that a plurality of feature vectors are
generated at the output layer within a plurality of feature spaces. This is contrasting with known
classification schemes based on a joint inter-class scatter maximization/intra-class scatter
minimization, for which a unique feature space is provided for the all the classes at the output
layer, whereby valuable information of the distribution of the feature vectors within possible
individual, class-dependent feature spaces is not made available. Furthermore, the present
invention allows for a relaxation of the requirement of minimizing intra-class scatter (i.e. by
grouping class instances around a common centroid in the common feature space) by providing a
plurality of convex regions in the class-specific feature spaces, rather than points. This additional
flexibility can be exploited when true class instances are steered towards or into the convex region
and false class instances are steered away from the convex region of each channel because this
steering does not necessarily entail an information loss when projecting feature vectors of

different classes into a common space for classification.
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It is an advantage of embodiments of the invention that the plurality of reference points
do not involve any training of parameters such as centroid and spread parameters, but are
provided as pre-determined points in the respective feature spaces. This also simplifies the
generation of new image data samples based on the random selection of points inside the convex
region surrounding the reference point, regardless of the specific distribution of the generated
feature vectors for the training data samples.

In particular embodiments of the present invention, a neural network may be provided as
a convolutional neural network. The provided convolutional neural network preferable comprises
at least two intermediate convolutional layers. Furthermore, the output layer of the neural
network may comprise sigmoid-activated neurons, e.g. the activation function is applied element-
wise to each output neuron in a channel of the output layer.

According to particular embodiments of the present invention, providing a neural network
may further comprise providing a neural network with a batch normalization layer. The batch
normalization layer may be inserted in between the output layer and a last one of the at least one
intermediate layer.

According to some embodiments of the present invention, the loss function of the neural
network may be implemented as a piecewise linear loss. A piecewise linear loss may include a loss-
free margin.

According to some embodiments of the present invention, the loss function for a layered
decoder network is implemented as a mean-square loss between reconstructed and applied
image data samples.

According to some embodiments of the present invention, synthesizing at least one new
labelled image data sample by selecting a point in the convex region for any one of the C channels
and applying the selected point to the input layer of a layered decoder network for reconstructing,
at its output, the synthesized new labelled image data sample, may be included as a further step.
The remaining C-1 channels may be masked by setting their contributions to zero when applied to
the input layer of the decoder network.

A first selected point may correspond to a perturbed state and a second selected point
may correspond to an unperturbed state of the feature vector generated for a channel in response
to an existing image data sample addressing that channel. The first and second selected point may
generate a first and a second reconstructed labelled image data sample. A perturbed state of the
feature vector may be obtained by adding a scaled random vector of sufficiently small magnitude
to the originally generated, unperturbed feature vector, thereby controlling the degree

perturbation. The additional step of synthesizing at least one new labelled image data sample may
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further comprise combining a deviation between first and a second reconstructed labelled image
data sample with the existing image data sample.

Additionally, the steps of any of the previously described methods may be repeated taking
into account the fact that a plurality of synthesized new labelled image data samples are added to
or substituting the labelled input data set. Repetition of the steps of any of the previously
described methods may be performed re-using the previously provided neural network.
Alternatively, a new neural network may be provided, which is different from the previously
provided one.

According to some embodiments of the present invention, a further step may be included
and comprises momentarily modifying the label of each labelled image data sample such that at
least one channel, corresponding to classes not addressed by the label, is attributing a zero-
defined penalization factor to the associated endpoints of the feature vector generated for that
at least one channel. Or, expressed in other words, at least one channel, which is not addressed
by the class of a labelled image data sample presented to the neural network, is masked and not
contributing to the loss function of the neural network, e.g. masking by momentarily modifying
the component of the one-hot vector representation of the addressed class, which is associated
with the at least one channel not being addressed by the class. The at least one channel not
contributing to the loss function of the neural network may be selected as the channel for which
a normed distance of the corresponding feature vector relative to the pre-determined reference
point for that channel is smallest. The so selected channel may vary with each image data sample
presented to the neural network. This has the advantageous effect of providing a dynamic loss
masking for at least one of the non-addressed channels, which can be exploited during training as
this mimics multiple mutually excluding classification outcomes, which would usually be
prohibited by the excessive associated cost.

For some embodiments of the present invention, at least one alternative class label,
different from the predicted class label, may be provided in a further step. The at least one
alternative class label may be assigned to the at least one label with which the selected at least
one channel not contributing to the loss function of the neural network is associated. In yet a
further step, an order relation between the normed distances of the feature vectors of the at least
one alternative class label and the predicted class label may be detected. In particular
embodiments, the order relation between the normed distances of the feature vectors of the at
least one alternative class label and the predicted class label provides an ordered set of feature
vectors. A detected order relation between the feature vectors of the at least one alternative class

label and the predicted class label may also include verifying whether the feature vectors of the
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at least one alternative class label and the predicted class label are located inside the respective
convex regions, which convex regions may be equal. This advantageously provides a semantic
relation between the feature vectors of the at least one alternative class label and the predicted
class label. More generally, inclusion tests for generated feature vectors in the respective feature
spaces, for instance with respect to the convex region or another region of interest, may be used
to deliver Boolean inclusion test results, which, in turn, can serve as inputs into one or more
Boolean functions from which a semantic meaning is emerging.

In further embodiments of the present invention, a result of the detected relation may be
used to decide when one or more image data samples are removed or relabelled. This further step
may result in a clean labelled input data set. The steps of any of the previous methods may then
be repeated with the clean labelled input data set as substitution for the labelled input data set.

In a second aspect the present invention relates to a computer-implemented method for
classifying image data. The method comprises the steps of providing a neural network trained in
accordance with any of the methods of the first aspect and applying unlabelled image data
samples at the input layer of the trained neural network so as to obtain a predicted class label
from the classifier.

In a third aspect the present invention relates to a computer program product comprising
instructions which, when the program is executed by a computer, perform the steps of any of the
methods of the first and/or second aspect.

In a fourth aspect the present invention relates to a computer-readable data carrier
comprising instructions which, when executed on a computer, cause the computer to perform the
steps of any of the methods of the first and/or second aspect.

In yet another aspect the present invention relates to a data processing device comprising
means for carrying out the steps of a methods of the first and/or second aspect.

It is an advantage of embodiments of the present invention that a loss function for the
neural network steers mapped feature vectors of true class image data samples into a convex
region. Selecting point in this convex region, e.g. via interpolation between already mapped
feature vectors of true class image data samples, for the purpose of data generation or data
augmentation guarantees newly generated image data samples after reconstruction, which
clearly correspond to the same true class.

It is an advantage of embodiments of the present invention that a reference point is pre-
determined and does not have to be learnt and updated. This may allow for faster learning of
neural networks and requires less memory capacity as compared to instance-based classification

approaches, such as k-nearest neighbour algorithms, in which new training instances may
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compared to a potentially large and growing number of previously stored training instances to
decide on rejecting or storing the new instance when learning the classifier, or parametric
classifiers for which model parameters are estimated based on observations of the whole training
data. For instance in multi-class LDA or Fisher LDA, the model parameters including class means
and covariance matrix are obtained by observation of all training samples. In a faster incremental
LDA learning method, an update to the class means (i.e. the class centroids) and the covariance
matrices still has to be computed for each newly presented training sample. It also enables the
interpretation and visualisation of prototyping vectors and prototypes. This is of advantage since
a learning process of a neural network may be further inspected through visualization of its learnt
prototypes. Additionally, a pre-determined reference point allows for data generation of new
image data samples which does not necessarily rely on the perturbation of feature vector
mappings of input image data.

It is an advantage of embodiments of the present invention that a plurality of output
channels is provided, each having its own reference point in its own feature space. This allows
more flexibility, for example the possibility to predict multiple classes.

It is an advantage of embodiments of the present invention that a neural network may be
of a convolutional type such that network weights are re-used and shared over all the input space,
e.g. pixels, of an image data sample. This can greatly reduce the number of stored weights and
memory access latencies, which also speeds up the training phase. Moreover, convolutional
heural networks benefit from an intrinsic translation and/or rotation, and/or scale invariance.

It is an advantage of embodiments of the present invention that a loss function of the
neural network may be given as the sum of channel-dependent losses, which enables fast parallel
computation of those channel-dependent losses and of the network parameter updates related
thereto.

It is an advantage of embodiments of the present invention that at least one channel,
corresponding to classes not addressed by the image data sample label, is not contributing to the
loss function of the neural network. This may be used to assign an alternative label to such a loss-
free other channel, as sometimes image classes may overlap and/or allow for more than just a
single label.

It is an advantage of embodiments of the present invention that new image data samples
may be generated, also on-the-fly, which may be used to enlarge a scarce input data set. This is
desirable in applications for which the collection and selection of image data samples is a complex

and expensive process, e.g. in the medical imaging field. The synthetically enlarged input data set
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may be used as input data set to different or the same neural network, generally leading to an
improved test error rate.

It is an advantage of embodiments of the present invention that a detected relation
between an alternative label and a predicted and/or provided image data sample label may be
used to clean up an input data set. The cleaned input data set may comprise less image data
samples with inconsistent labels, e.g. by identifying and/or removing and/or re-labelling
mislabelled image data samples or image data samples with noisy or insufficient labels. This also
allows to judge the perceived consistency or quality of a labelled input data set. A cleaned input
data set may be advantageously used to re-train a neural network or to train a new neural network
for which lower test error rates may be expected.

It is an advantage of embodiments of the present invention that a multi-task learning
approach is implemented which provides additional robustness to the neural network and acts as
a regularizing means.

It is an advantage of embodiments of the present invention that a neural network trained
in accordance with embodiments of the present invention may be used in combined classification-
regression tasks, classification-segmentation tasks, and the like.

It is an advantage of embodiments of the present invention that a neural network trained
in accordance with embodiments of the present invention may be used to identify handwritten
digits, letters, and the like with high accuracies. This is of advantage in machine vision applications
in which a camera image of a scene or object, e.g. of a document or ZIP-code, is classified by an
embodiment of the present invention. An action may be performed based on the outcome of the
classification, e.g. a sorting mechanism is actuated so as to sort the objects.

Particular and preferred aspects of the invention are set out in the accompanying
independent and dependent claims. Features from the dependent claims may be combined with
features of the independent claims and with features of other dependent claims as appropriate
and not merely as explicitly set out in the claims.

For purposes of summarizing the invention and the advantages achieved over the prior
art, certain objects and advantages of the invention have been described herein above. Of course,
it is to be understood that not necessarily all such objects or advantages may be achieved in
accordance with any particular embodiment of the invention. Thus, for example, those skilled in
the art will recognize that the invention may be embodied or carried out in a manner that achieves
or optimizes one advantage or group of advantages as taught herein without necessarily achieving

other objects or advantages as may be taught or suggested herein.
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The above and other aspects of the invention will be apparent from and elucidated with

reference to the embodiment(s) described hereinafter.

Brief description of the drawings

The invention will now be described further, by way of example, with reference to the
accompanying drawings, in which:

FIG. 1 is a flowchart explaining the steps of a method for training a neural network,
connected to a decoder network, for classifying images in accordance with embodiments of the
present invention.

FIG. 2 shows slices through the feature space to explain the contributions to the loss
function for the neural network.

FIG. 3 depicts the functional relationship between a normed distance of a feature vector
relative to a reference point and the contributions to the loss function for the neural network.

FIG. 4 shows a diagram for test error curves of different neural network architectures as a
function of training epochs.

FIG. 5A to 5D show a two dimensional distribution for samples of handwritten letter
images when applied to the input of a neural network trained on a handwritten digit image data
set.

FIG. 6 depicts prototypes of a handwritten image digit class “four” and transformations
thereof.

The drawings are only schematic and are non-limiting. In the drawings, the size of some
of the elements may be exaggerated and not drawn on scale for illustrative purposes. The
dimensions and the relative dimensions do not necessarily correspond to actual reductions to
practice of the invention.

Any reference signs in the claims shall not be construed as limiting the scope.

In the different drawings, the same reference signs refer to the same or analogous

elements.

Detailed description of illustrative embodiments

The present invention will be described with respect to particular embodiments and with
reference to certain drawings but the invention is not limited thereto but only by the claims.

The terms first, second and the like in the description and in the claims, are used for
distinguishing between similar elements and not necessarily for describing a sequence, either

temporally, spatially, in ranking or in any other manner. It is to be understood that the terms so
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used are interchangeable under appropriate circumstances and that the embodiments of the
invention described herein are capable of operation in other sequences than described or
illustrated herein.

Moreover, directional terminology such as top, bottom, front, back, leading, trailing,
under, over and the like in the description and the claims is used for descriptive purposes with
reference to the orientation of the drawings being described, and not necessarily for describing
relative positions. Because components of embodiments of the present invention can be
positioned in a number of different orientations, the directional terminology is used for purposes
of illustration only, and is in no way intended to be limiting, unless otherwise indicated. It is, hence,
to be understood that the terms so used are interchangeable under appropriate circumstances
and that the embodiments of the invention described herein are capable of operation in other
orientations than described or illustrated herein.

Itis to be noticed that the term “comprising”, used in the claims, should not be interpreted
as being restricted to the means listed thereafter; it does not exclude other elements or steps. It
is thus to be interpreted as specifying the presence of the stated features, integers, steps or
components as referred to, but does not preclude the presence or addition of one or more other
features, integers, steps or components, or groups thereof. Thus, the scope of the expression “a
device comprising means A and B” should not be limited to devices consisting only of components
A and B. It means that with respect to the present invention, the only relevant components of the
device are A and B.

Reference throughout this specification to “one embodiment” or “an embodiment”
means that a particular feature, structure or characteristic described in connection with the
embodiment is included in at least one embodiment of the present invention. Thus, appearances
of the phrases “in one embodiment” or “in an embodiment” in various places throughout this
specification are not necessarily all referring to the same embodiment, but may. Furthermore, the
particular features, structures or characteristics may be combined in any suitable manner, as
would be apparent to one of ordinary skill in the art from this disclosure, in one or more
embodiments.

Similarly it should be appreciated that in the description of exemplary embodiments of
the invention, various features of the invention are sometimes grouped together in a single
embodiment, figure, or description thereof for the purpose of streamlining the disclosure and
aiding in the understanding of one or more of the various inventive aspects. This method of
disclosure, however, is not to be interpreted as reflecting an intention that the claimed invention

requires more features than are expressly recited in each claim. Rather, as the following claims
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reflect, inventive aspects lie in less than all features of a single foregoing disclosed embodiment.
Thus, the claims following the detailed description are hereby expressly incorporated into this
detailed description, with each claim standing on its own as a separate embodiment of this
invention.

Furthermore, while some embodiments described herein include some but not other
features included in other embodiments, combinations of features of different embodiments are
meant to be within the scope of the invention, and form different embodiments, as would be
understood by those in the art.

It should be noted that the use of particular terminology when describing certain features
or aspects of the invention should not be taken to imply that the terminology is being re-defined
herein to be restricted to include any specific characteristics of the features or aspects of the
invention with which that terminology is associated.

In the description provided herein, numerous specific details are set forth. However, it is
understood that embodiments of the invention may be practiced without these specific details. In
other instances, well-known methods, structures and techniques have not been shown in detail
in order not to obscure an understanding of this description.

DEFINITIONS

A neural network may be a convolutional neural network (CNN) which includes one or
more convolutional layers, typically a stack of convolutional layers. It may also be an artificial
neural network (ANN) which does not include any convolutional layer but which comprises one or
more intermediate “hidden” layers, e.g. fully connected (FC) layers. Other layer types may also be
comprised in the neural network, non-limiting examples of which are batch normalization layers
(BN), pooling layers, down-sampling layers, etc. Furthermore, it is possible for the neural network
to have branches which form subnetworks of the larger neural network. Subnetworks, individual
intermediate layers, and/or output layers may be trained to perform different tasks, as set out in
a multi-learning approach for instance. A neural network may be a deep neural network
comprising a significant number of intermediate layers, e.g. more than five intermediate layers
(e.g. ten or more intermediate layers), or may be a shallow neural network comprising only a few
intermediate layers, e.g. less than five intermediate layers.

When, in the context of the present invention, an output layer comprising a plurality of
output neurons is organized into a set of C channels, these channels are considered output
channels in a similar way the skilled person in the field would consider input and output channels
of a neural network layer, meaning groups of neurons and their respective outputs (e.g.

nonlinearly or linearly transformed activations). Subsequent filters of the next layer, or classifiers,



10

15

20

25

30

WO 2019/238976 PCT/EP2019/065876

13

then combine (e.g. weighted average, vector norm, etc.) the neuron outputs of a same group. Yet,
where input channels or output channels commonly group neurons which relate to images of the
same source point, an output channel in the present invention groups neurons which relate to the
same range sub-space under a projection transformation (e.g. a projection matrix defining the
transformation has an associated range and kernel subspace). In embodiments of the present
invention such a projection transformation may be provided by a reshaping matrix or reshaping
operator which acts on the neurons contained in the layer input map of a neural network layer.
Therefore, each output channel contains the neurons of the layer input map that are located inside
the range sub-space of a projection operator (e.g. a reshaping matrix), and the projected neurons
of each output channel form a sub-space of neurons under a range-kernel decomposition of the
projection operator acting on the neuron input space (e.g. the layer input map). The different sub-
spaces in respect of the different output channels are generally complementary, e.g. their direct
sum is identical to the neuron input space before projection.

This means that output channels in the present invention are defined via projection
transformations, which differs, for example, from convolutional layer mappings, in which groups
of neurons form a depth channel and relate to the same source image point prior to the
convolution operation and depth channels reflect the different filters that are applied to the same
source image to extract different features, e.g. different edge orientation in edge-sensitive filters.
It also differs from colour input channels, for example, for which the RGB-values associated with
a same pixel of the source image also form an input channel and the R, the G, and the B value can

be associated with different neurons that are organized into an input channel.

Referring to FIG. 1, a flowchart representing a CNN 100 in accordance with an
embodiment of the present invention is shown. The flowchart is describing the successive
transformations of an image data sample as it passes from one layer to the next layer of the CNN
100. A labelled image data sample 101 is applied at the input layer of the CNN 100. The labelled
image data sample 101 is typically a two dimensional image randomly drawn from a large input
data set of images and tagged by a label for indicating the class of images it belongs to. A first
intermediate convolutional layer 102 yields a transformed image data sample by performing a
convolution of the image data sample 101 with a filter. For a two dimensional image data sample
101, the filter used for convolution is typically of the same dimension, i.e. two dimensional, and
may be applied row-wise. The size of the filter, e.g. a 9x9 (pixels) filter, defines the receptive field
of the first convolutional layer 102, e.g. low-level features (e.g. edges) are only detected within a

region of the image data sample which overlaps with the receptive field. During convolution, the
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filter may be moved relative to the image data sample 101 in steps larger than one (pixel/image
unit). This is commonly referred to as the stride at which the convolution is performed and defines
the output size of the filtered image data sample 101. The stride for the first convolutional layer
102 is equal to one, meaning that every translation {(e.g. horizontal or vertical) of the filter by one
image unit (pixel) relative to the image data sample addresses a different neuron of the first
intermediate convolutional layer 102. The filter weights, however, are shared between all of the
so addressed neurons. It is known in the field that sets or groups of independent filters may be
used for convolution with the image data sample 101, which results in a plurality of output
maps/output channels for the first convolutional layer 102 of the CNN 100, e.g. a filter group
comprising 256 independent filters is selected for the first convolutional layer 102 which results
in 256 output channels (256 transformed images originating from a single image data sample 101).
To each filter of the filter group corresponds an output channel comprising neurons addressed by
this filter. Therefore, only neurons belonging to the same output channel share the same filter
weights. The neurons of the first convolutional layer 102 (of all output channels) may be rectified
linear units (ReLU). Other non-limiting examples of neuron activation/transfer functions are
hyperbolic tangent, sigmoid, squashing, etc.

In the above example, the image data sample 101 is given as a single channel two
dimensional image (e.g. a single colour channel/monochrome image) on which the first
convolutional layer 102 of the CNN 100 operates. Embodiments of the present invention are not
restricted to single channels and also apply to image data samples 101 comprising more than one
channel, e.g. three colour channels in an RGB colour image. In consequence, the first convolutional
layer 102 yields a first transformation of the image data sample 101 by combining the convolutions
of each channel of the image data sample 101 with its associated filter, e.g. there are three filters,
three colour channels, and each filter is used for convolution with a separate colour channel. For
convenience, the different filters, e.g. the three filters, may be stacked together along a new
dimension so as to form a single higher dimensional filter (stack). Extending the described example
to include a plurality of input channels and/or a plurality of output channels at any layer of the
neural network therefore constitutes an immediate generalization of above described
embodiment, as it would be recognized by a person skilled in the art.

A second intermediate convolutional layer 103, comprising neurons organized in output
channels (e.g. also 256 output channels), is connected to the neurons of the first intermediate
convolutional layer 102, thus leading to a subsequent transformation of the image data sample
101 presented at the input layer. The second intermediate layer 103 being a convolutional layer,

the filter weights are again shared among all the neurons belonging to the same output channel
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of the second intermediate convolutional layer 103. In contrast to the first intermediate
convolutional layer 102, the group of filters comprises a plurality of higher dimensional filter
(stacks), e.g. 256 filter stacks (one filter stack per output channel). Each filter (stack), in turn, may
be defined by its 2D size and a depth, the depth value depending on the number of input channels
of the preceding layer. For example, the group of 256 filters used to perform the convolution
operation of the second intermediate convolutional layer 103 may each comprise a filter stack of
size 9x9*256. For the present embodiment, the neurons of the second intermediate convolutional
layer 103 may also be RelLU-activated and a convolution stride of the second intermediate layer
103 may be set to two, which achieves a down-sampling action and more compact representation
for the transformed image data samples 101.

In a next step, flattening step 104, the output channels of the second intermediate
convolutional layer 103 are flattened. This amounts to a reorganization of data, given as a higher
dimensional record (e.g. table, array), into a one dimensional form, e.g. a one dimensional tuple
or vector, or, expressed in other words, the flattening step 104 removes the structured
presentation of data as rows and columns of an image with a depth channel corresponding to a
particular filter action. The data itself is not changed during the flattening step 104. Therefore, the
flattening step 104 is not forming a layer of the CNN 100 in the sense that sums of weighted inputs
are transformed.

The flattened outputs of the neurons of the second intermediate convolutional layer 103
are fully connected (FC) to a third intermediate dense (FC) layer 105. That is, each flattened output
neuron of the second intermediate convolutional layer 103 is connected, through weights, to all
of the neurons (e.g. 160 neurons) of the third intermediate dense (FC) layer 105. A sigmoid
activation function is applied to all the neurons of the third intermediate dense (FC) layer 105 in
an activation step 108.

In a reshaping step 106, not affecting the data present at the inputs or outputs of the
neurons of the third intermediate dense (FC) layer 105, the neurons of the third intermediate
dense (FC) layer 105 may be reorganized in a matrix structure, e.g. the flattened data
representation obtained during the flattening step 104 may be converted into a two dimensional
data structure (e.g. matrix). Therefore, also reshaping step 106 is concerned with a representation
of data rather than with a modification of data, which is not equal to a neural network layer in the
sense that sums of weighted inputs are transformed. Moreover, for some embodiments of the
present invention, it is possible to interchange the order of the reshaping step 106 and the
activation step 108. A matrix organization of the data present at the outputs of the neurons of the

third intermediate dense (FC) layer 105 has the advantage that output channels (e.g. ten output
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channels, one output channel per image class present in the input data set) of the CNN 100 are
conveniently identified as row vectors, e.g. ten output channels corresponding to ten image
classes and each output channel is a 16 dimensional row vector. However, a particular matrix
shape is optional and not limiting. Any mapping of the index used to enumerate and identify a
particular neuron of the third intermediate dense (FC) layer 105 to an output channel index
suffices to establish one output channel per image class for the CNN 100. The neurons of the
reshaped third intermediate dense (FC) layer 105, in this example, form the output neurons of the
output layer, which are organized into a plurality of channels in accordance with the invention.
Applying the activation step 108 results in a plurality of output activations corresponding to each
of the plurality of output neurons. Each output activation is thus identified with a different feature
vector component.

A batch normalization (BN) layer 107 may be inserted after weighted summing action of
the third intermediate dense (FC) layer 105 and prior to the (nonlinear) activation step 108
thereof, such that the activation of each neuron of the third intermediate dense (FC) layer 105 is
normalized with respect to a subset of the training data (e.g. normalized over mini-batches of the
training data). The BN layer 107 may learn to steer the activations of each neuron of the third
intermediate dense (FC) layer 105 to a linear region of its sigmoid transfer characteristic, but is
also flexible enough to simply ‘learn’ an identity map. This may provide a useful remedy to the
problem of vanishing gradients, if present in the neural network, may speed up the training of the
neural network, and may also contribute to a regularization of the neural network. Vanishing
gradients are typically a problem in deep neural networks comprising many intermediate layers.
Being subsequent to the reshaping step 106, the BN layer 107 may be configured to not only
normalize the inputs to the output neurons of the third intermediate dense (FC) layer105 across
mini-batches, but also along a further dimension, e.g. perform input normalization also across the
distinct output channels {e.g. across the digit classes).

In an alternative embodiment of the invention, the batch normalization by the BN layer
may be applied immediately before performing the reshaping step 106.

Furthermore, a classifier 109 is provided which uses the feature vectors provided by the
activated outputs 108 of the third intermediate dense (FC) layer 105, which is also the output layer
of the CNN 100, as inputs for class prediction. It is an advantage of embodiments of the present
invention that the feature vectors are learnable, non-trivial, nonlinear mappings of the image data
sample 101 into a feature space as provided by an intermediate or output layer of a multi-layer
neural network. The components of each feature vectors, in the context of the present invention,

are given as the activated outputs of those neurons of the output layer of the neural network an
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index of which is mapped to the output channel associated with this feature vector, e.g. the
activated outputs 108 of those neurons of the third intermediate dense (FC) layer 105 of the CNN
100 which are arranged in the same matrix row (vector) after the reshaping step 106 for the
present embodiment. Hence, there is one output channel provided per image or label class and
for each output channel a corresponding feature vector is defined. The classifier 109 provides at
its output a predicted class label for a given image data sample 101 presented to the neural
network at its input layer. While training the neural network, comparing the predicted class label
with the true class label of the labelled image data sample 101 provides a suitable feedback, e.g.
learning signal, to the tuneable parameters of the neural network.

The classifier 109 determines a predicted class label, ¢, out of C given classes as the class
associated with the feature vector, f, whose normed distance with respect to a corresponding
(pre-determined) reference point is smallest. Therefore, the classifier 109 may first determine the
L2-distance of each feature vector, f;, with respect to a reference point P;, and select in a second
step the feature vector having the smallest distance value, e.g. ¢ = argmin; || fi-P; |2, j =1, ..., C. The
vector norm may be the L2 norm as already indicated. However, embodiments of the present
invention are not limited to this particular norm and other norms may be used as well, e.g. Lp-
norm with p larger or equal to one. A preferred reference point for each channel, P;, is (0.5; 0.5;
..; 0.5), the centre of a d-dimensional unit hypercube, [0, 1]¢, wherein the number of dimensions
d coincides with the dimension of the respective feature vector, fj. It is preferred that all the
feature vectors have same dimensions d, in particular in embodiments for which they are
identified as row vectors of a matrix, and therefore, an equivalent reference point P=Pj for all j
may be defined, e.g. the equivalent centres of d-dimensional unit hypercubes. Alternative
embodiments, however, may have feature vectors of different dimension and define respective
reference points. A reference point may also be pre-determined to be different from the centre
of a hypercube, e.g. may be a corner of thereof, e.g. P is (0; O; ...; 0). Choosing the centre of the
unit hypercube as a reference point has the advantage that it corresponds to the output of a
sigmoid neuron under zero activation, i.e. (0; 0.5) is the centre of point-symmetry of the sigmoid
transfer characteristic of each neuron of the output layer and each output channel of a sigmoid-
activated output layer takes values located within the unit hypercube. Moreover, the default
action of the BN layer 107 is to shift the activations to zero which leads to the preferred point of
reference. However, the BN layer 107 may be trained to deviate from its default action during the
training phase of the neural network and decoder network, e.g. such that activations are shifted

into a saturating region of the sigmoid transfer function.
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A decoder network 120 is provided together with the CNN 100 and uses the outputs of
the output layer neurons of the neural network, e.g. the feature vectors, as inputs. The decoder
network 120 may be a multi-layered neural network and is used to reconstruct, at its output, the
original image data sample 101 applied at the input layer of CNN 100 based on the extracted
feature vectors, e.g. encodings. For some embodiments of the present invention, the feature
vectors of all the output channels may be concatenated into a flat input layer 121. In particular
embodiments of the present invention, the feature vectors of all the output channels may be
masked first and then concatenated into a flat input layer 121. A masked version of the feature
vectors of the output channels may be determined as a function of the provided true class label
of the label-tagged image data sample 101, or later, after successful training of the neural
network, as a function of the predicted class label. This masked version of the feature vectors of
the output channels may be achieved by keeping the feature vector addressed by the provided
class label unmodified and setting the components of all the other, unaddressed feature vectors
to zero. The decoder network 120 may, for instance, comprise an input layer 121, which may be
masked or not, a first dense FC layer 110, a second dense FC layer 111, and a third dense FC layer
112. The number of neurons comprised in each of these decoder network layers 110, 111, and
112 may vary in a task specific way. For the present embodiment, adapted for the MNIST
handwritten digit recognition task, the first dense FC layer 110 comprises 512 ReLU neurons, the
second dense FC layer 111 comprises ReLU 1024 neurons, and the third dense FC layer 112
comprises 784 sigmoid neurons. A final output data reshaping step 113 rearranges the one
dimensional output vector of the third dense FC layer 112 into a two dimensional array of
reconstructed image pixels (e.g. rearranging the 784 neuron outputs into a 28x28 image for the
MNIST task) for which a grey level of a monochrome pixel is scaled output of the sigmoid neuron
addressing this pixel. The modular character of the decoder network 120 may be exploited by
connecting the decoder network 120 to the neural network, e.g. CNN 100, during a training phase
and disconnecting it thereafter, e.g. during testing or normal image classifying operation of the
neural network, e.g. CNN 100. This has the advantage that the decoder network 120 may be used
in a multi-task learning approach for improving the performances or avoid overfitting of the neural
network, e.g. CNN 100, and/or the classifier 109, whereas a lighter version including only the
neural network and the classifier 109 may be used to expedite the processing of image data and
image classification of a trained, operational neural network. Alternatively, it is possible to keep
the decoder network 120 connected even after training, which may be beneficial for denoising a
noisy image data sample 101 applied at the input layer of the neural network at the same time as

classifying it, e.g. predicting a class label if the noisy image data sample 101 is lacking a label.
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Training of the neural network and the decoder network involves the optimization of the
adjustable network parameters (of both the neural network and the decoder network), e.g. filter
weights, layer weights, bias terms, mean and variance scale factors of the BN layer 107,
hyperparameters such as neuron numbers, filter size, stride, learning rate, etc. Optimization of
the adjustable network parameters is typically performed in respect of a cost function which is
provided to measure the combined performance of the neural network and the decoder network.
That is the cost function is an aggregate cost function in the framework of multi-task learning, e.g.
comprises a loss function contribution for the neural network and a loss function contribution for
the decoder network. A loss function of the neural network evaluates the predictive power of the
classifier which uses the feature vectors of the neural network as inputs. Such a loss function is
typically penalizing misclassified image data samples, which increases the loss function. A loss
function of the decoder network measures the image reconstruction performance, e.g. by
evaluating by how much a reconstructed image deviates from the original image data sample. A
non-limiting example of a loss function for the decoder network is a mean-square error function
which is a sum of mean-square errors of each reconstructed pixel, averaged over the a number of
training samples, e.g. over all the image data samples of an input data set used for training or a
subset thereof (e.g. batches, or mini-batches). The loss function for the neural network is selected
such that is satisfies additional constraints.

Referring to FIG. 2, the additional constraints of the loss function for the neural network
are explained by further splitting the loss function for the neural network into two case-sensitive
contributions. A first contribution results from feature vectors for the neural network output
channels which are not addressed by the class label provided in conjunction with the image data
sample (“false class output channels”) and a second contribution results from the “true class”
feature vector for the neural network output channel which is addressed by provided class label.
A two dimensional slice 202 through the centre of a unit hypercube and parallel to one of its side
faces illustrates the constraint on the second contribution from the “true class output channel” of
the neural network, whereas a two dimensional slice 201 through the centre of a unit hypercube
and parallel to one of its side faces illustrates the constraint on the first contribution from the
“false class output channels” of the neural network. As explained before, the feature vectors for
sigmoid-activated neurons in the output layer of the neural network take values inside a unit
hypercube. The two dimensional slice 202 comprises a reference point 203 at its centre, which
coincides with the centre of a unit hypercube, and a circular region 206 surrounding it, which
represents a two dimensional slice through a hypersphere also centred at the refence point 203.

Image data samples for which, under the action of the neural network, a mapped feature vector
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belonging to the true class output channel is located within the circular region 206 of the true class
output channel (e.g. a hypersphere region), are not penalized, e.g. are not incurring any loss under
the loss function for the neural network, insofar as the second contribution is concerned. In
contrast thereto, if, as a result of the mapping of an image data sample, the mapped feature vector
belonging to the true class output channel is located in a region 207 of the true class output
channel, outside the circular region 206, then this image data sample is penalized and incurs a loss
under the second contribution to the loss function for the neural network. The loss incurred
typically increases monotonically with an outward distance from the boundary of the circular
region 206, e.g. forms a convex function. Non-limiting examples of such convex loss functions are
a piecewise linearly, linearly, or quadratically increasing loss for which the boundary of the circular
region 206 (e.g. the hypersphere surface) supports a soft margin as to which side feature vectors
of image data samples corresponding to the true class output channel are correctly mapped
without incurring any loss. For the given examples of convex loss functions the boundary of the
circular region 206 supports a soft margin in the sense that small outliers, e.g. feature vectors
corresponding to noisy true class image data samples, are not excessively penalized when slightly
crossing the boundary, e.g. in contrast to a step-wise loss function providing a hard boundary for
which also small outliers are penalized by the full loss. The location of this soft margin boundary,
e.g. radial distance of the boundary of the circular region 206 form the reference point 203, is
adjustable through a parameter m". In analogy, the two dimensional slice 201 comprises a
reference point 203 at its centre, which coincides with the centre of a unit hypercube, and a
circular region 204 surrounding it, which represents a two dimensional slice through a
hypersphere also centred at the reference point 203. However, image data samples for which,
under the action of the neural network, a mapped feature vector corresponding to any of the
other “false class” output channels is located within the circular region 204 of any of the false class
output channels (e.g. a hypersphere region), are penalized, e.g. are incurring a loss under the loss
function for the neural network, insofar as the first contribution is concerned. If, as a result of the
mapping of an image data sample, a mapped feature vector belonging to any of the other “false
class” output channels is located in a region 205 of the any of the false class output channels,
outside the circular region 204, then this image data sample is not penalized, meaning that no loss
under the first contribution to the loss function for the neural network occurs. Similarly, any loss
incurred under the first contribution typically increases monotonically with an inward distance
(decreases monotonically with an outward distance) from the boundary of the circular region 204,
e.g. forms a convex function. Non-limiting examples of such convex loss functions are a piecewise

linearly, linearly, or quadratically increasing loss for which the boundary of the circular region 204
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(e.g. the hypersphere surface) forms a soft margin as to which side feature vectors of image data
samples corresponding to the false class output channels are correctly mapped without incurring
any loss. The location of this soft margin boundary, e.g. radial distance of the boundary of the
circular region 204 form the reference point 203, is adjustable through a parameter m*.

FIG. 3 shows an example of a convex, piecewise linear, monotonically increasing second
contribution 302 to the loss function of the neural network. The second contribution 302 to the
loss function of the neural network is a function of the radial distance from the origin, e.g. the
reference point 203, for which a soft margin is given by the threshold parameter m". FIG. 3 also
shows an example of a convex, piecewise linear, monotonically decreasing first contribution 301
to the loss function of the neural network. This first contribution 301 to the loss function of the
neural network is a function of the radial distance from the origin, e.g. the reference point 203,
for which a soft margin is given by the threshold parameter m*. The piecewise linear segments of
first and second contributions 301, 302 may be characterized by a constant length step | and by
step heights measured in units of h*|, defining slopes in units of h. Non-limiting choices for the
parameters may bem =0.1, m*=0.9,1=0.1,and h=0.2. It is an advantage of the convex first and
second contribution 301, 302 to the loss function of the neural network that subgradients exist
which may be used in a gradient descent minimization technique of the cost function and only
require little storage as compared to higher order schemes. Moreover, the subgradients are
typically non-zero when approaching the soft margin threshold for the first and second
contribution 301, 302 given in FIG. 3. This has the effect that for each output channel of the neural
network, the feature vectors for positive (e.g. true class) image data samples, e.g. image data
samples the class label of which is associated with this particular output channel are steered
towards a convex region, e.g. the circular region 206(e.g. representative of a hypersphere), around
a reference point, e.g. the reference point 203 at the centre of the hypercube and the
hypersphere. Accordingly, the feature vectors for negative image data samples (e.g. false class),
e.g. image data samples the class label of which is not associated with this particular output
channel, but is associated with at least one (e.g. all) of the other output channels, are steered
away from a convex region, e.g. the circular region 204 (e.g. representative of a hypersphere),
around a reference point, e.g. the reference point 203 at the centre of the hypercube and the
hypersphere. As a result, training of the neural network implies learning of a mapping of image
data samples onto feature vectors which are preferably located within a convex region close to a
reference point of the output channels associated with the class labels of said image data samples,
e.g. aims at a convex embedding of image data samples into their class label dependent feature

spaces (e.g. convex hyperspheres embedded in hypercube feature spaces). How close the mapped
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feature vectors are located with respect to a reference point may be controlled by the soft margin
threshold parameter m".

Although the constraints on the loss function for the neural network have been explained
in respect of sigmoid-activated neurons and related hypercubic feature spaces, they are not
necessarily bound to these specific neuron activation functions and feature spaces and similarly
apply to other choices, e.g. to hyperbolic tangent activations and non-unit hypercubic feature
spaces centred at the origin. Many such neuron activations functions are known and available to
the person skilled in the art, who also would adapt the subsequent decoder network accordingly,
e.g. in respect of implementing the channel masking and the mean value correction of the
reconstructed images.

In consequence, the cost function in view of which the network parameters are optimized
may be stated as

C=42 Lossdecoder + Lossneural network: (1)
wherein A (e.g. A=0.392) controls how much importance is attributed to the image data sample
reconstruction task, which acts as a regularizer for the neural network.

The loss function for the decoder network, LoSSqecoder, May be given as a mean-square error
over a subset M of image data samples s’ (e.g. a subset or mini-batch M comprising 128 image
data samples), each image data sample comprising a set of pixels X indexed by row and column

indices x, y:

1 ; A\ 2
Lossdecoder = mZieM Zx,yeX (S(l)x,y - deCOder—outa(cfg)/) (2)

Eq. 2 teaches that the loss function for the decoder network takes into account a
deviation, e.g. a squared difference, between the pixel values of the i-th image data sample and
the pixel values of the reconstruction of the i-th image data sample, decoder_out", at the output
of the decoder network. The loss function for the neural network may be given as

1 i
Lossneural network — MZieM LOSS( )

Loss®W = Yyec tk(i)Ll,h,m(yk(i)) +0.5(1- tk(i))Ll’,h’,\/ﬁ/Z_m,(\/ﬁ/z - yk(i));

(3)
wherein k is a summation index over the label class set C, t'” is the true target vector encoding the
label of the i-th image data sample, 37(") is the class label prediction vector for the i-th image data
sample, n is the dimensionality of the feature vector space (e.g. n = 16), Linm is the second
contribution to the loss function for the neural network, and Ly vn/2-m' is the first contribution to
the loss function for the neural network. For the piecewise linear, convex loss contributions drawn

in FIG. 3, one may select a common length step | =1’ (e.g. | =1’ = 0.1), a common slope unit step h
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= h’ (e.g. h = h’ =0.2), a first soft margin threshold parameter m’ = m* = 0.9, and a second soft

margin threshold parameter m’ = m = 0.1. A loss contribution L, » may then be explicitly given as
!
Lipm (e +m) = HGx) - (x = 5()3) - h- (s() + 1)
X
st =[5,

wherein H is the Heaviside unit step function, and s is a floor function counting the current length

(4)

step number. Alternatively, one may adopt a quadratic form of the hinge loss for the first/second
contribution Ly m to the loss function for the neural network, e.g.

Loss® = Ykec tk(i) max(O, 37k(i) — m‘)z + 0.5 (1 — tk(i)) max (O,m+ — yk("))z . (5)

A calculation of the loss function of the neural network is simplified in the sense that it
may be conveniently decomposed into a sum of output channel losses which may be computed
independently from each other in a parallelized fashion.

The loss functions for the neural network indicated above are non-limiting examples of
loss functions, but many other loss functions may be constructed such as step-wise defined
Heavyside functions, quadratic loss functions without a hinge loss, exponential loss functions,
shifted scaled hyperbolic tangents or arc-tangents, modified Huber loss, etc.

The target vector encoding for the labels of the image data samples may be obtained by a
one-hot or one-of-C encoding scheme, e.g. ty = 1 if k = class(label of image data sample) and else
t«=0, such that ), t, = 1. The prediction vector may be chosen such that its components
correspond to the L2 normed distances of the feature vectors f¢ of each of the output channels
from a pre-determined reference point Py, e.g8. ¥, = ||fx — Pkll2, from which a class label is
predicted through an argmin selector.

Training of the neural network and the decoder network may be achieved by a training
algorithm, e.g. through a variant of the backpropagation algorithm, e.g. one of gradient descent,
stochastic gradient descent on mini-batches, adaptive momentum learning, quickprop, RMSprop,
conjugate gradient, Adadelta, Adagrad, Nesterov, Adam, etc. According to a backpropagation
training algorithm, the cost function to be optimized during training (e.g. reduced) is first
evaluated in a forward pass during which the image data sample is applied at the input layer of
the neural network and is progressively propagated through both the neural network and the
decoder network until all the output neurons and prediction vectors are updated. This is followed
by a determination of the gradients of the network parameters, which is typically obtained by a
backward propagation of a combined error signal through the neural network and decoder
network, respectively. A combined error signal may be obtained as a sum of deviations between

the reconstructed and the original image data sample, e.g. as measured by the decoder loss
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function, and deviations between the predicted class label and the true class label taken into
account the distances of feature vectors from a reference point in the feature space, e.g. as
measured by the neural network loss function. Eventually the network parameters are updated
by subtracting therefrom a scaled version of the determined gradients (gradient descent), wherein
the scale factor itself may be a tuneable learning parameter, e.g. a learning rate (e.g. a constant
learning rate at 0.001 for an Adam optimizer) which may be decreased during learning so as to
further improve regularization and/or avoid overfitting.

In an exemplary embodiment of the present invention, the handwritten digit MNIST data
set is provided as labelled input data set. This data set comprises 60k training image data samples
of labelled (digit class) handwritten digits and 10k test image data samples of labelled handwritten
digits. The larger training image data set is generally used for training of the network parameters,
whereas the smaller test image data set is used to assess performance of the trained neural
network, e.g. under conditions as they are met when the trained neural network is used to classify
image data sample which have not been annotated by a label. For the MNIST data set, each image
data sample is a 28*28 pixel, fixed-sized greyscale image of a centred (centre of mass) digit
selected from a range zero to nine. For more variability in the input data set, each image data
sample may be pre-processed by randomly shifting it up to 2 pixels in a horizontal and/or vertical
direction and missing parts of the so shifted image data samples may be filled in by zero-padding.
The pre-processed image data samples are then applied to the input layer of the CNN 100. A first
intermediate convolutional layer 102 applies ReLU activations on each of the resulting 20x20*256
neurons after convolution with stride one between the image data sample and a group of 256
independent 9x9 filters. Thereafter, a second intermediate convolutional layer 103 also applies
RelLU activations on each of the resulting 6x6*256 neurons after convolution with stride two
between the transformed image data sample at the first intermediate convolutional layer 102 and
a group of 256 independent filter stacks, each filter stack comprising a 9x9*256 filter. The outputs
of the second intermediate convolutional layer 103 are flattened into a one dimensional structure
in a flattening step 104 and form the input to a third intermediate dense (FC) layer 105 comprising
160 sigmoid-activated neurons, wherein the activations of the neurons of the third intermediate
dense (FC) layer 105 are shifted and scaled by a BN layer 107 prior to the application of the sigmoid
transfer function. The output layer of the CNN 100 is obtained by reshaping, in a reshaping step
106, the 160 neurons of the third intermediate dense (FC) layer 105 into a 10x16 matrix structure,
wherein each of the ten row vectors forms an output channel of the CNN 100, providing a 16
dimensional feature vector for this output channel. Each of the ten output channel is associated

with one of the digit classes zero to nine. A classifier 109 first determines prediction vectors as the
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relative L2 distance of the feature vector of each output channel with respect to a reference
point P, which is pre-determined as the centre point of 16 dimensional hypercube [0, 1]*°. The
predicted class label is determined as the index of the prediction vector component which is
minimal among all components, e.g. as the output channel {out of the output channels labelled
zero to nine) for which the relative L2 distance of its feature vector with respect to a reference
point P for that channel is smallest. During training a decoder network 120 receives the flattened
and masked output of the neural network at its input layer, wherein the true class feature vector
is kept without modification and all the other feature vectors (false output class channels) are set
to zero. The decoder network processed its inputs by a first dense FC layer 110 comprising 512
RelLU neurons, a second dense FC layer 111 comprising 1024 RelLU neurons, and a third dense FC
layer 112 comprising 784 sigmoid neurons, and a output data reshaping step 113 rearranging the
784 neuron outputs into a two dimensional structure corresponding to the 28*28 image pixels of
MNIST image data samples. The CNN 100 and decoder network 120 count each about 6.8 million
and 1.4 million adjustable and trainable parameters, respectively (weights, biases, BN layer
parameters, hyperparameters such as learning rate, Adam optimizer constant for exponential
moving averages of gradients and its variances, etc.), that is about 8.2 million trainable
parameters, which is less than the amount of trainable parameters generally encountered in deep
neural networks of more than five layers, e.g. ten layers or more, e.g. twenty to fifty layers.
Moreover, only 6.8 million parameters of the neural network CNN 100 are used to predict
handwritten digit classes. In a multi-task learning approach, the combined network CNN 100 and
decoder network 120 are trained using the backpropagation algorithm with an Adam optimizer at
constant leaning rate 0.001 and mini-batches comprising 128 randomly drawn image data samples
each. The cost function for optimization of the network parameters is the one of Eq. 1 with
A =0.392 in combination with Eq. 2 and Eq. 5 for the corresponding loss functions of the decoder
network 120 and the CNN 100. Embodiments of the resent invention may be trained with only a
subset of the training image data set, which enables bootstrapping and cross-validation
techniques.

After the training has been completed, the decoder network may be removed from the
trained neural network for the purpose of image classification. If a reconstruction, augmentation,
or similar change of the input image is a further desirable output during inference, next to the
classification result, the trained decoder network may remain connected to the trained neural
network to generate a reconstruction, augmentation, or similar change of the input image at its

output.



10

15

20

25

30

WO 2019/238976 PCT/EP2019/065876

26

FIG. 4 shows test error rates of several implementations of neural networks, e.g. the
misclassification count over the test image data set, obtained for the MNIST task as a function of
the number of training epochs averaged over 20 instantiations of each neural network (20
different initializations of the network parameters, including data set reshuffling). Test error curve
404 relates to the test error rates obtained with the above described embodiment comprising the
CNN 100 and the decoder network 120. Test error curve 401 relates to a test error rate obtained
from a baseline comparison. It corresponds to a CNN for which the third intermediate dense (FC)
layer 105 comprises ten softmax-activated output neurons, one for each digit class, and for which
the categorical cross-entropy loss function is used, in place of Eq. 5, to measure performance of
the neural network. Furthermore, there is no decoder network provided for the baseline
comparison, i.e. the baseline comparison is designed to perform classification alone, not using the
feedback from a joint image reconstruction task in a multi-task training approach. Hence, the
baseline approach is also not taking into account the L2 distances of feature vectors of each output
channel with respect to a reference point, but it yields scalar outputs for each output channel
which are interpreted as class probabilities conditional on the image data sample. The highest
predicted class probability determines the predicted class label. The baseline approach, compared
to the above described embodiment of CNN 100 and decoder network 120, contains slightly less
trainable network parameters, e.g. about 5.4 million trainable parameters for the neural network.
Test error curve 403 relates to the test error rates obtained with the above described embodiment
comprising the CNN 100 and the decoder network 120, but a different loss function for the neural
network CNN 100 is used. This modified loss function for the CNN 100 is suitable for steering the
feature vectors corresponding to the true class output channel away from a convex region around
areference point and is also suitable for steering the feature vectors corresponding to at least one
of the other “false class” output channels, e.g. to all the other “false class” output channels,
towards the convex region around a reference point. In this sense, it has an effect which is
opposite to the loss function for the neural network given Eq. 3 or Eq. 5. The “inverted loss”
function which is used to obtain the test error curve 403 corresponds to the piecewise linear
inverted loss described with reference to Eqs. 3 and 4. An alternative inverted loss function is given
as a hinged inverted square loss, which reads:

Loss® = Yrec teY max (O,m+ - yk("))z +0.5 (1 - tk(i)) max(O, 37k(i) - m‘)z (6)
Test error curve 402 relates to the test error rates obtained with the same configuration as for
test error curve 403, except that the sigmoid activation function of the output layer neurons of

the neural network CNN 100, e.g. the neurons of the third intermediate dense (FC) layer 105, has

been substituted by an orientation-preserving, channel-wise applied squashing function of the
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z__|lz|?

formo(z) =
(2) llz]l 1+]I|1

and reference points for all output channels have been set to the origin of

the respective feature space, e.g. P; = P = (0, O, .., 0). Here, z denotes the feature vector
corresponding to the output channel to which the orientation-preserving squashing function is
applied and ||z|| denotes its L2 norm.

Test error curves 401 and 404 quickly stabilize after an initial decrease as the number of
training epochs is further increased, whereas test error curves 402 and 403 show slight increases
in the test error rates after an initial minimum. This hints to a starting overfitting of the respective
networks. It is apparent from the reported test error curves in FIG. 4 that the neural network
trained according to above described embodiment (corresponding to test error curve 404)
performs best, among the four investigated neural networks of differing implementation, for the
test image data set of the MNIST handwritten digit classification task. Table | also reports test
results for the MNIST handwritten digit classification task, wherein table rows are referring to one
of the test error curves of FIG. 4. For a constant learning rate, the test error rate and its variability
as well as an irregularity metric are tabulated. All the tabulated networks have been trained with
a decreasing learning rate (e.g. decay parameter of 0.95) too, for which test error rate and its
variability and a single best error rate are reported. Test error rates of Table | are averaged over
20 network parameter instantiations and over 100 training epochs, typically the last 100 training
epochs during which networks are trained, e.g. training epochs 150 to 250. The variability
associated with the test error rate of a given network type measures the standard deviation of
this test error rate with respect to network training parameter statistics averaged over 100
training epochs, wherein a standard deviation of a test error rate with respect to network training
parameter statistics is determined as the estimated standard deviation of the test error rate for
20 random samples of network training parameter instantiations (per network type). Decreasing
the learning rate generally causes the different neural networks to settle at a local optimum for
their trainable parameters from which it cannot escape easily. Indeed, the decreased learning rate
leads to ever smaller network parameter updates as the number of training epochs grows such
that they are effectively frozen at a local optimum of the overall cost function. If the learning rate
is not progressively decreased, the different networks are capable of jumping from one local
optimum of the overall cost function to another one, which results in some testing noise for the
reported test error rates as training moves from epoch to epoch. This implies that continuing
training of the networks does not necessarily lead to a convergence of the test error rates, as
illustrated in both FIG. 4 and by the irregularity column entries of Table I. An irregularity value for
the test error curve associated with a given network type is obtained by averaging a standard

deviation of this test error rate with respect to training epoch statistics over the 20 random



10

15

WO 2019/238976 PCT/EP2019/065876

28

samples of network training parameter instantiations, wherein a standard deviation of a test error
rate with respect to training epoch statistics is determined as the estimated standard deviation of
this test error rate sampled over 100 consecutive training epochs and at a given sample of network
training parameter instantiation. If convergence is enforced by virtue of a decreasing learning rate,
the irregularity metric is not providing useful insight any longer. Therefore, it is substituted by the
single best test error rate with regard to instantiations of network training parameters in this case.

It is of advantage that embodiments of the present invention achieve state of the art
performance for MNIST test error rates (e.g. 0.32 % for test error curve 404) without the
requirement of using ensemble or voting committee techniques which are expensive to
implement and/or train. Moreover, embodiments of the present invention achieve state of the
art performance for MNIST test error rates for a variety of random instantiations of the network,
as indicated by the small variability (e.g. 0.03 % for test error curve), which makes the described
neural network training method more predictable in terms of expectable test error rates and also
reduces a training time as network training parameter instantiation statistics may not be acquired.
Embodiments of the present invention converge to state of the art performance for MNIST test
error rates even at larger, non-decreasing learning rates, as indicated by its related small

irregularity measure (e.g. 0.02 % for test error curve 404).

Table I: Test results for the MNIST task

Network acc. to Test Error Rate Irregularity

Constant learning rate

Test Error Curve 401 (baseline) (0.52 £ 0.06)% 0.06 %

Test Error Curve 402 (squashing, origin ref. (0.79 £ 0.09) % 0.05%

point, loss Eq. 6)

Test Error Curve 403 (sigmoid, hypercube (0.76 £ 0.07) % 0.05%

center ref. point, loss Eq. 6)

Test Error Curve 404 (sigmoid, hypercube (0.38£0.03) % 0.02%

center ref. point, loss Eq. 3)

Decreasing learning rate

Single best
Test Error Curve 401 (baseline) (0.42 £0.03) % 0.38%
Test Error Curve 402 (squashing, origin ref. (0.70 £ 0.08) % 0.53%

point, loss Eq. 6)
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Test Error Curve 403 (sigmoid, hypercube (0.72 £0.07) % 0.62 %
center ref. point, loss Eq. 6)
Test Error Curve 404 (sigmoid, hypercube (0.36 £0.03) % 0.32%
center ref. point, loss Eq. 3)

It is an advantage of embodiments of the present invention that anomalies in the image
data samples applied to the neural network after a completed training phase, e.g. during testing
or use of the neural network for classifying images, may be detected. Indeed, the loss function for
the neural network being suitable for steering the feature vectors corresponding to positive
samples of a given output channel into a convex region for this output channel and also being
suitable for steering, for all the other output channels, the feature vectors corresponding to
positive samples into another target region, different from the convex region and away therefrom,
evaluating the position of the feature vectors of all output channels with respect to their convex
region and/or the other target region may vield an indication of a possible anomaly. For instance,
it may be the case that the applied image data sample under test results in a feature vector
mapping for which none of the output channels has a feature vector inside a convex region and/or
most or all of the output channels have their feature vectors located in a region of the feature
space which is penalized both by the first and the second contribution to the loss function of the
neural network. Such case may then be assigned to an anomaly. This is illustrated in FIG. 5A to 5D
for the EMNIST image data set comprising image data samples of handwritten lower and upper
case letters sharing the same format as the MNIST image data samples. Samples of the EMNIST
data set representing the uppercase letters A-Z have been applied to a neural network, e.g. CNN
100, trained in accordance with an embodiment of the present invention. The L2 distance of the
feature vector of each output channel relative to a reference point has been recorded as count in
an associated distance interval. Distance intervals are arranged along a horizontal axis for the
subplots of FIG. 5A through 5D and the digit class an output channel is associated with is arranged
on a vertical axis of each of the subplots. A distribution for the feature vectors corresponding to
the mapped image data samples of EMNIST uppercase letters A-Z is thus obtained in respect of
each digit class/output channel and of each distance interval. Brighter tones of grey indicate more
occurrences. For the letter A, for example, the feature vectors of each output channel are located
outside a convex region around a reference point as measured by their relative L2 distance to this
point, e.g. the distribution of L2 distances for samples of letter A does not have any counts in the
distance interval [0, 0.1]. The classifier may therefore correct its predicted class label in a further

step to indicate an anomaly by counting the number of output channels the feature vectors of
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which have a L2 distance exceeding a threshold parameter, e.g. the soft margin threshold
parameter m". Rectangles in FIG. 5A to 5D indicate possible confusions for which the neural
network may interpret an uppercase handwritten letter image data sample as a sample of a
handwritten digit, e.g. ‘O’ interpreted as zero, ‘S’ as five, ‘I’ as one, and ‘Z’ as two.

Training neural networks, in particular deep neural networks, comprising millions or
billions of trainable network parameters typically requires very large input data sets for each
network parameter to be learnt by inference. Therefore, neural networks are difficult to train if
input data is scarce. It is common in machine learning to augment an original input data set by
generating additional image data samples for training of the neural network. Generation of
additional image data samples is often achieved in the image space, e.g. by applying random
translations on the handwritten digit image samples as already described in relation to the MNIST
task. However, more image pre-processing may be involved, for instance by rotating and shifting
the image data samples or by warping. In a different approach, new image data samples for
training are generated in the feature space, e.g. by interpolating between two known points in the
feature space which both correspond to mapped image data samples.

Embodiments of the present invention are now described with regard to data
augmentation and/or data generation methods. These methods are typically implemented after
the neural network and decoder network have been trained to reach an optimal test error rate,
but may also be provided for a neural network and a decoder network which have only been
trained partially. It has already been explained that the output layer of the neural network
provides a set of feature vectors, one per image class, which are mappings of the image data
sample applied at the input layer of the neural network. It has also been explained that a decoder
network is trained to reconstruct the image data sample based on its representation at the output
layer of the neural network as feature vector associated with the class label of the applied image
data sample. In the following, this is referred to as first reconstruction or first reconstructed image
data sample. Therefore, one may generate or synthesize a second reconstructed image data
sample with the same label as the first reconstruction by selecting a point, e.g. randomly selecting
a point, inside the convex region, around a reference point, which is associated with this (same)
label. The selection may include adding a controlled perturbation, e.g. controlled in magnitude
and/or direction, to the point designated by the tip of the feature vector, anchored at the origin,
whose output channel is associated with this (same) label, provided that such point is located
inside the convex region. The so selected point may be used as masked input to the decoder
network, meaning that all the non-addressed output channels have their feature vectors set to

zero. At the output of the decoder network a second reconstructed image with the same label as
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the first reconstruction is then obtained. If points in convex regions of each output channel are
sampled at random, not relative to an existing feature vector mapping of a first image data sample,
new labelled (reconstructed) image data sample may be synthesized at the decoder network
output if these sampled and masked (according to the output channel from which they were
sampled) points are sequentially applied at the input of the trained decoder network. This
generates new labelled image data samples which are obtained through sampling in the feature
space. If the selection of points is achieved by applying a perturbation to the feature vector of an
existing image data sample mapping, the newly synthesized image data set is a perturbed,
modified, or distorted version of the set of first reconstructions and a degree of perturbation,
modification, or distortion may be controlled by the magnitude and/or direction of the
perturbations added to the existing feature vectors mappings of image data samples. This is
possible as individual components of the feature vector of each output channel may be identified
with an invariant transformation of a universal prototype, e.g. magnification and/or rotation of a
prototype digit image. In the context of the present invention, a reference point of each output
channel may be selected as a prototyping feature vector for this particular output channel/class.
That is a sensitive choice given the characteristic steering behaviour of the loss function for the
neural network, e.g. feature vectors corresponding to positive samples for a particular output
channel are steered towards the convex region around a reference point. If the prototyping
feature vector is fed, as a masked input, through the decoder network, a “universal” prototype
image of this class is output. Universality depends, of course, to some extent on the training data
set, the particular architecture of the neural network and the decoder network, the training
parameter instantiation, training algorithm, etc. Applying perturbations to the components of
each prototyping feature vector yields invariant transformations of the prototype image at the
decoder network output, wherein the invariance is an invariance of the trained neural network
and decoder network with respect to transformations of the image data samples at the input.
FIG. 6 illustrate learnt invariant transformations corresponding to perturbations applied to the
prototyping feature vector of the digit class “four”. In FIG. 6, the sixth image of each row
corresponds to an unperturbed prototype of the digit class “four”, whereas the remaining images
of each row are the result of altering exactly one component of the prototyping feature vector in
steps of 0.005 from 0.45 to 0.55. A learnt invariant feature may correspond to the tilt of the
handwritten digit “four” for the first row of FIG. 6, to the relative height differences of vertical
strokes for the second row, to a stroke thickness for the third row, and to the degree to which a
handwritten digit “four” is closed at its top for the last row may The applied perturbations are

typically controlled such that the perturbed prototyping feature vectors are still located within the
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convex region. Moreover, it is possible to select points in the convex region for second
reconstructions which are obtained by way of interpolation between two or more known feature
vector mappings of known image data samples.

It is an advantage of embodiments of the present invention that prototyping feature
vectors may be pre-determined by the structure of the neural network and the classifier; training
the neural network and the decoder network implies an adaptation of the trainable network
parameters to this constraint. Therefore, image class prototypes and their invariant features
learnt by the neural network and the decoder network may be easily observed at the decoder
network output. Furthermore, one may easily investigate the learnt invariant features in the
image space as invariant image transformations by applying controlled perturbations to the
prototyping vectors and reconstructing the result thereof. Moreover, one may gain insight in the
learning mechanism of the neural network and/or decoder network by inspecting the evolution
of prototypes.

It is often the case that the dimensionality of the feature vector of each output channel is
smaller than the input dimension of the image data sample, e.g. the number of pixels composing
the image data sample and/or the number of grey values for each pixel of the image data sample.
For such cases, the trained neural network and trained decoder network will result in a lossy
mapping of an image data sample onto one or more feature vectors, e.g. information originally
contained in the image data sample is lost in the learnt mappings. Despite this loss of detailed
information, it is still possible to extract characteristic high level features which allow for an
efficient solution of the task at hand, e.g. classification of images. For example, it may be the case
that the arcs of a digit, e.g. six, are recognized as high level feature activations but the precise
locations of these arcs may be lost, as they may not be crucial for solving the task. In this sense,
the output layer of the neural network is learning abstractions of image data samples sharing a
number of common underlying patterns. In consequence, the second reconstructed image data
samples at the decoder network output may also present too abstract variants of a member of a
particular class of images for which fine but typical details are absent. The fine but typical details
may be considered as inherent image data sample noise which is substantially always present in
an image data sample randomly drawn from an often unknown prior distribution for each class.
Therefore, some embodiments of the present invention may generate synthetic image data
samples in a hybrid approach combining sampling or interpolation from the convex regions with
distortions in the image (input) space. This may be achieved by combining a deviation (e.g. X-Xrec)
of the first reconstruction (Xrec) and the image data sample (X) forming its basis with a second

reconstruction (Xmod), for instance by adding the difference between the image data sample and
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its first reconstruction to the second reconstruction: Xmod + X-Xrec. The second reconstruction
may be obtained by a randomly selected point in the convex region of the addressed output
channel, by a perturbation to the first selected point which is the feature vector mapping of the
original image data sample (X), through an interpolation of known feature vector mappings into
the convex region of the addressed output channel comprising the first selected point, etc. If the
combination of reconstructed image data samples in the image space exceeds an allowed range
of pixel values, the newly synthesized image data sample (Xmod + X-Xrec) may be re-centred
and/or re-scaled or clipped so as to again lie within the allowed range. The difference between
the image data sample and its first reconstruction restores the missing fine details which may be
considered as input noise to the image data samples and which contribute to the noise robustness
and/or regularization of the neural network and decoder network when trained.

For the embodiment described in relation with FIG. 1, the hybrid data augmentation has
been conducted with a trained neural network and decoder network. The newly synthesized
image data samples are then added to the original input data set to form an augmented input data
set of labelled image data samples, which may be used, in a subsequent step, as the input data
set provided for training a neural network for classifying images. Alternatively, the newly
synthesized image data samples are substituting the original input data set. A neural network for
classifying images may be the same neural network and decoder network that was used in the
data augmentation step, in which case the adjustable network parameters are further updated to
reach a better (local) optimum or are re-initialized and re-trained. Alternatively, a neural network
for classifying images may be a different neural network and decoder network, e.g. a neural
network and decoder network of a different architecture (e.g. more or less neurons in an
intermediate layer, different activation functions, etc.). Table Il reports test error result,
variabilities thereof, as well as the associated irregularities for the MNIST handwritten digit task
for which hybrid data augmentation (DA) has been conducted with a trained neural network and
decoder network, e.g. the neural network and decoder network that led to test error curve 404
and trained for 1500 epochs. Neural networks and decoder networks are re-trained entirely. The
performance metrics that are used in Table Il are the same as for Table |, e.g. averaged results
over 20 instantiations and 100 epochs, respectively. Both the baseline network and the neural
network and decoder network trained according to an embodiment of the present invention
benefit, in terms of achieved test error rates, from the larger training data set comprising the
newly synthesized image data samples. Decreasing the learning rate by multiplying it with a factor

of 0.99 at every epoch further improves the test error rate.
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New image data samples may also be generated on the fly, while the neural network and
the decoder network are trained. Both may be trained for a given amount of epochs, for instance,
and only thereafter new synthetic image data samples are generated and immediately made
available for training by adding them to the input data set.

It is an advantage of embodiments of the present invention that the target regions around
a reference point are convex and supported by the loss function of the neural network. Convexity
of the target region of each output channel ensures that interpolated feature vectors based on
two or more known feature vector mappings of existing image data samples again are located
inside the convex region and hence provide samples of feature vector mapping sharing the same
class (label). Therefore, interpolated feature vectors are an efficient way to explore the feature
space of each class and/or to generate new, synthetic labelled image data samples. Generation of
synthetic labelled image data sample provides an efficient way of leveraging existing but scarce

input data sets for the purpose of learning (deep) neural networks.

Table II: Test results for the MNIST task with data augmentation (DA)

Network type Test Error Rate Irregularity

Constant learning rate

Baseline (0.52 £ 0.06) % 0.06 %
Baseline with DA (0.44 £0.05) % 0.06 %
Test Error Curve 404 (sigmoid, hypercube (0.38 £0.03) % 0.02%

center ref. point, loss Eq. 3)

Test Error Curve 404 (sigmoid, hypercube (0.34£0.03) % 0.03%

center ref. point, loss Eq. 3) with DA

Decreasing learning rate

Single best

Test Error Curve 404 (sigmoid, hypercube (0.31+£0.03) % 0.26 %

center ref. point, loss Eq. 3) with DA

Itis known in the field that labels of image data sets may be noisy labels, e.g. are corrupted
by some label noise, such that they deviate from a true underlying label. This may be due to
incomplete, missing, or non-exhaustive labelling in some cases, faulty or ambiguous label
assignment in other cases. Also for the MNIST handwritten digit test data set some inconsistencies
with respect to the ground truth are known. This label noise generally has the effect that a

correctly predicted classification incurs an unjustified large loss or cost during the training phase,
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discouraging the neural network to correctly predict a label for an image data sample and rather
learn to purposely misclassify this image data sample. Here, correctly predicting and purposely
misclassifying are interpreted in terms of the underlying true label for which the provided label
constitutes a noisy version. The purposely misclassified image data sample have to be learnt by
the neural network on an individual basis and thus represent an overfitting mechanism which
leads to inconsistencies when the trained neural network is tested on unseen test image data
samples.

Some embodiments of the present invention provide a way to alleviate the effects of this
forceful (loss) penalization introduced by noisy labels. This may be achieved by modifying the loss
function for the neural network such that is still suitable for steering the feature vectors
corresponding to positive (e.g. true class) samples of a given output channel into a convex region
for this output channel, but is not any longer suitable for steering, for all the other output
channels, the feature vectors corresponding to negative (e.g. false class) samples into another
region, different from the convex region and away therefrom. In particular, the modified loss
function for the neural network may be suitable for steering, for all but one other output channel,
the feature vectors corresponding to negative samples into another region, different from the
convex region and away therefrom. The one other output channel may not experience any loss
under the modified loss function for the neural network. As a result the one other output channel
and depending network parameters may be rendered insensitive to an image data sample carrying
anoisy label, e.g. depending weights are not updated due to the lacking change in the loss function
for the neural network. This concept may be extended to more than just one other output channel,
e.g. two other output channels or more than two other output channels. For some embodiments
of the present invention this zero-loss contribution of the one or more than one other output
channel may be achieved by momentarily changing the label representation, e.g. the temporarily
changing the one-hot or one-out-of-C label vector encoding, for the first contribution to the loss
function of the neural network. For instance, if only one other output channel is made loss-free,
the label vector encoding for substitution (£,) of the original label vector encoding (t;) may be

expressed as

E,;(i) — tk(i) + 6, T = argmin(f’m(i)) )

m=c(i)

and a modified loss function for the neural network may read

Loss®W = Yyec tk(i)Ll,h,m(yk(i)) +0.5 (1 - f;‘(l)) Lyt i ja—m (/2 = }7k(i)) (8)

or

Loss® = Yec te® max(O,flk(i) - m‘)z +0.5 (1 - f;((i)) max (O,m+ - yk("))z. 9)
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In equation Eq. 7 the momentarily modified label vector encoding adds another “one” to the one-
out-of-C vector t;, wherein another “one” is added for the r-th component. It is also seen from
Eq. 7 that the r-th component is determined as the component for which the prediction vector ()
is minimal, e.g. the output channel for which a L2 distance of the feature vector relative to a
reference point is minimal, and which does not coincide with the true class output channel of the
i-th image data sample, c(i). This means that for this particular embodiment, the true class output
channel, which is accounted for by the second contribution to the loss function for the neural
network, is excluded from the zero-loss modification. As the neural network evolves under
training, the classifier therefore tries to reconciliate the two contradicting expectations of
correctly classifying image data samples even for noisy labels and allowing an alternative label,
e.g. the label which the neural network classifier estimates the underlying true label after having
seen many similar image data samples. The alternative label is afforded by the zero-loss
contribution of one of the other, non-addressed output channels and it may be identified as the
non-addressed output channel for which the feature vector is located in an otherwise loss-
penalized region of the feature space, e.g. close or even inside the convex region around a
reference point. Table lll is a confusion matrix which indicates how an alternative label, which may
be assigned to the one other output channel, is distributed in respect of the provided label. This
example relates to a classification of about 18000 video frames of a soccer game video sequence
into one of the following classes goal, shot, free kick, and corner. It sheds light on the fact why a
single predicted class label may sometimes not be sufficient as some image data samples may also
fit an alternative class. For instance, even humans may have, in some circumstances, trouble to

tell apart a shot and a free kick.

Table IlI: Confusion matrix between provided and alternative label for a video frame
classification task

Alternative label
Shot Goal Corner Free kick
_ Shot 0 76 1405 1122
%; Goal 1268 0 476 35
g Corner 2858 107 0 25
g Free kick 3459 8 52 0

It is advantage of embodiments of the present invention that a trained neural network

and decoder network may be used to detect a discrepancy between a predicted label and a




10

15

20

25

30

WO 2019/238976 PCT/EP2019/065876

37

provided image data sample label. The so detected discrepancies may serve the purpose of
cleaning an input data set in a further step. Alternatively, a relation between feature vectors of
the (output) channels addressed by an alternative label, e.g. assigned to one of the other channels
for which a loss contribution is removed, and by the label of a provided image data sample may
be detected. Based on the result of the detected relation, the currently provided label of the image
data sample may be rejected together with the image data sample itself, may be re-labelled, or
may be assigned to a new class of labels. A detected relation may include, for example, a
verification of the fact whether both feature vectors of the (output) channels addressed by an
alternative label and by the label of a provided image data sample are located inside the convex
region. Another non-limiting example of a detected relation may include verifying which one of
the normed distances of the feature vectors of the (output) channels addressed by an alternative
label and by the label of a provided image data sample is closest to the pre-determined reference
point.

A same or different neural network and decoder network may be trained using the
cleaned input data set or at least a subset thereof as training input. This has the advantage that
more consistent and improved test error rates are expected. Moreover, a cleaned data set may
be useful for other machine learning methods too, which otherwise suffer from mislabelled,
missing or incomplete labelled image data samples. A cleaned input data set may be achieved by
discarding or re-labelling image data samples for which a discrepancy has been detected, e.g.
discarding or re-assigning labels for mislabelled or incompletely labelled image data samples
and/or assigning labels to image data samples which lack a label. In some cases for which an
ambiguity between different label assignment exists, cleaning the input data set may also
comprise the setup of assigning multiple labels to an image data sample or introducing a new class
of labels, e.g. a class “label 1 or label 2” next to the exclusive classes “label 1” and “label 2” for
non-ambiguous image data samples.

Table | reports results for the MNIST handwritten digit classification task but the described
methods for training neural networks for classifying images may also be trained with and tested
for other data sets and/or tasks, for instance on the FashionMNIST image data set. This data set
comprises image data samples labelled according to the following classes of T-shirt, trousers,
pullover, dress, coat, sandal, shirt, bag, sneaker, and ankle boot. FashionMNIST is known to be a
“harder” task on comparison to the MNIST task. Embodiments of the present invention, using the
same neural network and decoder network configuration as reported for test error curve 404 for

the MNIST task without data augmentation, achieve a test error rate of 7.8 %.
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Training a neural network and decoder network on the EMNIST image data set according
to an embodiment of the present invention and further performing the data augmentation step
described before, may provide an alternative approach to the generation of captchas for an
automated Turing test, e.g. telling apart humans and machines. Other domains of application of
the described embodiments of the present invention may include pose estimation, foreground
and background detection and/or removal, and image segmentation for which classification may
correspond to the label assignment step for the pixels of an image treated as a Markov random
field (graphical model).

Embodiments of the present invention may further be adapted to solve a combined
classification-regression task. This may be useful in cases for which objects first need to be
recognized and label-tagged in an image data sample and particular object classes are input to a
regression task in a second step, e.g. first recognizing and labelling cars in image data samples and
then perform regression to predict a cylinder capacity, price, etc. based on the extracted car image
data (e.g. including relative information on height and length, number of doors, etc.). A simpler
example is given by the combined classification-regression task which consists in classifying slopes
of line segments according to pre-determined angular ranges, e.g. four angular ranges (classes)
spanning the overall space of 0° to 180°-oriented line segments. The regression then predicts the
precise slope angle. To achieve regression of the (class-specific) dependent variables the feature
vectors of the addressed output channels may be decomposed according to a tensor product of
at least two vector subspaces, each vector subspace being of smaller dimension than the
(composed) feature space. A first projection of the feature vectors onto a first vector subspace
yields then the feature vectors of the output channel which are used as inputs to the classifier of
the neural network as described before. A second projection of the feature vectors onto a second
vector subspace yields an independent regression vector comprising at least one component,
which is used as input to the regression task, e.g. weights for each regression vector component
may be directly determined, e.g. by virtue of the Moore-Penrose inverse. Alternatively, the class-
specific independent regression vectors may be fed through one or more intermediate layers, e.g.
dense (FC) layers, of an additionally provided regression network. In consequence, optimal
regression weights are determined from the output layer of such a regression network. The
combined classification-regression has been conducted for a synthetic data set comprising 60k
training image data samples and 10k test image data samples (both 56*56 pixel images) of
randomized line segments, wherein randomization affects the slope angle, the line segment
length and width, and the centre coordinates. Moreover, image noise was added, e.g. for creating

defects and/or missing parts in the line segments. Providing a mean-square loss for the slope angle
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in the regression part (without an additional regression network and using a six dimensional vector
subspace for projecting feature vectors onto the regression vectors), a test prediction accuracy of
1.9° is obtained. Although the same dependent variable, e.g. the slope angle, is used for all four
classes in the present embodiment, other embodiments of the present invention may be faced
with class-dependent variables, e.g. a line segment class predicting slope angles and a circle class
predicting centre coordinates and/or radii, both dependent variables being predicted by a
classification-regression approach for which a single neural network may be trained according to
an embodiment of the present invention.

Embodiments of the present invention may further be adapted to assign a weight factor
to each feature vector component, which weight factor may depend on the task or tasks to be
accomplished. For instance, the feature vector components may be each weighted by a first
corresponding weight factor in respect of a classification task and weighted by a second
corresponding weight factor in respect of a regression task in a joint classification-regression
framework. Different weight factors for different tasks allow for emphasizing or diminishing the
impact of specific feature vector components depending on their usefulness in assisting in solving
each task.

Embodiments of the present invention may further be adapted to work with many
different known (deep) neural network architectures. For instance, a matrix-shaped output layer
comprising a plurality of channels may be connected to output layers or intermediate layers of
performant neural network architectures such as LeNet, ResNet, AlexNet, etc.

Embodiments of the present invention may implemented on a multi-core processor such
that computations may be parallelized as much as possible, e.g. parallel convolution computation
for the independent filter groups, parallel processing of several image data samples and/or their
input channels, etc. GPU arrays with local memory may be used with dedicated software for
speeding up the repeated forward and backward passes while training the neural network and
decoder network and for decreasing memory access latency. Furthermore, it is possible to exploit
parallel computing in distributed computer networks or clusters, which further reduces training
time, e.g. by implementing embodiments of the present invention in accordance with a suitable
communication protocol, e.g. MPI. Alternatively, embodiments of the present invention may be
executed on specifically designed accelerator chips to further reduce memory access latencies and
power consumption.

While the invention has been illustrated and described in detail in the drawings and
foregoing description, such illustration and description are to be considered illustrative or

exemplary and not restrictive. The foregoing description details certain embodiments of the
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invention. It will be appreciated, however, that no matter how detailed the foregoing appears in
text, the invention may be practiced in many ways. The invention is not limited to the disclosed
embodiments.

Other variations to the disclosed embodiments can be understood and effected by those
skilled in the art in practicing the claimed invention, from a study of the drawings, the disclosure
and the appended claims. In the claims, the word “comprising” does not exclude other elements
or steps, and the indefinite article “a” or “an” does not exclude a plurality. A single processor or
other unit may fulfil the functions of several items recited in the claims. The mere fact that certain
measures are recited in mutually different dependent claims does not indicate that a combination
of these measures cannot be used to advantage. A computer program may be stored and
distributed on a suitable medium, such as an optical storage medium or a solid-state medium
supplied together with or as part of other hardware, but may also be distributed in other forms,

such as via the Internet or other wired or wireless telecommunication systems. Any reference

signs in the claims should not be construed as limiting the scope.
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A computer-implemented method for training a neural network for classifying image data,

the method comprising:

providing a labelled input data set comprising a plurality of labelled image data
samples (101), the labels corresponding to a set of C image data classes;
providing a neural network (100) comprising an input layer for receiving image data
samples, at least one intermediate layer (102, 103) for functionally mapping each
received image data sample onto a point in a multidimensional intermediate
representation space, and an output layer (105, 108) for generating a plurality of
multidimensional feature vectors for each received image data sample using the
mapped point in the intermediate representation space for that image data sample as
an input, wherein a plurality of output neurons of the output layer are organized into
a set of C channels corresponding to the set of C image data classes, and individually
determined output activations of the output neurons belonging to a same channel in
the set of C channels form components of the multidimensional feature vector
corresponding to said same channel;
connecting the output layer of the neural network to an input layer (121) of a layered
decoder network (120) for reconstructing image data samples at its output;
predicting class labels, predicted class labels being selected as the label of the class
associated with the channel for which a normed distance of its corresponding feature
vector relative to a pre-determined reference point (203) for that channel is smallest;
providing a loss function for the neural network and a loss function for the decoder
network and combining them into a cost function, the loss function for the decoder
network quantifying a deviation between reconstructed image data samples and
corresponding image data samples applied at the input layer of the neural network,
and the loss function for the neural network defining, for each channel,
o a convex region (206) around the pre-determined reference point (203) for
that channel, and
o a penalization factor associated with an endpoint of a feature vector

generated for that channel and having the reference point for that channel as

point of origin, the defined penalization factor being greater outside the

convex region than inside the convex region if the class of the image data

sample for which the feature vector has been generated is corresponding to

that channel, and the defined penalization factor being zero or being greater
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inside the convex region than outside the convex region if the class of the
image data sample for which the feature vector has been generated is not
corresponding to that channel; and
- training network parameters of the neural network and the decoder network with a
training algorithm using the cost function and at least a subset of the labelled input
data set as inputs.
A method according to any of the previous claims, wherein providing a neural network
comprises providing a convolutional neural network and/or wherein the output layer
comprises sigmoid-activated neurons.
A method according to any of the previous claims, wherein providing a neural network
further comprises providing a neural network with a batch normalization layer (107)
inserted in between the output layer and a last one of the at least one intermediate layer.
A method according to any of the previous claims, wherein the loss function of the neural
network is implemented as a piecewise linear loss (301, 302).
A method according to any of the previous claims, further comprising:
- synthesizing at least one new labelled image data sample by selecting a point in the
convex region defined for any one of the C channels; and
- applying the selected point to the input layer (121) of a layered decoder network (120)
for reconstructing at its output the synthesized new labelled image data sample.
A method according to claim 5, wherein a first selected point and a second selected point
generate a first and a second reconstructed labelled image data sample, said first and
second selected point corresponding respectively to a perturbed state and an
unperturbed state of a generated feature vector generated in response to an existing
image data sample belonging to the class with which the channel corresponding to said
generated feature vector is associated, and wherein synthesizing at least one new labelled
image data sample further comprises the step of combining a deviation between first and
a second reconstructed labelled image data sample with said existing image data sample.
A method according to claim 5 or 6, further comprising repeating the steps of any of the
previous claims, wherein a plurality of synthesized new labelled image data samples are
added to or substituting the labelled input data set.
A method according to any of the previous claims, further comprising the step of
momentarily modifying the label of each labelled image data sample such that the defined

penalization factor for at least one channel, corresponding to at least one class not
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addressed by the label, is zero inside and outside the convex region (206) defined for that

at least one channel.

A method according to claim 8, wherein the at least one channel having a zero defined

penalization factor inside and outside the convex region (206) for that at least one channel

is selected as the channel for which a normed distance of the corresponding feature vector
relative to the pre-determined reference point for that channel is smallest.

A method according to claim 9, further comprising the steps:

- providing at least one alternative class label, different from the predicted class label,
as the label with which the selected channel is associated, and

- detecting an order relation between the normed distances of the feature vectors of
the at least one alternative class label and the predicted class label.

A method according to claim 10, wherein detecting the order relation further includes

verifying whether the feature vectors of the at least one alternative class label and the

predicted class label are each located inside the convex regions defined for the respective
channels.

A computer-implemented method for classifying image data, the method comprising:

- providing a neural network trained in accordance with any of the previous claims; and
applying unlabelled image data samples at the input layer of the trained neural
network and obtaining a predicted class label.

A computer program product comprising instructions which, when the program is

executed by a computer, perform the steps of a method according to any of the previous

claims.

A computer-readable data carrier comprising instructions which, when executed on a

computer, cause the computer to perform the steps of a method according to any of

claims 1to 12.

A data processing device comprising means for carrying out the steps of a method

according to any of claims 1 to 12.
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