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Abstract. We propose a phase convention for the Clebsch-Gordan coefficients
of §,, and present tables of isoscalar factors for Sz, Su, Ss. and Ss. The isoscalar
factors have been calculated from a recursion relation due to Hamermesh and
by using symmetry properties of the Clebsch-Gordan coefficients. Applications
to the study of multiquark systems are discussed.

1 Introduction

The direct product of two irreducible representations [f’] and [f”] of the
permutation group S, is also called inner product [1], since it refers to the product
of irreducible representations of the same S,,.

An important type of physical applications of the inner product is related to the
construction of n-particle wave functions when several degrees of freedom are
involved. Then, the role of the inner product is to provide an n-particle wave
function of a desired permutation symmetry [f] as a linear combination of products
of functions, each factor in the product representing a degree of freedom and
having a specific permutation symmetry compatible with the symmetry of the total
wave function. For example, for a multiquark system, the total wave function is a
linear combination of products Ry¢C, where R is the orbital part, x the spin part, ¢
the flavour part and C the colour part. It is convenient to construct a wave function
in this way whenever one has to calculate matrix elements of a Hamiltonian
factorizable into parts corresponding to different degrees of freedom.

Inner products generate Clebsch-Gordan series and Clebsch-Gordan (CG)
coefficients of S,. These coefficients can be factorized into isoscalar factors. Thus,
the determination of CG coefficients amounts to the calculation of isoscalar
factors. The purpose of this paper is to provide tables with isoscalar factors, based
on a consistent phase convention. The basic ingredients of the calculations are the
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symmetry properties of the CG coefficients and a recursion formula for isoscalar
factors. The symmetry properties are summarized in Sect. 2. The isoscalar factors
are introduced in Sect. 3. The recursion relation due to Hamermesh [1] is discussed
in Sect. 4. Our phase convention, together with results for S3, S4, S5, and Sg, are
presented in Sect. 5. The results obtained here can be used in any few-fermion
system (electrons, nucleons, quarks) containing up to six particles. An application
to a six-quark system is considered in the last section.

2 Clebsch-Gordan Coefficients

An inner product is usually reducible into a CG series defined by

EVEED DI (1)

i

where, in the right-hand side, my; represents the multiplicity of the irreducible
representation [f]. Tables of CG series for S, with n < 8 can, for example, be found
in the review paper of Itzykson and Nauenberg [2], together with a general method
of obtaining a series. A simple, practical procedure, is also presented in ref. [3].

From now on, an irreducible representation will shortly be called an irrep. Let
us denote a basis vector of an irrep [f] of S, by |[f]Y), where Y represents a Young
tableau or, alternatively, a Yamanouchi symbol r,, 7,1, ..., ;. Here, r, represents
the row of the particle n in the Young tableau Y. A basis vector belonging to the
invariant subspace of any [f] in the right-hand side of Eq. (1) is defined as a sum of
products of basis vectors of [f'] and [f”] by

1Y) = Z SUAY Y IADIF YY", (2)

where S([f']Y'[f"]Y"|[f]Y) are CG coefficients.
The transformation (2) relates two orthonormal bases, so that the CG coeffi-
cients form real orthogonal matrices

ZS([f’]Y’[f"lY”l[f]Y S AN) = 6176mm, (3)
> SUAW Y IANS (AL NAIY) = by bynyy. (4)
I

The CG coefficients of S, have some symmetry properties similar to those of the
rotation group coefficients. For [f'] # [f”] # [f], these are

S(UAY' Y |A1Y) = S Y LF 1Y £1Y), (5)
SCAYIFYAY) _ SWAY YY)
(dip) " (dipp)""?

_ SUAYIATFY)
(dipn)"”
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where djs), djs and djs are the dimensions of the irreps [f'], [f”] and [f],
respectively. In the case [f’]| = [f”]|, the property (5) must be modified by
incorporating a phase factor 4|4

ST IFIYILAY) = S Y IF1Y[£]Y), (7)

where 7 = 1 if [f]Y is contained in a symmetrized product and &5 = —1 if
|[£]Y) is contained in an antisymmetrized product (ref. [1], Sect. 7.14). For example,
for §5 one has

S([21]211[21]121|[21]121) = S([21]121[21]211|[21]121) = i\@ (8)

and

S([21)211[21]121|[1°]321) = —§([21]121[21]211][1*]321) = ﬁ (9)

In specifying the CG coefficients above, a phase convention has been used, and this
will be discussed in Sect. 4. B

There are also symmetry properties specific to S,. Denoting by [f] the conjugate
partition to [f] and by Y the conjugate Young tableau to Y, one has

S(AYF7[)Y) = (—)’1’53(—)”%( YL Y| A]Y), (10)
S(FIY PR |FIF) = (=) (=) ST Y| A1), (11)
S(FIFIF Y IAT) = (=) (=SSP LAY, (12)

where the coefficient in the left-hand side contains the normal Young tableaux and,
in the right-hand side, ny, etc. is the number of transpositions necessary to bring ¥
to a normal Young tableau (Tab. 6.1).

3 Isoscalar Factors

Any CG coefficient of S, can be factorized into an isoscalar factor, called X matrix
[1], and a CG coefficient of S,,_;. This factorization property is a particular case of
Racah’s factorization lemma specific to the chain

S I8 Sn_z D+ D5 (13)

and it can be applied to any link in the chain such that a CG coefficient of S,
becomes a product of isoscalar factors, associated to successive links, and a CG of
S» which is trivially equal to unity. Therefore, the knowledge of CG of S, amounts
to the knowledge of isoscalar factors of S, S,_1, ..., S3.

To apply the factorization property to the link S, D S,_;, it is necessary to
specify the row p of the n-th particle, and the row g of the (n — 1)-st particle in the
Yamanouchi symbol Y. If y is the distribution of the n — 2 remaining particles, one
writes

= (pgy). (14)
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Then, the isoscalar factor denoted by K is defined by
S(F1P gy """ |[flpay) = KL/ 10" P |UfIp)S ([f;z]qf If u}q”y”l[fo]qy)
(15)

where S in the left-hand side is a CG coefficient of S, and in the right-hand side of
S,—1. In the latter, [f,], etc., is a partition associated to S,—; obtained from [f] from
the removal of the n-th particle.

The orthogonality relations (3) and (4) generate orthogonality relations for the
isoscalar factors K, which read

ZK( "I0"|[f1p) K (Lf ' [f 1" |UAilpr) = 81526op (16)
> k(PP ) K (104 P IP) = oy B (17)
m

The relation (16) holds for f and f; ( f # fi) which branch from the same f,,
after the removal of the last particle. It corresponds to orthogonality of any two
columns in a given table, as one can see in the next section. Also, Eq. (16) has no
meaning for f = fi but p # p;. In Eq. (17), the sum over f includes only partitions
which also branch from the same f, after the last particle has been removed. It
therefore corresponds to orthogonality of rows in any table of the next section.

4 Recursion Formula

Before introducing the recursion formula, we first recall some properties of irreps
of S, in the standard Young-Yamanouchi representation which we need below. In
general, any permutation can be written as a product of transpositions and any
transposition can be written as a product of transpositions (i—1, i) of adjacent
numbers. Therefore, the problem of finding the irreps of S, reduces to the
knowledge of the matrices of adjacent transpositions. In the Young-Yamanouchi
representation, these have the form [3]

(i — 1, )|[flpqy) = o, |[flpay) + B2,|[flapy), (18)

where, in |[f]pgy), the particle i is in row p and i — 1 in row g, and in |[f]gpy), i and
i — 1 exchange their places. The coefficients « and 3 can be expressed in terms of
the axial distance p from i —1 to i in a Young tableau, which is given by the
number of steps obtained from trying to reach i from i — 1 by a rectangular route:
Any time one crosses a line going upwards (downwards) or to the right (left), one
counts +1 (—1). There are two situations:

I. If i — 1 and i are in the same row or column, one has

of =p,  BL,=0. (19)

2. If i — 1 and i are neither in the same row, nor in the same column,

1 57 1/2
=t == ()] (20
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For example, acting with (i — 1, i) = (34) on the basis vector |[31]2111), the
relation (18) becomes

(34)|[31]2111) = %4[31]2111) +23£|[31}1211>. (21)

By using relations similar to those for the rotation group but resulting from the
coupling (1) and thus containing irreps and CG of §,, Hamermesh applied twice
the factorization property (15) and obtained, in this way, a recursion relation which
allows the determination of isoscalar factors of §, from the isoscalar factors of
S,,_1. This relation reads

(WA K () 11 1Ula) (odpodrys — o, )
+ K10 1P K (17514 1300 131 ) ey B

+ K41 W P K (U510 151 1£:10) By
+ k(A1) K (5510510 1510) B B

= k(P19 1A10) K (114 150" |1 ) 8L (22)
where agq and f)’}fq, etc., are given by Eqgs. (19) or (20). In each term, the first K

matrix refers to §, and the second to S,_;. Combining this relation with the
orthogonality relations (16) and (17), one can determine the isoscalar factors of S,
once those for §,_; are known. The advantage of this algorithm over that of Chen
[4] is that it can be easily used by anyone with a basic knowledge of Young
diagrams while Chen’s approach is more specialized. Of course, a consistent phase
convention is very important. This will be discussed in the next section.

5 Phase Convention and Results

To our knowledge, the problem of phase convention for CG of §, is very little
discussed in the literature. Hamermesh gives some examples but does not specify a
phase convention. Like for the rotation group, a phase convention is necessary and
it must be the same for all S,. Whenever transformations between different
coupling schemes are derived, a consistent phase convention is of crucial
importance [5].

Here, we propose a phase convention similar to that of Chen [4]. It is
represented by the requirement

ST f1Y) > 0, (23)
where Y’

> €tc., are normal Young tableaux. If, for a given [f'], [f”], and [f], the
coefficient associated to the normal Young tableaux is zero, then one has to order the
Young tableaux according to Tab. 6.1 and take the first non-vanishing coefficient in
that order to be positive. In the coefficient above, there are three distinct Young
tableaux which can be varied. Our rule is that at fixed Y,,, we first keep ¥/ fixed and
vary ¥ until a non-vanishing coefficient is reached. If that is not the case yet, then
we decrease Y, according to Tab. 6.1 and at each step, we search for the first non-
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vanishing coefficient. Such a phase convention seems natural for the derivation of
CG coefficients based on Eq. (22).

Actually, to our understanding, the difference with Chen comes from the fact
that the requirement (23) is here imposed only on a restricted number of CG
coefficients. The phases of the others are automatically determined through the
symmetry properties (5)—(7) or (10)—(12). The recursion relation (22) gives
relative phases. Our results for the isoscalar factors are presented in Tabs. 6.2-6.5,
where the isoscalar factors have been grouped together in square tables, according
to the discussion following Egs. (16) and (17). We mark with an asterisk all
coefficients where the requirement (23) has been imposed. Blanc space means zero
value for K. Table 6.2 gives the isoscalar factors of S3. Here, our phases are the
same as those of Hamermesh and Chen. Tab. 6.3 covers all possible inner products
of S;. From a comparison with Chen’s tables, we find that Chen does not
implement the properties (10)—(12). For example, according to Eq. (11) and Tab.
6.1, we require

S([31]2111[22]2211|[211]3211) = —S([31]2111[22]2121|[31]1121),  (24)

where the (—) sign in the right-hand side is responsible for the negative phase of
K([31]2[22]2|[211]3) while Chen chooses this isoscalar factor to be positive
straight from Eq. (23). Tab. 6.4 contains all inner products of S5 where the
requirement (23) has to be imposed and many others. The few remaining
coefficients can be determined by using the symmetry properties (10)—(12) relating
conjugate partitions. This table covers most of Chen’s results. There are cases
where our phases are different from those of Chen, due to our direct or indirect use
(via Tab. 6.3) of properties (10)—(12). Tab. 6.5 exhibits results for S¢. Most of them
are entirely new. There are many inner products of S¢ and we made a selection
among them. These are (Tab. 4.6, ref. [3])

[51] % [51] = [6] + [51] + [42] + [411],
[51] % [42] = [51] + [42] + [411] + [33] + [321],
[51]

x [411] = [51] + [42] + [411] + [321] + [3111],
[51] x [33] = [42] + [321],
[51] x [321] = [42] + [411] + [33] + 2[321] + [222] + [3111] + [2211],
[42] x [42] = [6] + [51] + 2[42] + [411] + 2[321] + [222] + [3111],
[42] x [411] = [51] + [42] + 2[411] + [33] + 2[321] + [3111] + [2211],
42] x [33] = [51] + [411] + [33] + [321] + [2211],
[42] x [222] = [42] + [321] + [222] + [3111] + [21111]. (25)

At the beginning of this work we were especially interested in the products relevant
for the NN problem [35, 6] as, for example [51] x [222], [42] x [33], or [42] x [222].
Hence, few inner products are common to those considered in ref. [7], where no
phase convention is specified.

Most of the calculated isoscalar factors correspond to the case where the
multiplicity my of Eq. (1) is equal to one. In all these cases, the values of K are
straightforwardly obtained from the recursion relation (22). It should be mentioned
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that, in cases where m [f] # 1, Eq. (22) has myy solutions. There is no general
criterion for the SBlBC[IOl’l of the solutions. Here, we considered mz = 2 at most
(see Egs. (25)). In such cases, the two solutions are denoted by « and 3. Our
procedure was to find the solution « from the recursion relation (22) and to
determine the solution 3 by the orthogonality relation (16), i.e. the orthogonality
of the unknown column on the known columns of the corresponding square
table. We failed in solving the case of the couplings [42] x [411] — [411] and
[42] x [321] — [321]. In both cases, the solution (3 satisfies the recursion relation
(22) and the orthogonality relation (16) at the same time. The solution « does not
satisfy these relations simultaneously in neither case. For starting we had a table
with four rows and five columns, so we expected to eliminate one column only, but
we could not find which one. That is why we did not include the corresponding
table.

6 Applications

As mentioned in the introduction, the CG coefficients of §, are very handy in
constructing totally antisymmetric states for a system of n identical fermions,
especially when the system possesses more than two degrees of freedom.
Particularly interesting cases are the few quark systems. For 4 < n < 6, applica-
tions have been considered elsewhere [8—13]. Here we briefly recall the technique
of obtaining the so-called two-body fractional parentage coefficients (cfp) from
isoscalar factors and illustrate the procedure by an example of a wave function
for n = 6. Note that the two-body cfp can be used for the kinetic term as well
(ref. [11]).

In the quark case, we work in the F'S coupling scheme, where the flavour F and
the spin § are coupled together to form an intermediate representation [f] and the
orbital O and colour C degrees of freedom are also coupled together to form a
representation [f], conjugate to [f]. Then, irrespective of n, a totally antisymmetric
wave function can be written as

Y wZ( YY) FF) (26)

where n{, are given in Tab. ?.1 and df is the dimension of the irrep [f] of S,. Note
that the product d;~'/?(—)"" represents the CG coefficients appearing in the inner
product [f] x [f] — [1”]. The next step is to make explicit the content of the

intermediate couplings [f] = [f'] x [f”] for FS and OC through

A7) = Y ST Y AN T (27)

YI Yﬂ'

In calculating matrix elements of two-body operators it is convenient to rewrite
[[f]Y) and |[ f]¥) in Eq. (26) in the diagonalized Rutherford- Young-Yamanouchl
representation [3, 7], because in this representation the last pair of particles has a
definite permutation symmetry. We next use the factorization property (15) twice
for each CG coefficient of S, and introduce the K matrix (see, e.g., ref. [3])
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Table 6.1. Ordering of basis vectors for irreps of S, (n =3, 4, 5, and 6)

1] Young tableaux [f] ¥ and their phases (—)™
R D12 2) 13
3 2
(+) (=)
B 1) 123 2) 124 3) 134
4 3 2
(+) (=) +)
221 112 2 13
34 24
(+) (=)
I 112 2) 13 3) 14
3 2 2
4 4 3
(+) (—) (+)
4] 1) 1234 2) 1235 3) 1245 4) 1345
5 4 3 2
(+) (-) (+) (-)
321 1) 123 2) 124 3) 134 4) 125 5) 135
45 35 25 34 24
(+) (-) (+) (+) (=)
3111 1) 123 2) 124 3) 134 4) 125 5 135 6) 145
4 3 2 3 2 2
5 5 5 4 4 3
(+) (=) (+) (+) (=) (+)
221 1) 12 2) 13 3) 12 4 13 5) 14
34 24 35 25 25
5 5 4 4 3
(+) (- ) (+) (=)
R 112 2) 13 3) 14 4 15
3 2 2 2
4 4 3 3
5 5 5 4
(+) () (+) (=)
[51] 1) 12345 2) 12346 3) 12356 4) 12456 5) 13456
6 5 4 3 2
(+) (=) (+) (=) (+)
[42] 1) 1234 2) 1235 3) 1245 4) 1345 5) 1236 6) 1246
56 46 36 26 45 35
(+) (=) (+) (=) (+) (=)
7) 1346 8) 1256 9) 1356
25 34 24
(-+) () =)
4111 1) 1234 2) 1235 3) 1245 4) 1345  5) 1236 6) 1246
5 4 3 2 4 3
6 6 6 6 5 5
-+ =) (+) e (+) )
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Table 6.1 (continued)

7) 1346 8) 1256 9) 1356 10) 1456
) 3 ) 2
5 4 4 3
(+) (+) (=) (+)
[33] 1) 123 2) 124 3) 134 4) 125 5) 135
456 356 256 346 246
(+) (=) (+ (+) (=)
[321] 1) 123 2) 124 3) 134 4) 125 5) 135 6) 123
45 35 25 34 24 46
6 6 6 6 6 5
(+) =) () (+) (—) (=)
7) 124 8) 134 9) 125 10) 135 11) 145 12) 126
36 26 36 26 26 34
5 5 4 4 3 5
(H) (=) (-) (+) (=) =)
13) 136 14) 126 15) 136 16) 146
24 35 25 25
5 4 4 3
(+) (+) (-) (+)
[222] 1) 12 2) 13 3) 12 4) 13 5) 14
34 24 35 25 25
56 56 46 46 36
(+) (=) . &) (+) (=)
[31%] 1) 123 2) 124 3) 134 4) 125 5) 135 6) 145
4 3 2 3 2 2
5 5 5 4 4 3
6 6 6 6 6 6
() (-) (+) (+) (=) (+)
7) 126 8) 136 9) 146 10) 156
3 2 2 p.
4 4 3 3
5 5 5 4
(-) (+) (=) (+)
[2213] 1) 12 2) 13 3) 12 4) 13 5) 14 6) 12
34 24 35 25 25 36
5 5 4 4 3 4
6 6 6 6 6 5
(+) (=) (=) (+) (=) (+)
7) 13 8) 14 9) 15
26 26 26
4 3 3
5 5 4
=) (+) (=)
[214] 1) 12 2) 13 3) 14 4) 15 5) 16
3 2 2 2 2
4 4 3 3 3
5 5 5 4 4
6 6 6 6 5

—
+
—
—~
|
~—
—
+
—r
—~
L
—
+
—~
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Table 6.2. Isoscalar factors for S3. The rows give [f']p’ and [f"]p" associated to Eq. (1). The column
select those [f]p from the right-hand side of Eq. (1) which branch from the same f,. See text after Egs.

(16)-(17)
31 [21]2 [2111 [1313
[2112 [2112 V12 1/2 [21]2 [21]1 —/ 172 1/2
[21]1 [21]1 V12 /12 [21]1 [21]2 /12 =\/1)2
Table 6.3. Same as Table 6.2 but for Sy
Bl 222 [211]3
I et =IE 31]2 [31]1 /6 /13 1/2
Bu2pB12 | V13T V273 o
BULpL2 | —/1/6 V13 /12
3171 [31]1 2/3 —+/1/3
[31]1 [31]1 2/3 1/3
| [211]1 | [31)2 \ [211]1
[31]1 (31]1 ‘ 1 [31]1 [22]2 | 1 [31]1 [22]2 ’ 1
| pie2
31]1 [211]3 ‘ 1
‘ 311 [211]3 |[211]1 (144
1]2 [22 V172 —=\/1]2 [31]2 [211]1 2/3 1/3
[31]1 1/2 1/2 [B1]1 2113 | 13 —v/2/3
Bl [222  [211]3
B2 2113 | —/1/2 —/1/3 —/1/6 } [4]1
[31]1 [211]3 1/3  —\/4/6 [22]2 [22]2 ‘ 1*
[31]1 211]1 172 —/1/3 —4/1/6
’ [22]2 ‘ [1%]4 ’ 312
(22]2 [22]2 ' 1 [22]2 [22]2 ‘ 1 [22]2 [211]3 | =1
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Table 6.3 (continued)

| B i3 o
R pup | ViZ -2 ‘
[22]2 [211]1 1R /13 [22]2 [211]3 =i
[4]1 [31]2 ‘ -
RUBRUB | 273 —/1]3
[211]3 [211]3 ‘ I
[211]1 [211]1 1/3 2/3

B [222 [211]3
[211)3 [211]3 | —+/4/6 —\/1/3

[211]3 [211]1 V1/6  —/1/3 1/2
[211]1 [211]3 1/6 —/1/3 —/1/2

resulting from the two sequent factorizations. Then one has

= _K(f 191" 0"q"|Flpa)S(fy gy Fprgry"| Fra¥)
% |[f Jp’qu, I[fff]p”q”y” (28)

where the summation runs over p'q’y’ and p"q"y” (see the notation of Eq. (14)).
The CG coefficients of S,_, appearing in the r1ght—hand side of Eq. (28) are
summed up through orthonormality relations in the calculation of the two-body
operator matrix elements. Each matrix element will then be a sum of products of
two-body matrix elements and two-body cfp coefficients. In the quark context, for
a given [f], each of these coefficients is therefore a product of three K matrices,
one associated to the coupling (26) and two to Eq. (27). Each separate K matrix can
be called a cfp also.

It is useful to illustrate this procedure with the six-quark state [42],[51].¢
appearing as the dominant state in the description of the NN system at short
separation distances within the Goldstone boson exchange (GBE) model [11]. In
this case, [f] = [51]5 and we rewrite Eq. (26) in the form

[4205511ps) = V175 [[S1]512) |21 T5)
— V175 |[51]512) | 21111 15)
+V/375 [[51]511) | [21111]5045), (29)

where pg (pg) means symmetry (antisymmetry) for the 6th and 5th particles
located in the rows p and g, respectively. The coefficients in the right-hand side are
the K matrices which can be easily built by using Tabs. 6.4 and 6.5 and the
symmetry properties (10)—(12).
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Table 6.4. Same as Table 6.2 but for Ss

| M1 322 [311]3
5]1 [41]2 R .
- s 412 411 | —=/1/12 /5/12 1/2
H112 )2 L i 4101 [41)2 | —\/1/12 /5/12 —/1/2
[41]1 411 3/4 —\/1/4 [
[41]1 [41]1 5/6 1/6
[311]1 | 3211 | [41]2
[41]1 [41]1 1 [41]1[41]1‘ 1 [4111[32]2‘ 1
[41]1 [32]2 [311)3
@222 | 5/ 2/12° (/10720 | FaL 2P
[41]1 32]2 | /2/15 /5712 —/9/20 MR AL | —/38 /I8
[41]1 322 | —+/5/8 —/3/8
411 32]1 | /8/15 —/5/12 —/1/20
[3l1]1 [221]2
| [41)2
[41]1 3212 | —\/1/4 3/4
[41]1 [311]3 ‘ =1
[41]1 [32]1 | —\/3/4 —\/1/4
[41]1 3212 [311]3
[41)2 [311]3 1/3 +/10/24 /2/8
[41]1 [311]3 —\/9/24 +/3/8
[41)1 3111 | —/2/3 \/5/24 1/8
[32]1 [221]3
[41]1 [311]3 —/1/16  +/15/16
[41]1 311]1 | —\/15/16 —4/1]16
3111 [221]2  [2111)4
[412 311]1 | —+/2/8 +/10/24 1/3" [2111]1
[41]1 [311]3 | —/1/8 +/5/24 —/2/3 [41]1 [311)1 1
[41]1 311]1 | —+/5/8 —+/9/24
(322 [311]3 | [B21 [221)3
[41]1 [221]3 | —+/1/4 3/4 [412 [221]3 V38 —/3/8
[41]1 [221]2 | —/3/4 —/1/4 [41)1 [221]2 | —/3/8 —+/5/8
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Table 6.4 (continued)
(311]1 2212 [2111]4
[41)2 [2212 | /10720 /2/12 —+/5/15 \ 2111]1
[41]1 [221]3 —/1/20 —/5/12 —/8/15 [41]1 [221]2 ‘ 1
[41)1 2212 | —/9/20 /5/12 —+/2/15
221]3 | s
[41]1 21114 =] [41]1 [2111]4 | 1
[Bl1]1  [221]2 [2111]4
3
[41]2 2111]4 | /1/2 —/5/12 —/1/12 ‘ g 1S
[41]1 2111]4 —/2/12  \/10/12 a2 Ty ek 1
[41]1 [2111]4 /4 —./3/4
[41]1 [2111]1 12 /5/12  +/1/12
[411  [32]2  [311]3
| B e B i
32]2 [32]2
[32)2 [32]2 ‘ V35 V2[5 A2 P .
(22321 | —/1/3 1/6 /1)2
[32]1 [32]1 2/5 —/3/5
[32]1 3212 | —/1/3 /6 —/1/2
BLl  [221]2  [2111)4
| B 2
. [32]2 [32]2 V/4/10 V375
[32]2 [32]2 /4 /3/4
‘ [3212 [32]1 | —/3/10 —\/1/2 1/5
[32]1 [32]1 3/4 —\/1/4 :
[32]1 [32]2 V3/10 /12 —\/1/3
(2212 [2111]4  [311]1
‘[21{1]1 32]2 22113 | +/1/6 1/3 1/2
[32]1 [32)1 ‘ 1 322 [221)2 | +/4/6 —/1/3
[32]1 [221]2 1/6 13 =/12
| pug s | 2 2
[32)2 [221]2 V2/5 /375 [32]2 [221]2 1/4 —/3/4
[32]1 22113 | —/3/5 +/2/5 [32]1 [221]3 | —+/3/4 —./1/4
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[41]1 (322 [311]3
[32]2 22113 | —+/1/5 172 \/3/10
[32]2 [221]2 3/5 \/4/10
3211 2212 | —/1/5 —/1/2 +/3/10

21114 [221]2  [311]1

322 RI11J4 | —/2/15 —+/5/12 /9720

[32]2 [2111]1 V1/3 0 /2/12 /10720
V8/15  \/5/12  /1/20

[32]1 [2111)4

[221]3 [32]1
[32]2 [2111]4 5/8 /38
[32]1 [2111]1 TR L

322 [311)3

(322 21114 | —\/3/4 —\/1/4
[32]1 2111]4 | —/1/4 +/3/4

| 2
321 [221]3 ’ 1
| [
32)2 [2111)4 ’ 1
I EE

B2 BUE | V5B 3B
B2 B | —3’ /58

[41]1 322 [311]34
3212 B11]3 | —,/9/30 V127200 /17107

B2 Bl | —/5/30 —+/4/12

[32]1 [311]3 —/1/30 —+/5/12 —./3/20
[32]1 B11]1 | —4/15/30 /3/12 —+/5/20

[2111]1

—/5/10

| 2

[32]2 [311]1 1 [32]2[311)3 \ 1

B1]1, [Blljlg  [221)2

[32)2 [311]3 V3710 —/4/12
322 311]1 | /12/20 —+/1/10

[32]1 3113 | —+/5/20 V3/12

[32]1 [311]1 —/3/20 —/47/10 —/5/12 /1/30
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Table 6.4 (continued)
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[5]1 [41]2 \ [2111]1  [1°]5
BUB BB | V12" 12 [311)3 [311)1 JIZ  +f1]2
[311]1 [311]1 172 = /12 [B11]1 (3113 | —/1/2 /1/2

411 322«  [322;  [311]3

BL BB | /57127 12 /1]12
[B11]3 B11]1 | —/T/12 V312 172"
[B11]1 [311]3 | —+/1/12 V5/12  —/1]2
BB | —=+/5/12 /172 —\/1/12

321, 321 [221]3.  [221]3;

[311]3 B11]3 | —+/3/16 172 /5/16
[311]3 311]1 | —/5/16 -/3/16  /1]2
[BU1]1 311]3 | —/5/16 —/3/16 —\/1]2

[B11]1 3111 | —+/3/16 —/1/2 +/5/16

BI1 [221)2, [221]25  [2111]4

[311]3 [311]3 1/2 V512 /112
[311]3 [311]1 V172 112 —/5/12
[311]1 [311]3 172 —/1/12 /5/12
[311]1 [311]1 1/2 —/5/12 —/1/12

Table 6.5. Same as Table 6.2 but for Sg

[51]2 [51]2 1/5 4/5
[51]1 [51]1 4/5 —/1/5

[51]1
512 [51]1 | —/1/20 +/9/20
11 [512 | —+/1/20 /9720 —/1/2
[51)1 [51]1 | +/18/20 /2/20
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421 | | 512
[51]1 [51]1 1 51]1 [51]1 | 1 51]1 [42)2 | 1
[51]1 [422 4113
512 422 | 9736 /174" \/9/18"
511 (422 | /2/36 2/4  —/3/18
[51]1 42]1 | /25/36 —+/1/4 —+/1/18
[42]1 [33]2 [321]3
- - | g pan2
512 [42]1 | —+/4/25 /9/45 144/225
[51]2 [42] V425 /9] 144/ Sl 2R | /18 &
[51]1 [42]2 | —+/5/25 +/20/45 —4/80/225 o JES AT
51]1 1
[51]1 [42]1 | +/16/25 +/16/45 /1225 11 2] ! /
[321]1 \ [51]2
[51]1 [42)1 1 51]1 [411]3 | 1
511 [42)2 [411]3
[51]2 [411]3 /4 /920 /3/10°
[51]1 [411]3 -/8/20 ,/6/10
[51]1 [411]1 3/4 —\/3/20 —+/1/10
[42]1 [321]3
511 4113 | —=/1/25 /24/25"
[51)1 [d11)1 | +/24/25 /1/25
[411]1  [3212 [3111)4
512 [411]1 | —/2/15 /8/15 /1/3° ‘ [321]1
[51]1 4113 | —+/1/15 /4/15 —/2/3 [51]1 [411]1 ’ 1
[51)1 [411]1 | /12/15 +/3/15
I
3111]1 .
[51]2 [33]2 V9725 /16/25
51]1 [411]3 1

[51]1 [33]2

V16/25 —+/9/25
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Table 6.5 (continued)

| @ | 212 N
[51]1 [33]2 ‘ 1 [51]1 [33]2 ‘ 1 [51]1 [33]2 I = |
[42]2  [411]3
[51]1 [321]3 | —/1/4 /3/4
[51]1 [321]2 3/4 1/4
[42]1 (33]2 [321]3, [321]34

[51]2 [321]3 V1447400 /16/80  +/3/25°  +/64/200°

[51]1 [321]3 V17400 —/9/80 —\/12/25 /81/200
[51]1 [321]2 \/30/400  +/30/80 —4/10/25 —./30/200

[51]1 [321]1 /2257400 —./25/80 —+/25/200
[321]1, [321]1, [222]3 [2211]4
[51]2 [321]1 V3725  /64/200 —+/16/80 +/144/400
[51]1 [321]3 V/25/200 —+/25/80 —+/225/400
[51]1 [321]2 V10725 /30/200 +/30/80  —./30/400
1]

[51]1 [321]1 —/12/25 /817200 +/9/80 4/ 1/400

4111 [321)2, [321]23 [3111]4

[51]2 [321)2 | +/16/48 —/1/3 —/16/48
[51]1 [321]3 | +/1/48 —\/1/3 1/8 /25/48
[51]1 [321]2 | +/6/48 —/6/8 /6/48
[51]1 [321]1 | +/25/48 1/3 /8  +/1/48
[B111]1  [2211]2 \ [2211)4 [321]1
[51]1 [321]2 V174 \/3/4 [51]2 [222]3 —/9/25 —./16/25
51]1 [321]1 3/4 —\/1]4 [51]1 2223 | —+/16/25  \/9/25
321]3 | 212 | 21

[51]1 [222]3 -1 [51]1 [222]3 1 I [51]1 [222]3 ‘ =
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Table 6.5 (continued)

61 [51]2
422 (4212 | 4/9" /579
21 4201 | V/5/9 /49

511 [42]2, [4223  [411)3
[42)2 [42]2 | /10/36 /274  /2/9"
[42)2 [42]1 | —\/5/36 +/1/& —/1]9 /172
421 4212 | —/5/36 /1/4 —/1]9 —/12
[42]1 [42]1 | +/16/36 =/57Y

[42]1.  [42015  [321]3,  [321]3g
[42]2 [42]2 1/5 —+/4/45 \/64/90"
[42]2 [42)1 —/20/45 /1/2° —/5/90
[42]1 [42)2 —\/20/45 —\/1]2 —/5/90
[42]1 [42]1 4/5  \/1/45 —/16/90

B21]1, [321]15  [2223
422 421 | =12 J1/18  +/4/8°
[42]1 [42]2 172 +/1/18 4/9
[42]1 [42]1 V16/18  —/T/9

32112, [321]25 [411]1  [3111]4
[42]2 [42]2 /327162 V25/81 /40781
[42]2 [42]1 V257162 /12 /881 —./20/81
[42]1 422 | —+/25/162 +/1/2 —./8/81 +/20/81
[42]1 421 | —+/B0/162 V40/81  —/1/81

[3111)2

[42]1 [42]1

-1

Fl. Stancu and S. Pepin
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Table 6.5 (continued)
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[42]1 [33]2 [321]3, [321]35
[42]2 [411]3 V215 /8/45°  \/64/225° /24]135°
[42]2 [411]1 V8/75  \/12/45  —./6/225 —./81/135
[42]1 [411]3 —+/10/45 /125/225 —./30/135
[42]1 [411]1 VA40/75  —/15/45 —./30/225
[321]14 [321]14 [2211]4
42]2 [411]1 | —+/10/15 +/15/225 /20/75
[42]1 [411]3 V3/15  —\/18/225 /54/75
[42]1 [411]1 V2/15 /1927225 /175
[BlI1]1  [2211]2
| 512
[42]2 [411]1 1/3 2/3 2l P13 ‘ o
[42]1 [411]1 2/3 —/1/3
[51)1 [42]2 [411]3, [411]34
[42]2 [411]3 | —/8/36 V100/135°  \/6/162
[42]2 [41171 V/3/36  +/25/60 \/81/162
[42]1 [411]3 | —/1/36 —+/27/60 —/8/135 +/75/162
[42]1 [411]1 V24736 —./8/60  /27/135
511 [411]3 G
M2 332 | /59 +/4/9 22332 | VA9 59
[42]1 [33]2 4/9 —\/5/9 [42]1 3312 | —/5/9 +/4/9
B3z g
[51)2 a .
[M212 332 | V379" /5/9
[42]1 [33]2 1
[42]1 [33]2 5/9 —\/4/9
[321]1 [2211}4
| 2112
M2332 | V15 VA5 al [33]2‘ 1
[42]1 [33]2 | —/4/5 1/5
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Table 6.5 (continued)

o | pup

g “22 2223 | VA5 V15
[42]1 [222]3 1

[42]1 [222]3 /5 +/4/5

321]1  [222]3 ‘ 3212 31114
M2 22213 | V59 VAP [42]2{ }3 V39 VA9
[42]1 [222]3 | —\/4/9 +/3/9 [42]1 479 \/5/9

[B111]1 2145

{ 2141
ez 223 | VAR 5P [42]1 [222]3 ‘ 1
[M2]1 2223 | —/5/9 —/4/9
Next we write explicitly the decoupling [21111] — [42], x [222]. by using

the K matrices of Tab. 5 of ref. [5]. This gives'

1[42],[51]s) = V/1/5 (v/2/3|[42],11) |[222]:33)
+/1/3[[42]512) |[222]:23))|[51]512)
— V/1/5|[42]512) |[222]23) [[51]s12)
+/3/5(—/4/27|[42] 11} |[222):23) [[51] r511)
+1/6/27 |[42] ,12) |[222] 223) | [51] 5 11)
+ \/5—/2_7“42]02_2) \[222]c23> [51]p11)
— /12727 [[42]512)|[222]:33) |[51] r511)).- (30)

In a similar way, one can also introduce the decoupling [51] 5 — [33] x [42], for
isospin I = 0 and spin S = 1 for example, by using the K matrices of Tab. 1 of ref.
[5]. Note that at any stage the last pair of particles must be in a totally
antisymmetric state. For example, in the first term of Eq. (30) the pair is symmetric
in the orbital and colour space but antisymmetric in the FS space.

Finally, it is necessary to test the consistency of the phase convention
introduced here. A possibility is to look at the off-diagonal matrix elements
calculated in the truncated space chosen for the diagonalization of a Hamiltonian
model. For example in ref. [11], where the GBE model [14-16] has been used, in

! In Eq. (30) we used K([42]12[222]23|[21111]15) = 1/1/3 instead of —/1/3 inadvertently printed
in ref. [5]
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the SUr(3) exact limit, the 7, K, and 1 exchanges should contribute equally. Then,
in this limit, the off-diagonal matrix elements, neglecting the contribution of 77/,
should be identically zero. Another test is the construction of unitary trans-
formations between different coupling schemes, as mentioned in Sect. 5 (see, e.g.,
ref. [5]). These two tests have been satisfied in our studies.

Acknowledgement. This work is dedicated to H. Arenhdvel, as a recognition for his contributions to
Few-Body Physics.
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