Resolving the host galaxy of a distant blazar with LBT/LUCI 1 + ARGOS

E. P. Farina,1* I. Y. Georgiev,1 R. Decarli,1,2 T. Terzić,3 L. Busoni,4 W. Gässler,1 T. Mazzoni,4 J. Borelli,1 M. Rosensteiner,5 J. Ziegleder,5 M. Bonaglia,4 S. Rabien,5 P. Buschkamp,6 G. Orban de Xivry,5 G. Rahmer,7 M. Kulas1 and D. Peter1,8

1Max Planck Institut für Astronomie, Königstuhl 17, D-69117 Heidelberg, Germany
2Osservatorio Astronomico di Bologna, via Gobetti 93/3, I–40129 Bologna, Italy
3Department of Physics, University of Rijeka, Radmile Matejić 2, HR-51000 Rijeka, Croatia
4Osservatorio Astrofisico di Arcetri, Largo Enrico Fermi 5, I-50125 Florence, Italy
5Max Planck Institut für Extraterrestrische Physik, Giessenbachstrasse 1, D-85748 Garching, Germany
6Buschkamp Research Instruments, Elisabethstrasse 2, D-80796 München, Germany
7LBT Observatory, University of Arizona, 933 N. Cherry Ave, Tucson, AZ-85721, USA
8Heidelberg Instruments Mikrotechnik GmbH, Tullastrasse 2, D-69126 Heidelberg, Germany

Accepted 2018 January 18. Received 2018 January 15; in original form 2017 October 14

ABSTRACT
BL Lac objects emitting in the very high energy (VHE) regime are unique tools to peer into the properties of the extragalactic background light (EBL). However, due to the typical absence of features in their spectra, the determination of their redshifts has proven challenging. In this work, we exploit the superb spatial resolution delivered by the new Advanced Rayleigh guided Ground layer adaptive Optics System (ARGOS) at the Large Binocular Telescope to detect the host galaxy of HESS J1943+213, a VHE emitting BL Lac shining through the Galaxy. Deep H-band imaging collected during the ARGOS commissioning allowed us to separate the contribution of the nuclear emission and to unveil the properties of the host galaxy with unprecedented detail. The host galaxy is well fitted by a Sersic profile with index of $n \sim 2$ and total magnitude of $H_{\text{Host}} \sim 16.15$ mag. Under the assumption that BL Lac host galaxies are standard candles, we infer a redshift of $z \sim 0.21$. In the framework of the current model for the EBL, this value is in agreement with the observed dimming of the VHE spectrum due to the annihilation of energetic photons on the EBL.

Key words: instrumentation: adaptive optics – BL Lacertae objects: individual: HESS J1943+213 – infrared: galaxies.

1 INTRODUCTION
In the classical unified model, blazars constitute a class of active galactic nuclei (AGNs) viewed at small angles from the jet axis (Blandford & Rees 1978; Antonucci 1993; Urry & Padovani 1995). Traditionally, blazars have been further split into two subclasses based on the strength of the features present in their optical spectra. While flat-spectrum radio quasars (FSRQs) show emission lines with equivalent width $\gtrsim 5$ Å, in BL Lacertae objects (BL Lacs) the non-thermal synchrotron radiation of the jet completely dominates the optical/UV emission, ending up in a typical featureless power-law spectrum. This makes the determination of their redshift via the detection of absorption/emission lines from the nuclear emission and/or from the host galaxy particularly challenging, even with 8–10 m class telescopes (e.g. Sbarufatti et al. 2005a, 2006, 2009; Landoni et al. 2013; Sandrinelli et al. 2013; Shaw et al. 2013; Falomo, Pian & Treves 2014; Pita et al. 2014; Paiano et al. 2016; Rosa-Gonzalez et al. 2017 for a review). In past years, several alternatives have been proposed to constrain the redshift of BL Lac objects, including the detection of intervening absorption features either from the halo of lower redshift galaxies (e.g. Shaw et al. 2013; Landoni et al. 2014) or from the neutral hydrogen in the intergalactic medium (e.g. Danforth et al. 2010; Furniss et al. 2013); the spectroscopy of galaxies in the environment where the blazars are embedded (e.g. Muriel et al. 2015; Farina et al. 2016); the detection of molecular emission lines from the host galaxy (e.g. Fumagalli et al. 2012); the study of the effect of the interaction with the extragalactic background light (EBL) in the blazar emission in the GeV and TeV domain (e.g. Prandini et al. 2010; Prandini, Bonnoli & Tavecchio 2012). In particular, the narrow distribution in luminosity of BL Lac host galaxies (Urry et al. 2000; Sbarufatti, Treves & Falomo 2005b) opened the possibility to use them as standard candles, and thus to measure their distance via broad-band imaging.

* E-mail: emanuele.paolo.farina@gmail.com

© 2018 The Author(s)
Published by Oxford University Press on behalf of the Royal Astronomical Society
The central 3 arcmin × 3 arcmin region around HESS J1943+213 as imaged in the H Band with LBT/LUCI1+ARGOS (north is up and west is to the right). Marked with a circle is the position of the blazar (corresponding to the source located at R.A.\(_{2000}\) = 19:43:57.63 and Dec.\(_{2000}\) = +21:18:31.5 in the 2MASS catalogue; Cutri et al. 2003). The large field of view of LBT/LUCI1+ARGOS and the location of the source close to the Galactic plane (with Galactic latitude \(b = -1.2947\)) allowed us to sample well and build good PSF model (see Section 3).

Correction for persistence and non-linearity was performed using pixel maps as described in Georgiev et al. (in preparation). In total, we combined 228 individual exposures, each of DIT = 2.8 s. The short DIT was required to avoid badly saturating foreground stars and avoiding strong persistence. The final image registration and combination were performed with our custom wrapper routine built around the main IRAF tasks geomap, geotran, imcombine. During the final geometric image transformation and combination, we used a drizzle drop fraction of 0.8 and a 20×20 pixels statistics region to check additionally for residual background variation between the individual exposures.

The resulting image\(^1\) (see Fig. 1) was then WCS registered using the astrometry.net tool (Lang et al. 2010) and calibrated in flux matching sources detected in the field with the 2MASS catalogue (Cutri et al. 2003). We adopted the conversion from Vega to AB magnitudes from Blanton et al. (2005). Uncertainties in the zero-point are of the order of 0.06 mag. The 3σ detection limit for a point source (estimated from the rms of the sky counts integrated over the radius of an unresolved source, i.e. 1.1 pixel) is \(H_{\text{lim}} \approx 23.5\) mag. We consider the reddening correction from Schlafly & Finkbeiner (2011) \([E(B-V) = 2.30\) mag, towards the location of the blazar]. Assuming a visual extinction to reddening ratio of \(R_V = A_V/E(B-V) = 3.1\) (e.g. Cardelli, Clayton & Mathis 1989; Fitzpatrick 1999) and the Cardelli et al. (1989) extinction curve, this corresponds to an H-band extinction of \(A_H = 1.30\) mag. The dust extinction in this region of the Galaxy, however, is not well constrained. For instance, a much lower extinction \([E(B-V) = 1.76\) mag] is reported by Green et al. (2015) for the same region of the sky. In the following, we thus consider that the H-band extinction can vary from \(A_{H,\text{min}} = 1.19\) mag and \(A_{H,\text{max}} = 1.62\) mag, corresponding, respectively, to the minimum and maximum values of \(E(B-V)\) observed within a circle of 5 arcmin radius centred at the location of HESS J1943+213 (Schlafly & Finkbeiner 2011).

\(^1\) The reduced image is publicly available at https://github.com/EmAstro/LBT_ARGOS

Figure 1. The central 3 arcmin × 3 arcmin region around HESS J1943+213 as imaged in the H Band with LBT/LUCI1+ARGOS (north is up and west is to the right).
The host galaxy of HESS J1943+213

Figure 2. Results from the point source and host galaxy modelling of the blazar HESS J1943+213. Left: thumbnail of the LBT/LUCI 1+ARGOS H-band image centred at the blazar location. For display purposes, the best fit of the background provided by GALFIT has been removed. In all panels, north is up and west is right. Central: the best-fitting GALFIT model. The PSF model was created as described in Section 3. The host galaxy light appears to follow a Sérsic profile with index $n = 2.2$ and effective radius $R_e \sim 1.1$ arcsec. The derived total magnitude of the host galaxy is: $H_{\text{Host}} = 16.15$ mag (not corrected for Galactic extinction). An independent analysis performed with IMFIT results in a similar solution for the fit. Right: residuals after model subtraction. The residual image shows a source located at 0.6 arcsec west from the centre of the blazar. We masked it during the fitting process in order to avoid contaminating the extended emission from the host galaxy.

3 SUBTRACTION OF THE PSF

The model of the PSF was built by using 68 Milky Way foreground stars. They were chosen to have no contamination from neighbours within the radius of the PSF model, to sample well the detector and build a spatially variable PSF. As mentioned in Section 2, the NGS is projected very close to our blazar and is in the centre of the LUCI 1 field. This guarantees a very stable and sharp PSF, although, as shown in Georgiev et al. (in preparation), its global variation is up to 25 per cent towards the detector edges.

This PSF model was then ingested into GALFIT (version 3.0.5; Peng et al. 2010) in order to infer the properties of the extended emission around HESS J1943+213. To avoid contamination from nearby objects, we masked all sources present within a 10 arcsec radius from the blazar, including the faint, unresolved object located 0.6 west from HESS J1943+213 (see Fig. 2). As a first step, we assumed the source as unresolved. In this case, the entire emission would fall within our PSF model. The fit of a pure PSF (representing the central, unresolved nuclear emission) and of the sky background leave, however, significant residuals, confirming the presence of an extended emission (see Fig. 3). In addition to the PSF model and to the sky emission, we thus simultaneously fitted a galaxy component modelled with a Sérsic profile (Sérsic 1963). This second approach leaves only negligible residuals. Results of the fitting procedure are shown in Figs 2 and 3 and summarized in Table 1.

4 PROPERTIES OF THE HOST GALAXY

Table 1 summarizes the results of our fit. The nuclear (unresolved) emission is $H_{\text{PSF}} = 18.10$ mag, while the host galaxy appears to be brighter with $H_{\text{Host}} = 16.15$ mag. The derived values for the effective radius ($R_e = 1.13$ arcsec) and for the Sérsic index ($n = 2.20$) are in contrast with the 2.0 arcsec $\lesssim R_e \lesssim 2.5$ arcsec and $n \sim 8$ estimated by Peter et al. (2014). These were derived from the analysis of a Ks-band image collected with the wide field camera OMEGA2000 on the 3.5 m Calar Alto telescope. The smaller values we recover for both R_e and n are consistent with an independent analysis performed with the IMFIT package (Erwin 2015), where instead of masking it, we also fit for the source (star) projected close to the blazar. We argue that the discrepancies between the Peter et al. (2014) and our study are due to the much higher spatial
resolution delivered by ARGOS. \(^2\) In addition, Peter et al. (2014) model the blazar emission with a single Sérsic profile (i.e. without removing the PSF). An underestimate of the contribution from the nuclear emission may explain the high Sérsic index observed in the OMEGA2000 image.

Given the magnitude of the host galaxy, we can now estimate the redshift of HESS J1943+213, using the typical absolute magnitude of BL Lac host galaxies as a standard candle. Indeed, Sbarufatti, Treves & Falomo (2005b) showed that, at \(z < 0.7\), the distribution of the rest-frame \(R\)-band absolute magnitude of BL Lac host galaxies is almost Gaussian, with an average of \(\langle M_R \rangle = -22.6\) and standard deviation \(\sigma_M = 0.5\). To translate, as a function of redshift, the observed \(H\)-band apparent magnitude into an \(R\)-band absolute magnitude, we considered the Mannucci et al. (2000) elliptical galaxy template and a passive evolution of the stellar population (Bressan, Granato & Silva 1998). This allowed us to find at which redshift the observed magnitude of the host galaxy match \(M_R = -22.6\). Assuming \(A_H = 1.30\) mag, we derive a redshift \(z = 0.21\) (varying from \(z = 0.17\) to 0.28 for \(\langle M_R \rangle = -22.6\) and \(\sigma_M = 0.5\), respectively). At this redshift, the physical effective radius of the host galaxy is \(R_e = 3.9\) kpc. We also took into account the effects of the uncertainties in the Galactic extinction presented in Section 2. These led to slightly different results, ranging from \(z = 0.23\) for \(A_H = 1.19\) mag to \(z = 0.18\) for \(A_H = 1.62\) mag (see Fig. 4).

5 SUMMARY AND CONCLUSIONS

We obtained deep LBT/LUCI \(H\)-band imaging of the blazar HESS J1943+213 detected by HESS in the VHE domain. The superb spatial resolution (FWHM = 0.26 arcsec) delivered by the new AO system, ARGOS, allowed us to precisely separate the unresolved nuclear component from the extended host galaxy emission.

The host galaxy of HESS J1943+213 appears round (with an axis ratio of \(\sim 0.92\)), with a Sérsic index \(n \sim 2.2\), and with \(H\)-band magnitude of \(H_{\text{Host}} \sim 16.15\) mag. Assuming the host galaxy as a standard candle, we locate HESS J1943+213 at \(z \sim 0.21\), or, more conservatively, in the redshift range \(0.14 < z < 0.30\) (considering variation of the typical luminosity of BL Lac host galaxies and uncertainties in the Galactic extinction). This range is consistent with the limits set by comparing measured spectra in high energy (HE, \(E < 100\ \text{GeV}\)) and VHE (\(E > 100\ \text{GeV}\)) ranges (see e.g. Stecker, Scully & Malkan 2016). Assuming any difference between the two was a consequence of absorption of the VHE \(\gamma\)-rays by the EBL, Peter et al. (2014) were able to set the upper limit to \(z < 0.45\), with the most likely value of \(z = 0.22\). Our result agrees very well with their estimate, and our upper limit of \(z < 0.30\) is well below the one set by Peter et al. (2014). The spectra measured by VERITAS (Shahinyan 2017) in the 2014–2015 period are slightly harder, although consistent with HESS measurements. Therefore, the extrapolated and EBL-attenuated Fermi-LAT spectrum should also fit VERITAS spectral points. Despite the fact that we set the most stringent limits on redshift up to date, the uncertainties are still rather high, allowing for the measured VHE spectra to be a result of combination of intrinsic spectral features and the EBL absorption.

In addition, we detect a source located only 0.6 arcsec west from the BL Lac. Although it is very likely a foreground star, if it is at the same redshift as HESS J1943+213, this corresponds to a physical distance of \(\sim 2.1\) kpc. This may be suggestive for a rich environment, as commonly observed around other BL Lac host galaxies (e.g. Muriel 2016).

Acknowledgements

EPF acknowledges funding through the ERC grant ‘Cosmic Dawn’. EPF is grateful to T. A. Gutcke for introducing and providing support for an efficient use of PYTHON and of JUPYTER NOTEBOOK for analysing and plotting the data. This research made use of ASTROPY, a community-developed core PYTHON package for Astronomy (Astropy Collaboration et al. 2013), of APLPY,\(^3\) an open-source plotting package for PYTHON based on MATPLOTLIB (Hunter 2007), and of IRAF.\(^4\) Based on observations collected at the LBT, the LBT is an

\(^2\) Seeing during the observations of HESS J1943+213 at Calar Alto was between 1.1 and 1.6 arcsec.

\(^3\) http://aplpy.github.io/

\(^4\) IRAF (Tody 1986, 1993) is distributed by the National Optical Astronomy Observatories, which are operated by the Association of Universities for Research in Astronomy, Inc., under cooperative agreement with the National Science Foundation.