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Disclaimer

The following applies only for the learning protocol of the Flavours
of Physics Kaggle challenge (Blake et al., 2015).

See (Louppe and Head, 2015) for the notebook explanations.
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Flavours of Physics: Finding τ 7→ µµµ challenge

Given a learning set L of

• simulated signal events (x, s)

• real data background events (x, b),

build a classifier ϕ : X 7→ {s, b} for distinguishing τ 7→ µµµ signal
events from background events.
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Control channel test

The simulation is not perfect: simulated and real data events can
often be distinguished.

To avoid exploiting simulation versus real data artefacts to classify
signal from background events, we evaluate whether ϕ behaves
differently on simulated signal and real data signal from a control
channel C.

Control channel test: Requires the Kolmogorov-Smirnov test
statistic between {ϕ(x)|x ∈ Csim} and {ϕ(x)|x ∈ Cdata} to be
strictly smaller than some pre-defined threshold t.
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Loophole

If control data can be distinguished from training data, then there
exist classifiers ϕ exploiting simulation artefacts to classify signal
from background events, for which the control channel test
succeeds.

Therefore,

• The true performance of ϕ on real data may be significantly
different (typically lower) than estimated on simulated signal
events versus real data background events.

• Passing the KS test should not be interpreted as ϕ not
exploiting simulation versus real data artefacts.
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Toy example

Let us consider an artificial classification problem between signal
and background events, along with some close control channel
data Csim and Cdata.

Let us assume an input space defined on three input variables X1,
X2, X3 as follows.
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X1 is irrelevant for real data signal versus real data background,
but relevant for simulated versus real data events.
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X2 is relevant for background and non-background events.
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X3 is relevant for training versus control events, but has otherwise
no discriminative power between signal and background events.
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Random exploration

def find_best_tree(X_train, y_train, X_test, y_test,

X_data, y_data, X_control_sim, X_control_data):

best_auc_test, best_auc_data = 0, 0

best_ks = 0

best_tree = None

for seed in range(2000):

clf = ExtraTreesClassifier(n_estimators=1, max_features=1,

max_leaf_nodes=5, random_state=seed)

clf.fit(X_train, y_train)

auc_test = roc_auc_score(y_test, clf.predict_proba(X_test)[:, 1])

auc_data = roc_auc_score(y_data, clf.predict_proba(X_data)[:, 1])

ks = ks_statistic(clf.predict_proba(X_control_sim)[:, 1],

clf.predict_proba(X_control_data)[:, 1])

if auc_test > best_auc_test and ks < 0.09:

best_auc_test = auc_test

best_auc_data = auc_data

best_ks = ks

best_tree = clf

return best_auc_test, best_auc_data, best_ks, best_tree
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Random exploration

auc_test, auc_data, ks, tree = find_best_tree(...)

>>> auc_test = 0.9863 # Estimated AUC (simulated signal vs. data background)

>>> ks = 0.0578 # KS statistic < 0.09

What just happened? By chance, we have found a classifier that

• has seemingly good test performance;

• passes the control channel test that we have defined.

This classifier appears to be exactly the one we were seeking.

Wrong. The expected ROC AUC on real data signal and real data
background is significantly lower than our first estimate, suggesting
that there is still something wrong.

>>> auc_data = 0.9097 # True AUC (data signal vs. data background)
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ϕ exploits X1, i.e. simulation versus real data artefacts to
indirectly classify signal from background events, while still passing
the control channel test because of its use of X3!
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Winning the challenge
1. Learn to distinguish between training and control data,
2. Build a classifier on training data, with all the freedom to

exploit simulation artefacts,
3. Assign random predictions to samples predicted as control

data, otherwise predict using the classifier found in the
previous step.

The reconstructed mass allows to distinguish signal from
background and training from control!
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A machine learning response

As simulated training data increases (i.e., as N →∞),

1

N

∑
xi

L(ϕ(xi ))→
∫

L(ϕ(x))psim(x)dx.

We want to be good on real data, i.e., minimize∫
L(ϕ(x))pdata(x)dx.

Solution: importance weighting.

ϕ∗ = arg min
ϕ

1

N

∑
xi

pdata(xi )

psim(xi )
L(ϕ(xi ))
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Density ratio estimation

But for signal events, we don’t even have real data observations!

Assumption:
pdata(x)

psim(x)
≈ pdata-control(x)

psim-control(x)
= r(x)

In the likelihood-free setting, estimating r(x) is known as the
density-ratio estimation problem. Same as

• Learning under covariate shift,

• Probabilistic classification,

• Likelihood-ratio test,

• Outlier detection,

• Mutual information estimation, ...

See Sugiyama et al. (2012) for a review.
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Conclusions

• Formulating appropriate machine learning tasks is difficult.

• On purpose or unwillingly, simulation versus real data
artefacts could be exploited to maximize classifiers accuracy.

• Physically more correct classifiers can be obtained e.g. with
density-ratio reweighting.
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