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Abstract: The energy functional of the Skyrme interaction is employed to calculate the real part of the
interaction potential between magic nuclei in the sudden approximation. The use of an approxima-
tion introduced by Kirzhnits and others for the kinetic energy density produces improvements over
the previous results. The mass dependence of the potential is analysed and its consistency with the
proximity potential is discussed.

1. Introduction

The Skyrme interaction energy functional !) provides a convenient basis for the
calculation of the interaction potential between two nuclei. In static calculations
several methods have been employed: the self-consistent method ™), the adiabatic
approximation *), the frozen configuration assumption *®). Up to now antisymmetri-
zation effects ®7), the role of the relative motion between the two nuclei **®°) and
mutual polarization effects*”) have been discussed. While the more elaborate
methods of refs. 27%) are limited to symmetric and not too heavy systems
(up to *°Ca+*°Ca) due to numerical difficulties, the methods where the single
particle densities do not change during the collision *~#) can easily be extended to
any pair of nuclei. A problem which arises in the latter case is to find an adequate
approximation to the kinetic energy density.

The purpose of this paper is twofold. The first is to look for an improvement to the
Thomas-Fermi approximation to the kinetic energy density which was used in earlier
work ®). The second is to study the validity of the proximity form of a nucleus-nucleus
potential derived within the Skyrme interaction energy functional.

In sect. 2 we describe the kinetic energy approximation. We show its effect is to
improve the calculated potential in the barrier region.
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In sect. 3 we derive a proximity type form for our potential and discuss the
importance of the curvature corrections. Sect. 4 is a summary of the results.

2. The kinetic energy approximation

We are calculating the real part of the nucleus-nucleus potential according to the
formalism of ref, 8). There the interaction potential between two nuclei 1 and 2 was
defined as the integral

V(R) = J[H(p,‘r)—H(purl)*H(pz,fz)}dh (1)

where R is the separation distance between the centres of the interacting nuclei and
H(p, 7) is the Skyrme interaction energy density h).

In ref. 8) we have calculated the interaction potential between two nuclei in the
sudden approximation, i.e. taking the density p of the composite system as the sum
of individual densities p, and p,. The kinetic energy density t can be defined as

=Y Vil @)

i
or as

¢ = = LUV, ©

where 1, are the wave functions of the occupied neutron or proton single particle
states. The quantities (2) and (3) are related by © = v'+3V?p.
In ref. 8) we have shown that the Thomas-Fermi approximation,

e = 3300 2Pp%, (4)

is quite a reasonable approximation to ¢’ and we have used it for the description of
both the composite system and individual kinetic energy densities. The effect of this
approximation is to replace H(p,t) by a function H(p) depending only on the
density p.

Using (4) for the composite system has the advantage of including a large part of
the exchange effects due to antisymmetrization between nuclei as compared to the
case 7' = 7|+, where the antisymmetrization is switched off ).

According to Randrup '°) one might expect the TF approximation to better
reproduce the quantity $(t+ 1) instead of 7". For the Hartree-Fock densities used in
the present section and calculated with the Skyrme interaction SITI [ref. )] this is
the case only in the tail region where both 74 and L1+ 1) are positive while ¢’ is
negative. An example is given in fig. 1.

The use of (4) for 7’ or even for 1{z +1') does not give satisfactory results, producing
a potential not deep enough at the barrier. That is why we investigate here another



NUCLEUS-NUCLEUS POTENTIALS 323

0 (neutrons)

ke.x10® (fm™)

36 40 4L 4B
r {fm)
Fig. 1. The neutron k.. density for '*0: 7’ — the exact k.e. density of eq. (3), 7; — the Thomas-Fermi
approximation (eq. (4)), Ty — the Kirzhnits approximation (eq. (5)), 4(z+1) — an average density with t
and 7’ from egs. (2) and (3) respectively.

approximation to the k.e. density namely one due to Kirzhnits %) and others [see
refs. 13 14)]. This approximation consists in adding correction terms to 71 of eq. (4)

g = T tae(YO) /P —EV2p. (5)

The second term represents the Weizsicker correction !®). Fig. 1 shows a typical
example of the validity of the approximation (5) in the k.e. density tail which is the
significant region for the calculation of the potential around the barrier. One can see
that 7y follows quite closely the exact density ¢’ of '°O while t,¢ lies far above it.
Expression (5) affects the terms in 7" and pt’ of the Skyrme interaction energy
functional. The main change in the potential around the barrier comes from the
pure k.e. term where only the Weizsicker correction contributes.

Preliminary calculations showing the effect of using the eq. (5) for 7" were presented
elsewhere 1) for some specific pairs of nuclei. In this paper we preform calculations
for all pairs of spherical nuclei. The characteristic shape of the potential is shown in
fig. 2 for ®°Zr+2°%Pb and the results are summarized in table 1. The part of the
calculated potential between the inflexion point and the barrier was parametrized ®)
by a Saxon-Woods shape with parameters ¥;,, R, and T indicated in columns 2-4.

In column 5 there are the values ¥V of the calculated potential at the barrier
positioned at Ry, (column 6). By comparison with table 3 of ref. ®), one can notice that
7y produces a deeper potential and shifts the barrier position outwards by about
0.3 fm in each case. This means an increase of V,,,./V,,, at the strong absorption
radius by a factor of 2 with respect to our previous calculations. But still from some
of the existing experimental data it turns out that the ratio ¥, /V,,, is of the order

xp
0.7-0.8. An example of the fit to experimental elastic scattering cross section for
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Fig. 2. The interaction potential for °°Zr+2°%Pb as a function of R. The full curve represents our exact
result and the points are the proximity potential of ref. '?). The crosses are the proximity approximation
(eq. (7)) with our geometrical parameters and the values of ¢,( S,) from column 3 table 4.

TABLE |

The nucleus-nucleus potential

Pair R Vs R, T Vy Ry ¥ b

(fm) (MeV) (fm) (fm) (MeV) (fm) (MeV/fm?)  (fm)

0 1 '%0 1.33 40.48 5.65 0.66 — 097 8.1 0.92 0.7981

160 4=*9Ca 1.55 46.93 6.80 0.658 — 2114 8.8 0.91

60 +48Ca 1.59 50.25 7 0.659 - 1.99 9.1 0.96

16Q 4+ 3ONi 1.63 99.82 7.25 0.648 = 271 9.1 0.94

By =207 1.74 54.87 8.04 0.662 — 3.59 9.8 0.94

160 4 298pp 1.91 61.87 9.8 0.675 — 531 11.4 0.95

40Ca +4°Ca 1.87 60.35 7.85 0.668 — 471 9.5 0.95 0.8525

“0Ca+*8Ca 1.93 69.1 8.07 0.668 — 447 9.8 0.99

40Ca +3%Ni 1.98 64.49 8.3 0.661 — 6.02 9.8 0.98

40Cq 4+ 99Zr 2.15 71.74 9.1 0.672 — 795 10.5 0.99

40Ca+298pp 242 86.1 10.81 0.696 —13.19 12 1.02

48Ca 4+ *8Ca 1.99 61.32 8.32 0.656 — 381 10.1 0.93 0.8525

+8Ca 4+ 3°Ni 2.04 69.75 8.5 0.663 = 575 10.1 1.02

“8Ca 471 2.23 71.55 9.34 0.666 — T8 10.8 0.96

“8Ca+2%%pp  2.51 80.31 11.07 0.679 —12.76 12.2 0.94

SONi+ FNi 2.10 67.59 8.78 0.646 = .95 10.1 0.99 0.8525

S6Nj+20Zr 2.29 76.66 9.56 0.663 —10.21 10.8 1.00

SONi4+2%8Ph  2.60 92.02 11.28 0.684 —19.02 12.2 1.03

90714 307y 2.53 84.16 10.35 0.676 —14.69 114 0.99 0.8525

907r+208pp 291 97.43 12.09 0.687 —28.40 12.7 0.96

208py, 208ph 34D 105.45 13.9 0.667 0.92 0.8888

Column 1: the reduced radius R = R, R,/(R, + R,). Columns 2-4: parameters of Saxon-Woods potentials
Vy. R, and T, which approximate the tail of calculated potentials. Columns 5, 6: the value of the nuclear
potential ¥y at the barrier and the position of the barrier Ry. Column 7: the surface energy coefficient y.
Column 8: surface diffuseness b of a member of the interacting pair described by a Fermi-type density disiri-

bution.
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160 4 48Ca at E,,, = 40 MeV where a discrepancy of about 2° in the critical angle
still remains is shown in fig. 3.

As we have mentioned, the potential of the interacting pairs has a characteristic
shape for all nuclei, with a repulsive core at short distances followed by an attractive
pocket and a Woods-Saxon tail at larger distances. On the other hand the values
taken by the potential seem to be related to the dimensions of the interacting nuclei.

TICR[

1.

75l "P0+“%Ca
o Eigp=40MeV
25t

0 =% ~e0 80

— 8. q (deg)
Fig. 3. The elastic scattering cross section a/ay as a function of 8, for 0+ *°Ca at £, = 40 MeV.
The three curves are obtained with the phenomenological potential of ref. '7) (solid), the present potential
V¥ (dashed) and the potential ¥ of ref. %) (dot-dashed) respectively.

It is therefore interesting to see if a mass (and consequently a size) dependence of the
potential can be found. We end this section by showing the mass dependence of
Woods-Saxon parameterization of the tail. In the next section we analyse the size
dependence of the potential via the proximity concept.

By plotting V,/D as a function of D = A+ 43 —(4,+A4,)* and Ry and T as a
function of A3+ A4} we found an average dependence of these parameters on the masses
A, and A, of the colliding nuclei, given by the following equations

7,/D = 15.76—0.63D,
R, = 1.15(4% + A3), 6)
T = 0.644+0.003(A4} + A3).

For T and V,/D a change is noticed with respect to the results of ref. ®). The
dependence of T on A+ A3 is much slower, almost constant, and T is larger in all
cases. Larger values of ¥, are also found but ¥V,/D decreases somewhat faster with D.
The value of R, remains practically the same.

3. Proximity potentials

According to Blocki et al. 18) the interaction energy V(R) of two nuclei with radii
R, and R, whose centers are separated by a distance R = R, + R, +S§, is given by

WR) & St r()d 7
= —— e(s)das.
“Ri+R; s,
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In this equation e(s) is a universal function which is the same for all pairs of inter-
acting nuclei. It is the interaction energy per unit area of two plane semi-infinite
sheets of nuclear matter with parallel surfaces separated by a distance S,. In this
section we reduce our potential (1) to the proximity form (7) and investigate the
validity of the approximations which have to be made.

In this section we deal with Fermi density distributions

p(r) = po/[1+exp (r—R)/a)], (8)

which are parametrized forms of the Hartree-Fock densities used in the previous
section. Parameters p,, R and a for different nuclei have been given in ref. ®). Values
of V(R)/R where R = R,R,/(R,+R,) have been calculated for several values of
surface separation S, for the different pairs of nuclei in table 1 and the corresponding
points are plotted in fig. 4. They clearly show the trend of a universal function as

w o
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Fig. 4. The universal function extracted from the calculated potential V. The points V/ R where
R = R,R,/(R,+ R,) are plotted against the separation distance S,.

required by the proximity form (7). There are some deviations when the nuclei
overlap, light pairs tending to give a repulsion with a larger radius. A similar graph
has been presented by Ngo et al.'?) for potentials calculated with Brueckner’s
energy density formalism. Taking into account their different scaling it turns out that
our potentials are slightly less deep and have a narrower attractive pocket due to a
thicker core.

The first step in the reduction of our potential to the proximity form is to replace
the integrand in eq. (1) by a universal function

H(p, "‘Pz)—H(Pl)—FI(Pz) = F(ry—Ry,r,—Ry) ©)

depending on the distances r, and r, of the integration point P from the centers of
the interacting nuclei (fig. 5). This replacement involves two approximations.

(a) The central density p, and surface diffuseness parameter 4 in eq. (8) must be
the same for all pairs of nuclei. Only the half-density radii R, and R, change. Table 2
of ref. 8) shows that there are variations of p, and a from light to heavy nuclei. The
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consequences of these differences are discussed later in the section and their effects
are illustrated in table 4.

(b) The integrand in eq. (1) contains terms like p;p,, p;p3+p,p7 When H(p) is
derived from Skyrme’s interaction. These terms have the form required by eq. (9).
There are also terms proportional to

dp, d
Vo, Vp, = % P2 086, (10)

ry dr,

where 6, is the angle between r; and r, (fig. 5). The term (10) has the form required
by eq. (9) if cos 6, , is approximated by — 1. This approximation should be reasonable
if the main contribution to the integral (1) comes from a region of limited extent
located between the two nuclei. The effect of this approximation for *°*Pb+*°*Pb
and 10+ 190 is shown in tables 2 and 3. The potential V,, is calculated by exact
numerical integration of eq. (1) while V; is calculated by numerical integration with
the approximation cos , , & —1 in terms like (10). The effect of the approximation
is to increase the attraction especially for smaller values of R (negative values of
S, = R—R,—R,). Surprisingly, for 5, > 0 the extra attraction brought in by this
approximation is practically independent of Sy, ie. V. /V, is constant with respect
to:84:

After substituting eq. (9) into eq. (1) the integral can be reduced to a two-dimensional

Fig. 5. The geometry of the system. P is the integration point, R the distance between centres, S, the
separation between surfaces, R, and R, are the half-density radii of the interacting nuclei.

integral over r; and r, by making a change of variables
2n
V(R) = = F(ry—Ry,r;—Ry)r,r,dr dr,. (11)

The limits of integration are fixed by the triangular conditions
ri+r; 2R, |r;—ry SR (12)

In the cases considered here the two radii R, and R, are much greater than the
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surface diffuseness parameter a (i.e. the nuclei are leptodermous systems %)]. As a
consequence the integration limits can be extended by relaxing the restriction
|ry —r,] = R. Numerical calculations show that expanding the region of integration
in this way gives a negligible error. This can be seen by comparing the columns V,,
and 7} of each of the tables 2 and 3.

TABLE 2

Values of the potential for 2°*Pb+**Pb as a function of separation S, between the surfaces

So R v, W v, Vs, V.,

= 11.664 5377 — 81.82 — 79.89 —46.92 —46.66

= 12.664 —92.23 —106.12 —105.98 —87.53 —87.54
0 13.664 —61.45 — 70.12 ~ 69.89 -61.93 —61.93
1 14.664 —-23.74 = 27.78 — 27.93 —25.34 —25.35
2 15.664 — 6.44 - 770 ~ el LS — kLS
3 16.664 - 144 — 181 ~- 1.88 - 1.70 = 1

R is the separation between the centres R = S,+2R, where R, is the half-density radius for Pb;
Vo Vi, Vi, V5 are approximations, explained in the text. V¥, is the exactly calculated potential.

TaBLE 3
Values of the potential for '*0+!°0 (as in table 2)

3 R v, v, v, ¥, V.

g 3.308 11.89 —34.46 —29.06 19.32 19.18

=] 4.308 —30.69 —47.36 —46.14 —2231 ~2232
0 5.308 —24.17 ~3231 ~32.09 —23.07 —23.17
1 6.308 ~ 8.59 —11.78 015 — 968 — 9.68
2 7.308 — 194 — 2.80 — 3.03 — 250 ~ 250
3 8.308 — 0.38 — 0.57 — 0.66 — 054 — 054

Another change of variables in eq. (11) gives
2n
Vo(R) = R JTF(MU us)(RyRy + Ryuy + Rouy + uyuy)du, dus,, (13)

with u, +u, > §,. We now make two further approximations:

(c) we assume that S, < R; + R, so that R ~ R, +R, and

(d) we neglect Ryu,+ R,u, +u,u, in comparison with R, R, in eq. (13).

Then we get an equation for V(R) which has exactly the proximity form of eq. (7)
with

els) = J‘w F(u,, s—u,)du,. (14)

=i

Values of V(R) for °*Pb+ *°®Pb and '°O+ 'O with e(s) calculated from eq. (14)
are shown in tables 2 and 3 respectively.
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There is another, much less drastic, approximation for ¥(R) which can be obtained
from eq. (13) by neglecting only the term u,u, in the integrand. This gives

R,R R,+R
Vi(R) = 2n— Z[SO(SOH 2}1 R; 51(50)]= (15)
where
£(S0) = j s"e(s)ds. (16)
So

According to ref. *®) the form (7) holds for the interaction of gently curved objects
in close proximity. Eq. (15) includes the next corrections for finite curvature. It is also
interesting because the correction can still be expressed in terms of the same function
e(s) which comes into the simple proximity formula.

Values of V,(R) for 2°®Pb+2%®Pb and '°O+'°0O are shown in tables 2 and 3
respectively. The numbers given in these tables show that ¥, (eq. (15)) and V; (eq. (13))
are very similar over a wide range of values of S,. The differences between them is
due to the term u,u, in eq. (13) which gives a small contribution. The larger corrections
to the proximity form ¥, are associated with the differences between ¥} and ¥, and
between V. and V,. The quantity ¥; — V¥, is a curvature correction represented by
the second term in eq. (15) and by the denominator R in eq. (15) which replaces
R, +R, in eq. (7). The difference between V,, and ¥, is a result of the approximation
cos 0,, ~ —1 in the surface terms (10) of the energy density. This is itself essentially
also a curvature correction and clearly becomes smaller when the surfaces are very
gently curved, as can be seen by comparing ¥, — V, for the cases 'O+ !°0 and
208pp 4 208Ph. The two corrections tend to cancel especially for small separation
distances and this is the reason why ¥, seems to be a good approximation to V,, for
smaller separations |So| < 1 fm. In the tail region (S, ~ 3 fm) curvature corrections
are more important and the proximity form gives much less attraction than V.

In relation to the discussion in the previous paragraph there is a comment which
can be made about the proximity form of a folding type potential [cf. ref. >°)]. Such
a potential has no surface terms (9) and the cancellation of different curvature
corrections does not occur. Hence the proximity form, eq. (7), should be a less accurate
approximation than in the present case or in the case considered in refs. '*'%).

It remains to discuss the effects of approximation (a). The energy function e(s)
given by eq. (14) depends on the central density p, and the surface diffuseness a of
the matter density of each of the interacting nuclei. Thus e(s) is a universal function,
the same for all pairs only if p, and a do not vary from nucleus to nucleus. There is
in fact a significant variation between light and heavy nuclei and to gauge its effect
we give in table 4 values of g(s) and ¢,(s) (eq. (16)) calculated with the density param-
eters for 10 and 2°®Pb. Comparing the values of £(s) one can see that the parameters
for 160 give more repulsion at shorter separations i.e. for §; < —1 fm. This difference
accounts for some of the spread of the points in fig. 4 for negative values of S,.
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TABLE 4

Comparison between momenta ¢, and ¢, of **0O+'%0 and ***Pb+2®Pb

160) 1 160 208py, 4 208py, Ref. 18)
So
& £y o &y 2¢, 29,
2 1.426 —10.621 —2.505 —5.117 —4.651 —4.118
-1 —3.681 — 2.467 —4.297 —1.949 —4.969 —3452
0 —2.899 — 2.593 —2.863 —2.760 —3.563 —4.061
1 —1.030 — 1.724 —1.106 —1.936 —1.719 —3.158
2 —0.233 — 0.609 —0.295 —0.794 —0.539 —1.465
3 —0.045 — 0.163 —0.067 —0.247 —0.135 —0.501

The last two column give the values of 2¢, and 2¢, of ref. ') to be compared to our results.

The last two columns of table 4 show the first and second incomplete moments
of the universal function ¢(Sy/b) of ref. '®); these functions are given in terms of
dimensionless variables, but the function 2yd,(So/b), where y is a surface energy
coefficient and b is a surface diffuseness parameter, corresponds to our &,(S,). In
ref. 18) the valuesh = 1 fmand y = 1 MeV - fm ™2 are used, and with these parameters
values of &, and 2¢, can be compared directly. We also show an example of &
comparison of the proximity potential calculated in two versions for °°Zr + *°*Pb
in fig. 2. The points represent the proximity potential derived from the universal
function of ref. ') with parametersbh = 1fm,y = 09MeV-fm *and R, +R, = 11.78
fm recommended in that reference. The solid curve is V,, calculated from our energy
functional eq. (1). The crosses are the proximity approximation (eg. (7)) to V,
calculated with &y(S,) from the third column of table 4 (R, +R, = 11.89 fm). The
potential from ref. '%) is qualitatively similar to our V,,. It is somewhat more
attractive especially in the surface region R 2 13 fm and for small separations
R £ 11 fm.

This picture emphasises that starting from values of the zeroth moment as different
as £o(S,) and 2y¢,(Sy/b) (table 4) for S, > 0 one can end up with potentials which
look very similar. This is possible because the potentials vary very rapidly with
separation distance so that even small changes in the radii R, and R, of the interacting
nuclei can produce large changes in the potential. In the example shown in fig. 2
the small difference of 0.11 fm in R, + R, compensates partly for the weaker attraction
of g4(S,) as compared with 2y¢(S,/b). For large values of S, the potentials are small
and differences even as much as a factor of two cannot be distinguished on the diagram
because of the scale.

The work of Blocki et al. '®) makes a simple prediction about the maximum force
F,, acting between two nuclei:

R,R,

F_= —dmy——2, 17
i an1+R2 (17)



where y is the surface energy coefficient of nuclear matter. We have extracted values
of y from our Saxon-Woods fits to the tails of potentials calculated from eq. (1).
These are given in column 7 of table 1. The calculations give values of y ranging from
091 MeV - fm~2 for 10 +*°Ca to 1.03 MeV - fm ~2 for 36Ni+ 2°®Pb with an average
over all pairs of 0.97 MeV-fm ™2 This is near the nuclear matter value y ~ 1
- MeV - fm ™2, It is also possible to extract values of the parameter b using the definition
in refs. '®21). These are given in the last column of table 1. These values of b are
smaller than the value b = 1 fm and nearer the value b = 0.872 fm calculated from
the Seyler-Blanchard interaction ?2) used in ref. '®). Potentials obtained from the
universal function of ref. '®) depend on ¢ = §,/b. Choosing a value of b smaller than
1 fm would give a closer agreement between our results and those of ref. '8).

4. Summary

We have presented results for the real .part of the nucleus-nucleus potential
calculated from a formalism based on Skyrme’s interaction. Earlier calculations )
have been improved by using a more adequate approximation of the kinetic energy
density in the tail region and consequently we have obtained a better description of
the potential in the barrier region.

In the second part of our work we checked the validity of the proximity cgncept ')
in our model. We wrote an expression for our potential as a sum of terms. One term
has the proximity form of ref. '®) except for a small difference in the denominator.
Other terms give curvature corrections [egs. (13), (15)]. There are two origins for
the curvature corrections and a numerical study showed that they almost cancel for
S, & 0 but increase for larger values of |Sy|. The error in the proximity approximation
in the barrier region varies between 20 %, for lighter pairs of nuclei to less than 10 9,
for heavier pairs.

Besides this study of the proximity approximation we have made a direct com-
parison of our potential with the proximity potential of ref. '*) and have found them
to be similar for separation distances S, > 0.

The differences between the proximity and our potential for S, < 0 might be
attributed to the saturation properties of the two-body interaction used in each case.

The similarity with the proximity potential might originate from common features
of both models: a two-body interaction which provides good binding energies,
the frozen configuration assumption for the matter density, and the approximate
description of the k.e. density. As the proximity theorem reduces the problem of the
interaction between two finite nuclei to a simpler one, that of the interaction between
two flat parallel slabs of semi-infinite nuclear matter it would be interesting to
calculate the latter with better approximations. '

One of us (F.S.) would like to thank Dr. P. E. Hodgson for kind hospitality offered
to her at the Nuclear Physics Department in Oxford.
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