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Abstract : The real part of the interaction potential for several pairs of magic nuclej has been derived from
the Skyrme interaction density functional. The matter density of each nucleus is described by a
Fermi distribution adjusted to reproduce the Skyrme-Hartree-Fock densities. Exchange effects
due to antisymmetrization are taken into account in an approximate way. The tail of the resulting
potential can be accurately approximated with a Woods-Saxon shape beyond the inflexion point
of the calculated potential. The parameters of these Woods-Saxon potentials show regularities
with respect to the masses of the target and projectile. We have tested the validity of the real part of
the potential against elastic scattering data by choosing an imaginary part with the same geometry
and a variable strength. For the energy range we consider the calculated grazing angles are some-
what larger than the experimental ones.

1. Introduction

In the last few years various attempts have been made to derive the real part of the
interaction potential between two heavy ions starting from an effective two-body
interaction. The simplest approach is to fold the effective nucleon-nucleon inter-
action into the densities of both nuclei. The densities are constructed from shell-
model wave functions or obtained from electron scattering data. A critical review
of this double folding together with the simple folding ') has been made recently
by Satchler 2). Although these models can predict the qualitative features of the
elastic scattering data, a renormalization of the strength of the real potential to about
one-half of its value at the strong absorption radius is necessary in order to obtain
quantitative agreement 2). Possible reasons for the discrepancy could be the neglect
of the saturation effects or exchange effects due to antisymmetrization.

A direct way to take saturation effects into account is to derive a folded potential
from a density dependent effective interaction **#). It has been shown explicitly *)
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attraction brought in by the density independent part. Such a result is consistent with
the need to renormalize the folded potentials derived from density independent inter-
actions 2).

Although not based directly on an effective interaction, a further step in the
calculation of the nucleus-nucleus potential was made by using the energy density
formalism of Brueckner °). In this framework the effect of the repulsive core and the
Pauli principle are taken into account in some average way. With one exception )
the applications of the Brueckner energy density formalism use the so called “sudden
approximation” where the density of the composite system is given by the sum of
densities of individual nuclei at all distances. It is expected that for distances where
the Pauli principle plays a less important role the potential derived within the sudden
approximation should have the right order of magnitude. Indeed, Ngb et al. ') have
shown that such a potential is able to reproduce the experimentally known inter-
action barrier for a large number of projectiles and targets.

At present the most sophisticated microscopic derivation of the real part of the
nucleus-nucleus optical potential is based on self-consistent Hartree-Fock cal-
culations ®). These calculations include both the exchange and the saturation effects.
They provide an adiabatic limit of the interaction potential which corresponds to
low energy collisions, where the nuclei have time to readjust themselves to the density
of the nuclear matter. Unfortunately numerical difficulties prevent the extension of
these calculations to systems heavier than 0+ 0.

In a previous paper °) we have used the energy functional of the Skyrme density-
dependent interaction '°) to derive the real part of the interaction potential between
two '°O nuclei. Such an approach is very similar to the Brueckner energy density
formalism °). Ingredients of our method were the Skyrme interaction parameters
and the densities of the composite system and the separated nuclei. The effect of the
saturation properties of nuclear forces was included by using Skyrme interaction
parameters derived from Hartree-Fock calculations which fit binding energies
of finite nuclei. Calculations were performed with the sets SI and SII provided by
ref. '°) and the dependence on different parametrizations was discussed. We also
made a detailed analysis of the exchange effects due to antisymmetrization. The
ground state of the composite system was described by a Slater determinant built
from harmonic oscillator wave functions centered at two different points separated
by a distance R. It was shown explicitly that the exchange effects due to anti-
symmetrization are important at any distance R and it was found that they come
mainly through the modifications produced by antisymmetrization on the kinetic
energy density. This result suggested a way of estimating the exchange effects by
making the Thomas-Fermi approximation for the kinetic energy of the composite
system. It was shown that this approximation accounts for over 75 % of the exchange
effects for separations R larger than twice the rms radius of °0 but it overestimates
the exchange effects by ~ 20 9%/ at the barrier.
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In the present paper we extend the formalism used in ref. ®) to the calculation of
the real part of the interaction potential between any combination of two closed-
shell nuclei as '®0, *°Ca, *®Ca, °Ni, °°Zr and 2°®Pb. We use the approximation
discussed in ref. ?) to include the effects due to antisymmetrization and take more
realistic nuclear densities related to those resulting from Skyrme-Hartree-Fock
calculations !+ '?). Moreover the set SIII of the Skyrme interaction parameters
used here provides a better description of nuclear properties than SI and SII and it
has a large domain of applicability over the whole periodic table '*).

In the following section we briefly describe the formalism and discuss the
approximations used for the densities. In sect. 3 we exhibit the results. We parametrize
the tail of the calculated potential with a Woods-Saxon shape and discuss the
dependence of the parameters on the masses of nuclei involved. A comparison with
the work of Ngé et al. ') based on Brueckner formalism is also made. In sect. 4 we
calculate the elastic scattering cross section for some pairs of nuclei choosing an
imaginary part of the potential with one free parameter and compare with elastic
scattering data at several energies. In sect. 5 we present the conclusions.

1
e 2. The formalism

We are looking for an interaction potential ¥ as a function of the separation
distance R between the centres of the interacting nuclei. We define V as the difference
between the energy expectation value E of the whole system calculated at a finite
distance R and at infinity, i.e. at a distance where the two nuclei are completely
separated,

: V(R) = E(R)— E(w). (1)
The expectation value E is given by the energy functional of the Skyrme interaction
derived for a system whose ground state is described by a Slater determinant '°).
The quantity E is expressed as a volume integral,

E= fH(r)dr, )

over the energy density H(r) which is an algebraic function of the nucleon densities
Pas Py P = Po+ Py, kinetic energy densities 7, 7,, T = 7,47, and spin densities
J., I, J = J +J, if time reversal invariance is assumed 13), For spin-saturated
nuclei the energy density H(r) = H(p, 7) has the following expression:

H _Ez_ 1 144 2__ 1y A2 2 1
(p,7) = 2m1+2t0[( +3x0)p% = (xo +3Npi +p2)] + 4ty +15)pt

+3(t2 = ,)PaTa+ PpTp) +16(12 = 31)P VP 435034, + 15)(pa V2P0 + V2P + 43P ap -
(3)
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Here the term containing the Coulomb interaction has been ignored. Then the poten-
tial (1) is calculated by performing the integral

V(R) = J[H(P, 1)—H(p,, 1,)— H(p,, 7,)]dr, (4)

where 1 and 2 refer to the separated nuclei. The Skyrme interaction parameters
Xos tos 1y, 1, and 1, we are using here is the set SIII from ref. '!). They are given in
table 1. According to ref. '') the set SIII gives a remarkable agreement with the

Tasre 1

Parameters of the Skyrme interaction SIII 2)

51 ) 5}
(MeV - fim®) (MeV - fm?) (MeV - fm®)

ly
(MeV - fm?)

—1128.75 395.0 —95.0 14000.0 0.45

*) Ref. '").

experimental total binding energies of magic nuclei. It also gives single particle level
spectra and charge densities in reasonable good agreement with the experimental
data. It was suggested that the deviation found between the calculated and
experimental electron scattering cross section is due to the fact that the Hartree-Fock
density obtained with the set SIII has a surface thickness smaller than one finds
from the experimental density.

At present it is impossible to make self-consistent calculations for pairs of nuclei
much heavier than '°0O; but some variational calculations *) show that, for distances
larger than the sum of the rms radii of the interacting nuclei, effects due to distortion
of single particle wave functions are not important. We therefore expect that our
results should not be too different from those of variational calculations for such
separations.

The calculations of the potential ¥(R) from eq. (4) involves the knowledge of the
densities p and t of the composite system and of the separated nuclei p, and T,
(i = 1, 2). By using the approximations (5) and (6) for the densities we reduce the
problem to the knowledge of the densities of the separated nuclei as a function of R.
In this way we can perform simple calculations and include in the same time the major
part of the exchange effect due to antisymmetrization.

According to ref. °) we can include over 75 % of the exchange effects due to anti-
symmetrization for distances larger than the sum of rms radii of interacting nuclei
by taking (g = n, p)

Py = PigtPap (5)

’

‘rq = T:F = %(S'nz)}(plq-i_pzq)s"a- (6)
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The Thomas-Fermi approximation is also used of the kinetic 'energy density of the
individual nuclei

Tzq""' TF__(3n2)i( )5;‘3

(i=12; g=n,p) (N

The formulae (6) and (7) are used to approximate the quantity
T=— ) YRV, (8)
a(occ)

where the , are the occupied single particle wave functions, while the energy density
(3) is expressed in terms of

=Y Vyivy, 9)
a(occ)
These two quantities are related through
T =17+3V%p. (10)
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Fig. 1. Neutron kinetic energy dens:ty as a function of r for **Ca. Curves t'(r) and t(r) are calculated from
formulae (8) and (9) respectively by using Hartree-Fock single particle wave functions obtained with the set
SII1. The corresponding Hartree-Fock density is used to obtain the Thomas-Fermi approximation (7)
plotted as the curve t™¥(r).

As an example fig. 1 shows 7 and 7’ calculated from Hartree-Fock neutron single

particle wave functions for *®Ca and also t"F calculated from eq. (7) with the Hartree- -

Fock density. The comparison shows that t'" is a better approximation to 7’ than
itisto .

In principle we should use Hartree-Fock densities in egs. (5)—(7) but for reasons
of simplicity we make two further approximations.

First we ‘take
| 'p i=1,2), (11)

i

>
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where p, is obtained by the addition of calculated !?) neutron and proton densities.
This approximation is quite satisfactory in the surface region but it is less good for
regions where the densities are smaller than 107! p,, (p, is an average central density).
The second approximation is to replace the Hartree-Fock densities p, and p, by
Fermi-type distributions having radius parameter R. and surface thickness 2 which
reproduce exactly the Hartree-Fock rms radius {r*)} and describe the surface
region as well as possible. We vary a and find the other parameters R; and p, from
the normalization conditions

i = %[5<"2> _77T2a2]s
34 1

= ; 12
Po = 47R} 1+ %2R (12)
TABLE 2
Parameters of Fermi type distributions which fit Skyrme-Hartree-Fock matter densities ?)
Nucleus aHir 2o R, a
'*0 2.6269 0.1607 2.6538 0.44
40Ca 3.3841 0.1577 3.7416 0.47
48Ca 3.5422 0.1600 3.9780 0.47
SeNi 3.6933 0.1605 4.2008 0.47
%0Zr 4.2872 0.1533 5.0543 0.47
208ph 5.5968 0.1482 6.8321 0.49

*) From refs., '1:12),

The values we found for p,, R; and a, together with the Hartree-Fock result '!+'2)
for {r?)}  are presented in table 2 for all nuclei we are interested in. Two examples
of this adjustment are given in figs. 2a and b for '°0 and *°Ca respectively.

Before presenting the results we would like to indicate how the saturation
properties of the Skyrme interaction can influence the behaviour of the nucleus-
nucleus potential. For this purpose we ignore the effect of the antisymmetrization
on both p and 1, i.e. together with the relation (5) we take

Ty =T tT  (g=n,p), , (13)
instead of using eq. (6).

We express the integrand of eq. (4) in terms of the average Hartree-Fock poten-

tials U, [ref. 1°)] of the separated nuclei

Ui, = to[(1 ‘f’%xo)Pi _(x0+%)piq] +3t3(pf - Pizq}
— 030, — 1)V, + 1531, + t2)V2pig 3ty +15)T+4(t, — t)Tig- (14)
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Fig. 2a. Density distribution for '°0. Curve (1) is the Hartree-Fock density p = p,+ p, of ref. *?). Curve
(2) represents the fit of the Hartree-Fock result with a Fermi type distribution.
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Fig. 2b. Same as 2a, but for *°Ca.

By using this formula and the approximation (11) we obtain

H(p,7)—H(py, t,)— H(p,, 15)

1[(N, Zi N, Zy ) ]
=-|{—U —U +|—U,,+—U
| 2|:(A1 2n+ Al Zp)pl (Az 1 Az 1p P2
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N,N*+Z,7} N,N3+Z,7;
1 fos DIW TR ERET RER LS 143 2
+3gl3 [( AzAf P2l —_FA% P1P3

1 N\N,+Z,Z,
* 16[( W R

The r.h.s. of eq. (15) has three distinct terms, each of them being symmetric at the
interchange of nuclei 1 and 2. The first term is a folding type potential with
separate contributions from neutrons and protons. This term produces an
attractive, deep potential. The other two terms will compensate for this excessive
attraction and this can be seen looking at the values taken by the parameters ¢,, #,
and ¢, (table 1). These parameters are just the strength of the velocity dependent
and density dependent terms of the Skyrme interaction required to fit the saturation
properties of nuclear matter.

+2(12+11):](101T2 +p27y). (15)

3. Results

By using the formalism of the previous section we have calculated the inter-
action potential for all possible pairs of magic nuclei listed in table 2. Some
examples are drawn in figs. 3a and b. All potentials have a common shape, with a
repulsive core at short distances and an attractive part having the minimum
centered around a distance equal to the sum of rms radii of interacting nuclei.
The repulsive core is essentially a consequence of the lack of distortion in the single
particle wave functions and of the approximations we have used for the densities.
Variational calculations ® '#) or the adiabatic treatment of the density °) show that
the repulsive core disappears when the single particle wave functions or densities
are allowed to be distorted. In ref. ®) we have shown that the radius of the repulsive
core depends on the approximation we make for the kinetic energy density. A
Thomas-Fermi approximation with an ellipsoidal distribution °) in the momentum
space brings more repulsion than a spherical one. Although this deformed Thomas-
Fermi approximation is better near the minimum of the potential, both spherical
and deformed Thomas-Fermi approximations give similar results for the potential
around the barrier. Therefore we consider that the use of the spherical Thomas-
Fermi formula (6) is satisfactory in finding the tail of the real part of the nucleus-
nucleus interaction.

The surface region is the only part of the real potential which is significant for
the calculation of the elastic scattering cross section at grazing angles when the
process is dominated by strong absorption ?). For this reason we use only the
potential curve beyond its minimum in the following discussion. For practical
purposes we found useful to parametrize this part of the potential by a Woods-
Saxon shape. We fixed both the range R, and the depth V, of the Woods-Saxon
shape by taking R, = R, and V,, = 2V(R,) where R, is the inflexion point of the
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Fig. 3a. Nuclear interaction potential for pairs of magic nuclei as a function of the separation distance R
between their centres.
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Parametrization of the tail of the nucleus-nucleus potential with a Woods-Saxon shape
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TABLE 3

245

2/3 2/3

Pair AR 441 _f;r:jsn, vy R, s vy R,
10 + %0 5.0397 26198 2803 58 0.561 — 091 7.7
160 + *9Ca 59398 34085 3552 685 058  — 1.99 8.5
180 + *8Ca 6.1541 3.5573 36.52 1.1 0.582 - 1.86 8.8
160 + ®Ni 63457 36798 3192 73 0.587  — 274 8.8
190 + %Zr  7.0012 40349 4145 810 0.593 ~ 305 9.6
180 +205ph 84448 45716 49.51 980 062 — 540 1Ll
9Ca+ “Ca  6.8399 48258 4826 785 0615 — 451 9.25
9Cat *%Ca  7.0542 51125 49.89 810 0612  — 395 96
0Ca+ SONi  7.2458 53674 5191 830 0618  — 652 9.5
“Ca+ %zr 79014 61168 5150 9.1 0623 - 840 102
40Ca +205Pb 93449 73286 0.6 108 0647  —1402 117
Ca+ Ca  7.2685 54495 4897 836 0608  — 3.60 9.9
Ca+ ONi  7.4601 57298 5466 853 0618  — 537 9.9
Cat %Zr  8.1156 6.5861 57.96 935 060 - 68l 10.6
48Ca+20%ph  9.5502 79958 68.01 1L07 0643 —1295 120
SONi+ SONi  7.6517 60393 5601 875 0620  — 869 9.8
Ni+ %9Zr 83073 69933 6332 953 063 —11.17 10.5
Ni+20%Pb  9.7509 8.5897 7656 1125 0.65 —20.60 1.9
%07p 4+ %Zr 89628 82862 6899 1034 0632  —14.09 11.2
%07; {205p,  10.4064 105739 8106 1209 0642  —2801 12.5
08pp 1208y 118500 144846 9878 1338 0.66

The last two columns are the value of the nuclear potential ¥y at the barrier and the position Ry of

the barrier,

V (MeV)

d

show the fit of the interaction potential between '°0O and *°Ca by the Woods-Saxon
potential of table 3. In addition in the second column of table 4 we indicate the
numerical values taken by the potential at few distances between R, and Ry (first
column). The third column represents the Woods-Saxon potential of table 3. In the
last two columns of the same table we show how the fit deteriorates when T is in-
creased and ¥, and R, remain fixed. The difference with respect to the calculated
curve is given in percent in brackets. It turns out that a change of ~ 0.005 in the

" " I i

Fig. 3b. Interaction potential between two 2°®Pb nuclei as a function of R. Here, Vj is the nuclear
potential and ¥+ V. is the nuclear plus Coulomb potential.

calculated potential V. The corresponding value for the diffusivity T was found

by trying to reproduce accurately the height of the calculated barrier, obtained by
adding to the nuclear potential (4) a Coulomb interation of the form V= Z,Z,e*/R.
The values found for the Woods-Saxon parameters ¥, R, and T corresponding to
all possible pairs of magic nuclei '°0, *°Ca, *3Ca, *°Ni, *°Zr and 2°®*Pb are given in
table 3. They fit the calculated interaction for distances between the inflexion points
R, and the barrier Ry with an accuracy better than 1 J;. As an example in fig. 4 we

16, &0

10} @+"Ca Rg

oot \5 8 7 81 Sm
% (1)
= -10F 4
> _20b .

-30

(2)__.~

Fig. 4. Interaction potential for '*0+*°Ca as a function of R. Curve (1) is the calculated potential and
curve (2) is the Woods-Saxon potential from table 3, and Ry is the position of the Coulomb barrier.
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TaBLE 4

Interaction potential for '*O+*"Ca at four values of the separation distance R

R v V_‘\:V:S” 586 VI\'VZSG..')QO V’FLSU‘()JS

7.0 ~15.42 ~15.50 (0.52) —15.51 (0.58) —15.67( 1.62)
1.5 - 8.74 — 8.81 (0.80) — 8.86 (0.80) ~ 9.39( 7.44)
8.0 — 438 — 4.38(0.00) — 4.43(1.14) — 499 (13.93)
8.5 - 199 ~ 2,00 (0.50) — 2.04 (2.00) — 246 (23.62)

The second column is the calculated potential. The last three columns are Woods-Saxon polentials
with same ¥, = 35.52 MeV, R, = 6.85 fm but T = 0.586; 0.590 and 0.635 respectively.

diffusivity still reproduces the calculated potential within 2 9 error but an increase
of 0.05 implies a decrease of ~ 24 9, in the potential at the barrier (Rz = 8.5 fm).
The percentage change in the potential at the barrier for a change 6T = 0.05 is less
than 20 % for heavier pairs of nuclei.

T v T T ¥ L] L T

Ro 4000200y,
f “ln“l- e
100f 18,300, . )
T T '

$80,4905,
90 LTI L ]
L TS T
L "'c..""c TP T o
“c.."c "C|v"ll
80} 16, 00, J
®cas*Oca
18,86,
7‘0. “Do“ts -
185,80,,
o \ﬁ0=1.153(&"3+£1{3}
18,18,
5.0 6.0 7.0 80 9.0

Fig. 5. Plot of the parameter R, of table 3 as a function of 4} +4;7.
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It is interesting to notice some regularities in the dependence of the parameters
V, R, and T of table 3 on the masses 4, and 4, of the interacting pair. As fig. 5
shows the parameter R, is well approximated by the formula

R, = 1.153(A} + 43). (16)

As suggested in refs. '>-1€) a convenient way to represent the dependence of ¥ on
A, and A, is a plot it against the quantity D = A} + 43— (4, + 4,)%. If two nuclei
merge adiabatically then their interaction would be represented by a change in
surface energy of a liquid drop model. Then the ratio /D should be a constant
for all nuclei. Our potential is based on the sudden approximation and conse-
quently has a hard core at the origin. From an adiabatic approach one would expect
to get a potential similar to the present one in the tail region where our calculated
potentials are well approximated by a Woods-Saxon potential. Near the origin a
potential derived from an adiabatic or variational approach should have a shape
more similar to a Woods-Saxon potential '*). Hence we expect that the Woods-
Saxon parametrization found here might give a reasonable estimate of the adiabatic

e 160 1Eu o 4lcq. 40 vLBcﬂ' Lg v S6pj. Sy
13 q 16g, 40cq .wgo agia viBpg, 553? x Sﬁn:. 902:
T 16, 48 20°%* 56°%  ®48Cq. 90 + 56Ni .+ 208Py
o 180, 48cq  g40cq, SOy 8 zr w 807r. 907
¢ %00 Fni 4%0ca, 9z #4Bcq 208, o _a07r . 208pb
. ag o40¢q + 208pp ©208pb. 20BPp
a O Zr
o 180, 2085,
|
. =}
\ a
L ~o
L s <@
Vo /D gl o T g V6 /D =11.92-0.410
e * /
7}
-4
ql
i i i i . & ’ . i i i ’
2. & 6. 8. 10. 12. 14. D

Fig. 6. The dependence of the parameter ¥, of table 3 on D = 477+ 437 —(4 ,+A2)1"3.

potential for a wide range of separations between the interacting nuclei. Fig. 6
shows that V,/D decreases with D and its average dependence on D can be described
by the straight line

Vo/D = 11.92—041D. (17)

Such a result represents a deviation in the dependence on D from the predictions
of the liquid drop model, but the relation (17) can still be used to estimate ¥, from the
mass numbers 4, and 4, of a pair of interacting nuclei.

The dependence of T on A%+ 4} is displayed in fig. 7. We find a small average
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Fig. 7. The dependence of the parameter T of table 3 on A4}/*+ 43/, Pairs of nuclei are represented in the
same way as in fig. 6.

increase of T with 4%+ A4} represented by the line
T = 0.015(41 + A3)+0.5. (18)

The largest departure from this line is for the 1°0+!°0 and 2°*Pb+2°°Pb systems.
In the latter case the parameter T is determined with some ambiguity due to the fact
that the interaction ¥y + ¥ (nuclear + Coulomb) does not have a barrier (fig. 3b).
This means that we cannot determine T in the same way as for the other cases, i.e.
by trying to reproduce the height of the barrier accurately.

For all the pairs of nuclei in table 3 except 2°*Pb+ 2°*Pb, egs. (16), (17) and (18)
reproduce values of Ry, ¥, and T in the same table to within 1 %, 8% and 3%
respectively. Using parameters Ry, ¥, and T from eqs. (16), (17) and (18) the Woods-
Saxon potential gives the potential ¥'(R) calculated from the Skyrme interaction to
within 12% for R, < R< Ry except for *0+'°0 (14 %), '°0O+*°Pb (15 %)
and 2°%Pb+2°8Pb (24 %). This shows that we found difficulties in fitting the
lightest and the heaviest systems into the average behaviour. In spite of this, a
practical aspect of the regularities found in the parameters ¥, R, and T could
possibly be the use of formulae (16)-(18) to predict the interaction potential between
other pairs of nuclei which are not too far form a spherical shape.

The potentials in ref. !°) were calculated on the bais of a liquid drop model and,
as they have been parametrized by Woods-Saxon shapes, it is possible tomake a direct
comparison with potentials obtained in the present work. In both cases the parameters
have the same order of magnitude. The depth in ref. '®)is ¥, = 17 D MeV, i.e. larger
than ours. The calculations in our paper also predicts a different dependence on D
which cannot be obtained in the crude liquid drop model. The potential radii in
ref. 16) are somewhat smaller than those presented here and this might partly
compensate for the larger depth. Perhaps a more significant difference is that the
surface diffuseness parameters T obtained in the present work are about 40 %
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smaller than those given in ref. '°). In both cases T increases slightly with the masses
of the colliding nuclei.

From the experimental point of view an interesting quantity which can be found
from our calculations is the height ¥, = Vy+ ¥ and the position Ry of the inter-
action barrier. The height of the barrier can be determined within few MeV from
threshold energy measurements. From the large body of available data '®) one can
also get an idea about the general trend of the barrier and its change with the masses
and charges of the interacting nuclei.

The results we obtain here for the value of the nuclear potential ¥y at the barrier
and its position Ry are summarized in the last two columns of table 3. Instead of
trying to make a direct comparison with the experiment we found it more interesting
to compare our results with those of Ngb et al. 7), i.e. to compare the predictions of
the Skyrme energy functional and the Brueckner energy density formalism for the
interaction barrier. The consistency of our results with the experimental data will
be discussed in the next section for the few cases for which we calculate the elastic
scattering cross section.

In order to compare our results with those of Ngé et al. ") in fig. 8a we plot the
quantity

ra = Ry/(A] +43), (19)

as a function of Z,Z,/(A} + A3) and trace a curve between the calculated points to
indicate the average trend of ry. The corresponding curve from ref. ') is drawn on
the same figure. One can see that both curves have the same trend but ours is situated
by about 0.02 below that of Ngb et al.
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Fig. 8a. The quantity ry from eq. (19) as a

function of Z,Z,/(A}*+A4}"™). The full curve

represents the average trend of rp and is com-

pared with the corresponding result of ref. b))

broken curve). Pairs of nuclei are presented in
the same way as in fig. 6.

Fig. 8b. Same as fig. 8 but for Vy (nuclear po-
tential at the barrier) versus ry. Pairs of nuclei
are represented in the same way as in fig. 6.
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Another comparison suggested by ref. 7) is shown in fig. 8b where the nuclear
potential V) at the top of the barrier is plotted as a function of ry. For values of ry
around 1.33 our results for ¥y are very near those of Ngb et al. But for lighter
pairs of nuclei (ry > 1.4) we get ¥ slightly smaller than in ref. 7) while for very heavy
ions (ry < 1.25) our values of ¥ are in average ~ 2 MeV below those of Ngo et al.
There are two possible reasons for this difference. One is the functional itself. The
other one could be the difference in the matter densities describing the nuclei. We
found that for Skyrme energy functional the result is sensitive to changes in the
density. If, for instance, we take trial densities for '°0 and *°Ca with increased
diffusivity parameters @ = 0.52 and a = 0.55 respectively and find the other param-
eters by the normalization conditions (12) we obtain the barrier at the same position
but V(Rg) = —2.38 MeV, i.e. lower by about 20%,. These trial values of the diffu-
sivity parameter might be nearer the true ones. As was mentioned before, the Skyrme
interaction seems to give too steep a decrease of the density in the nuclear surface !1).

4. Elastic scattering cross section

The purpose of this section is to show how well the calculated potential fits the
elastic scattering data. We discuss only the elastic scattering of '°0 from different
targets at several energies because for other projectiles we consider here like e.g. *°Ca
the experimental data are very scarce and less precise '?). For the real part of the inter-
action we take a Woods-Saxon potential with parameters taken from table 3. By

TABLE 5

Comparison of calculated critical angle with the phenomenological value

Pair ‘Ellh W dcal enc:al B.:lp | Resp Te*® Wese  gew T:;p Ref
(MeV) (MeV) (fm) (deg) (deg) (MeV) (fm) (fm) (MeV) (fm) (fm) e

%0+ 4%Ca 40 6.5 9.02 108 93 100 7.25 0.5 2441  7.25 0.5 24
180+ *BCa 40 9.2 932 89 80.5 100 743 05 2441 743 05 2
60 10.5 925 45 42 328 8.00 0.5 8.11 8.00 05 )

'*0+2%%Pb 104 134 1206 8 79 40 1106 045 15 1106 045 2%
16Q 4 30gj 45 112 8.56 564 52 328 732 0.5 8.11 7.32 05 22)
60 11.11 852 372 36 32.8 732 0.5 14.0 7.03 0.5 23

73.5 16.1 829 295 28 100 5.80 0.68 20.0 6.76 0.6 23y

60+ SBNi 50 425 957 98 90 23.65 831 0533 349 876 0375 4
60 8.4 9.56 68 63 2525 831 0.533 539 876 0375 2%

Here, E, is the incident energy, W the adjusted strength of the imaginary part added to the calculated
real part of the interaction potential (see text), 8*' the calculated critical angle, 8 the phenomenological

critical angle, and &

i SR i, P

the

1wy

calculated distance of closest approach (eq. (21)). The other columns quote
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using the regularities found in the previous section the calculations of the elastic
scattering cross sections can be extended to non-closed shell targets. We have cal-
culated two examples, *°0+3°Si and '°0+ *®Ni, for which there is good experi-
mental data, using potential parameters given by formulae (16)-(18). In all cases we
look at experimental angular distributions having a characteristic Fresnel diffraction
pattern 2°). Hence the results are not very sensitive to the choice of the shape of the
imaginary part of the optical potential. For this reason we take it to have the same
geometry as the real part, and chose the strength W (table 5) to fit the value of the
maximum peak in the ratio a(0)/a,(0) of the elastic cross section o(0) to the Ruther-
ford cross section ag(0).

Elastic scattering angular distributions have been calculated using the programme
JIB3. It is difficult to compare with experimental data directly because of uncertain-
ties in extracting the experimental values from published figures. We therefore
chose to compare the scattering from our calculated potentials with the scattering
produced by the Woods-Saxon potentials used in a phenomenological fit to the dgta.
We have used a Coulomb interaction corresponding to a uniform charge distribution
with radius R, the same as that given by the phenomenological fit. The calculated
scattering is insensitive to the choice of R.

The results for the pair '°0+*8Ca are typical of most of the cases investigated.
Fig. 9 shows that the cross section corresponding to the calculated potential has the
same shape as the phenomenological one at two different incident energies; but tha.t,
in both cases, it is shifted to larger angles by a few degrees. A measure of this
shift is given by the difference 60, = 65" —0** between the critical angles for
the calculated potential and the phenomenological one. By critical angle we
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Fig. 9. Elastic scattering cross section for '°O+**Ca at E,,,, = 40 and '60 MeV. The full curve is cal-
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understand the angle for which a/ay = 0.25. Values for the critical angles 8:*' and
0*® for five different targets are given in table 5. This table also shows the parameters
for the phenomenological potentials 2! ~25),

Another quantity of interest is the distance of closest approach 2°)

d = (n/x)1+ cosec16,) (20)

evaluated at the critical angle 0, where « is the relative wave number and # the
dimensionless Coulomb parameter. This quantity (table 5) is a measure of the
separation at which the interaction becomes important. A comparison between d and
the sum of half-density radii R, + R, with R, (i = 1, 2) taken from table 2 indicates
that the interaction becomes important at distances where the nuclei do not overlap
too much. This shows the peripheral character of the elastic scattering process between
heavy ions ?) and supports the approximations made in egs. (5) and (6).

From the results presented in table 5 we notice that the calculated critical angle is
always a few percent larger than the experimental one. In other words, the “‘shadow”
region of angular distribution is smaller than necessary and this suggests that the
range of the calculated interaction potential is too small. The discrepancy 86, seems
to be smaller in cases when 6 is smaller. We can try to understand the variation of
80, with 0, by using a sharp cut-off model %) where the interaction radius R_ is equal
to d from formula (20). If the discrepancy 46, is due to a variation dR, in R, then by
differentiating eq. (20) we get

6 1+sini0, 6R
If 0, is small then
00./0, =~ —3R /R, (22)
while for larger angles |66./0.| > |0R./R.|. For example if 8, = 90° then
80,/6, ~ —2.26R /R.. (23)

This effect can be seen in the case of '®*0+*®Ni. At E,,, = 50 MeV the discrepancy
00, = 8° corresponds to a relative change in R /R, = 0.041 whileat E,,, = 60 MeV
the discrepancy 66, = 5° corresponds to dR /R, = 0.047. The discrepancy 66, = 15°
for the case '°O+*°Ca at E,,, = 40 MeV corresponds to 6R /R, = 0.072. The
sharp cut-off radius R, is almost equivalent to the barrier radius Ry in a potential
model. Hence the discrepancy 66, = 15° corresponds to 6Ry = 0.61 for Ry = 8.5
(cf. table 3). This change in Ry could be produced by a change in the potential radius
0R, =~ 0.6. To test this estimates we have recalculated the angular distribution for
'%0+*°Ca with a Woods-Saxon potential as in table 3 but with R, = 7.4. The
resulting critical angle is 8, & 93°, like the phenomenological value.
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5, Conclusions

By using the Skyrme energy density functional in the so called “sudden approxima-
tion”” *) we have calculated the real part of the interaction potential between magic
nuclei. As a result of the sudden approximation the potential has a repulsive core.
The attractive part between the inflexion point and the barrier has a very similar shape
to a Woods-Saxon potential, and for each pair of nuclei we found a Woods-Saxon
potential with parameters which reproduce the calculated potential to within 1 7.

One of the purposes of parametrizing the tail of the potential with a Woods-Saxon
shape was to look for regularities in the parameters with respect to the masses 4,
and A, of the colliding nuclei. Indeed it was found that all three parameters the depth
V,, the radius R, and the diffusivity T have a simple average dependence given by
eqs. (16)-(18).

To check the validity of our results for the real part of the interaction potential
we calculated the elastic scattering cross section for several pairs of nuclei. We chose
cases where the absorption was strong so that the only significant part of the real
potential was its tail. The absorption was taken into account by an imaginary poten-
tial with variable strength and the same geometry as the real part. In each case, we
found that the grazing angle was somewhat larger than the experimental one.

The conclusion is that our potential gives too small a “shadow region” in the
Fresnel diffraction pattern and this means that the real part of the potential has
either too small a radius or too small a diffusivity (at fixed strength). This shortcoming
might be due to the approximations explained in the text. On the other hand cal-
culations of internuclear interactions based on Skyrme's force might have a
deficiency related to the mature of the force. Skyrme’s force is an effective inter-
action between nucleons in nuclei with parameters fitted to reproduce some bulk
properties of nuclei such as binding energies and radii. The interaction potential in the
barrier region is the result of the overlap of tails of nuclear density distributions
where the total density is very small compared with nuclear matter densities. One
might therefore question the validity of the present parametrization of Skyrme’s
interaction for such low densities.

The potentials derived here were obtained by a microscopic calculation from an
effective density dependent nucleon-nucleon interaction., The purpose was to
include saturation and exchange effects. The real parts of the potentials are deter-
mined completely from the calculation and there are no free parameters. When
combined with a reasonable imaginary part a satisfactory fit to the elastic scattering
data can be obtained for a wide range of pairs of nuclei. The potentials might not
give an accurate enough fit to elastic scattering data to be used directly for cal-
culating transfer reactions, etc., but this deficiency can be corrected by making a small
increase in the radius parameter R, or the diffusivity T.
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