Design of an agricultural nozzle: Experimental investigation of a round jet impacting vertically a horizontal disc

1 Flat fan nozzle

2 Rotary atomizer (centrifugal forces)

Jet Break Up

1 Flat fan nozzle

Random liquid sheet break up

Extended droplet spectrum

2 Rotary atomizer (centrifugal forces)

Rayleigh plateau regime (the most unstable perturbation breaks the jet in droplets of 1.89 times the jet diameter)

Narrow droplet spectrum

Goal

This study is the first step to optimize a design of a hydraulic nozzle producing a narrow droplet spectrum based on the Rayleigh-Plateau break up mode.

Nozzle design

1. **Generate a homogeneous liquid film**

\[U = \frac{Q}{2\pi rh} \]

\[Re = \frac{2Q}{\pi \nu R} \]

Q: flow rate

r: flow radial distance

h: film thickness

R: injector radius

ν: cinematic viscosity

Experimental setup

Top view of a tap water film bordering a motionless disk.

Split the liquid sheet in multiple round jets using grooves

Different scenarios of the liquid behavior on the disk depending on groove configurations.

Percentages of grooves occupancies (calculated as the number of grooves multiplied by their widths and divided by the disk perimeter) as a function of the flow rate (Q).