Developing winter wheat and winter pea for intercropping purposes
- Optimising the management itinerary

Ir. Pierreux Jérôme
Dr. Benjamin Dumont

Pr. Bernard Bodson & Pr. Du Jardin
Dpt. AgroBioChem

Dr. Christian Roisin
Unit Soil fertility

SPW-DGO3
Context and Objectives
Why (re-)introducing pea in rotation?

- Source of (plant-based) proteins
- Natural N supply / fertilisation
- Increase the biodiversity
- Increase the landscape diversity
Objectives

➢ Objectives of intercrop:
 ▪ Decrease the inputs (N fertilisation, Pesticides, etc.)
 ▪ Secure the protein production and the grain yield
 ▪ Interesting contribution to farmers revenue?

➢ Prerequisites:
 ▪ Design and optimisation of the itinerary
History
Intercropping @ GxABT

- 2009-12: Exploratory trials
- 2012-14
- 2014-16: Project funded by DGO3 (Wallonia)
- 2016-18
- >2013 Collaboration with Wallagri to coaching farmers in this process.

Sustainable production of protein-rich seeds by optimization of the management itinerary of the winter pea - winter wheat association
Project design
Project design

- Axis 1: Vegetation structure and architecture
 - Sowing density
 - Choice of variety

- Axis 2: Plant nutrition
 - Nodosity development
 - Plant development
Project design

• Axis 1: Vegetation structure and architecture
 • Sowing density
 • Choice of variety

• Axis 2: Plant nutrition
 • Nodosity development
 • Plant development

• Axis 3: Mechanical weeding (2017-18)
 • Comparison of itinerary and machines

• Axis 4: Pesticide application (2017-18)
 • Fongicide
 • Herbicide
Sites description
Sites description

Soil:
- Cutanic Luvisol (WRB classification)
- Soil texture: silt 70-80% - clay 18-22% - sand 5-10%
- “Classic” loamy soil of the Hesbaye Area

Climate:
- Temperate climate (Cfb in Köppen-Geiger classification)
- Rain: 819 [mm] per year
- Average temperature: 9.8 [°C]
- Average solar radiation: 825 [J.cm².d⁻¹]
Sites description
Sites description

Itinerary:

<table>
<thead>
<tr>
<th>Year</th>
<th>Preceding crop</th>
<th>Sowing Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-13</td>
<td>Winter Wheat & Sugar Beet</td>
<td>12 Nov.</td>
</tr>
<tr>
<td>2013-14</td>
<td>Sugar Beet</td>
<td>21 Nov.</td>
</tr>
<tr>
<td>2014-15</td>
<td>Sugar Beet</td>
<td>06 Nov.</td>
</tr>
<tr>
<td>2015-16</td>
<td>Sugar Beet</td>
<td>13 Nov.</td>
</tr>
<tr>
<td>2016-17</td>
<td>Sugar Beet</td>
<td>08 Nov.</td>
</tr>
<tr>
<td>2017-18</td>
<td>Sugar Beet</td>
<td>14 Nov.</td>
</tr>
</tbody>
</table>
Sites description

Itinerary:

<table>
<thead>
<tr>
<th>Year</th>
<th>Preceding crop</th>
<th>Sowing Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>2012-13</td>
<td>Winter Wheat & Sugar Beet</td>
<td>12 Nov.</td>
</tr>
<tr>
<td>2013-14</td>
<td>Sugar Beet</td>
<td>21 Nov.</td>
</tr>
<tr>
<td>2014-15</td>
<td>Sugar Beet</td>
<td>06 Nov.</td>
</tr>
<tr>
<td>2015-16</td>
<td>Sugar Beet</td>
<td>13 Nov.</td>
</tr>
<tr>
<td>2016-17</td>
<td>Sugar Beet</td>
<td>08 Nov.</td>
</tr>
<tr>
<td>2017-18</td>
<td>Sugar Beet</td>
<td>14 Nov.</td>
</tr>
</tbody>
</table>

» Sowing window has to be between 25 Oct. and 15 Nov.
» Same sowing technique for both crop
Sites description ~ 1,000 plots per year
Example of results
Results: Global performances

- **Peas yield**
 - Lodging problem
 - Security of yield and profitability

- **Wheat yield**
 - Efficiency ↑↑↑

- **Intercrop yield**
 - Intercropping performances ≈ Wheat
Results: Global performances

Results: Axis 1 – Varietal choice

\[LER = LER_{\text{Pea}} + LER_{\text{Wheat}} = \frac{\text{Mixed pea yield}}{\text{Pure pea yield}} + \frac{\text{Mixed wheat yield}}{\text{Pure wheat yield}} \]

Varietal Choice	2013	2014	2015	2016	2017	
--------------------------	------	------	------	------	------	
Sy Epson Ivernel	1,43	0,66	1,28	4,12	1,23	
Sy Epson Spencer	0,85	0,52	1,17	3,42	1,15	
Edgar Ivernel	1,15	0,75	1,17	3,64	1,15	Edgar Gangster, Smart Furious
Edgar Spencer	1,04	0,71	1,18	3,42	1,15	
Moyenne	1,12	0,66	1,20	3,65	1,19	

Results: Axis 1 – Sowing densities
Results: Axis 1 – Sowing densities

Impact of sowing densities on lodging (15/07/2016)

<table>
<thead>
<tr>
<th>Densités (FH/Pois) /Association</th>
<th>Pur</th>
<th>Froment</th>
<th>300/50</th>
<th>300/25</th>
<th>150/50</th>
<th>150/25</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sy Epson Gangster</td>
<td>100</td>
<td>0</td>
<td>9</td>
<td>0</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>Sy Epson Spencer</td>
<td>100</td>
<td>0</td>
<td>20</td>
<td>0</td>
<td>51</td>
<td>8</td>
</tr>
<tr>
<td>Edgar Gangster</td>
<td>100</td>
<td>0</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Edgar Spencer</td>
<td>100</td>
<td>0</td>
<td>17</td>
<td>1</td>
<td>41</td>
<td>10</td>
</tr>
</tbody>
</table>
Results: Axis 1 – Varieties and densities

Biomass monocrop equivalent:
Biom. pea/ha + Biom. wheat/ha

<table>
<thead>
<tr>
<th></th>
<th>Dry matter (Kg/ha)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sy Eps-lv</td>
<td></td>
</tr>
<tr>
<td>Sy Eps-SP</td>
<td></td>
</tr>
<tr>
<td>Edg-lv</td>
<td></td>
</tr>
<tr>
<td>Edg-Sp</td>
<td></td>
</tr>
<tr>
<td>Sy Epson Ivernel</td>
<td>300/50</td>
</tr>
<tr>
<td>Sy Epson Spencer</td>
<td>300/25</td>
</tr>
<tr>
<td>Edgar Ivernel</td>
<td>150/50</td>
</tr>
<tr>
<td>Edgar Spencer</td>
<td>150/25</td>
</tr>
</tbody>
</table>

Biom. pea/ha + Biom. wheat/ha

2
Results: Axis 1 – Varieties and densities

Biomass monocrop equivalent:
Biom. pea/ha + Biom. wheat/ha

Observed intercrop biomass
Results: Axis 2 – Biomass production

N fertilisation amount and timing does never seem to impact the biomass of pea.
Results: Axis 2 – Biomass production

N fertilisation amount and timing does never seem to impact the biomass of pea

N fertilisation @ ZS39:
- Does not impact pea or wheat biomass
- Impacts wheat protein
Results: Axis 2 – Biomass production

- N fertilisation amount and timing does never seem to impact the biomass of pea

N fertilisation @ ZS39:
- Does not impact pea or wheat biomass
- Impacts wheat protein

N fertilisation @ ZS29-30:
- Impacts wheat biomass and yield
Results : Axis 2 – Nodule production
Results : Axis 2 – Nodule production

- N fertilisation decreases the number of nodules

![Diagram showing average nodule production across different N fertilisation levels (0, 40, 80) on main and secondary roots.]

- On main root
- On secondary roots

- N fertilisation decreases the number of nodules
Without N application, yields are fairly good

N fertilisation increases intercrop production (especially wheat production)

Not necessary to fertilize with too high level

N fertilization allow to play on the ratio wheat-pea (Interspecific dominance)
Results: Axis 2 – Protein production

W. Wheat – W. Pea intercropping allows

⇒ to increase protein production within wheat grains
⇒ does not impact protein production of pea

Protéines du blé Edgar cultivé pur et associé

<table>
<thead>
<tr>
<th>Year</th>
<th>Pure Wheat (M/MS%)</th>
<th>Associated Wheat (M/MS%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2014</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>2015</td>
<td>14</td>
<td>14</td>
</tr>
<tr>
<td>2016</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>2017</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

Fumure (TR-DF)
Results: Axis 2 – Protein production

W. Wheat – W. Pea intercropping allows

→ to increase protein production within wheat grains

→ does not impact protein production of pea

On average: + 3.46 % MPT/MS – 0kgN/ha

+ 2.46 % MPT/MS – 40-60kgN/ha
Conclusion
Conclusions

➢ The management of w. wheat- w. pea intercropping is primarily an art
Conclusions

- The management of w. wheat- w. pea intercropping is primarily an *art*
Conclusions

➢ The management of w. wheat- w. pea intercropping is primarily a matter of *art*

➢ To success with the association, one has to do the good choices:
 - Varieties to be in the association
 ➔ Alone but above all in *association* (not always same behavior)
 ➔ *Synchronicity* of the species and the varieties
 - The density of sowing
 ➔ *Equilibrium* of *plant population*
 ➔ Minimize the adverse effects of monocrop
 - The fertilization and the nutrition of plant
 ➔ To optimize quantity and *quality*
 ➔ Regulate the *interspecific competition*
 - ...
Thanks for your attention

??? Questions ???

Ir. Pierreux Jérôme
Dr. Benjamin Dumont