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Effect of long‑term fertilization 
strategies on bacterial community composition 
in a 35‑year field experiment of Chinese 
Mollisols
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Abstract 

Bacteria play vital roles in soil biological fertility; however, it remains poorly understood about their response to 
long-term fertilization in Chinese Mollisols, especially when organic manure is substituted for inorganic nitrogen (N) 
fertilizer. To broaden our knowledge, high-throughput pyrosequencing and quantitative PCR were used to explore 
the impacts of inorganic fertilizer and manure on bacterial community composition in a 35-year field experiment of 
Chinese Mollisols. Soils were collected from four treatments: no fertilizer (CK), inorganic phosphorus (P) and potassium 
(K) fertilizer (PK), inorganic P, K, and N fertilizer (NPK), and inorganic P and K fertilizer plus manure (MPK). All fertiliza-
tion differently changed soil properties. Compared with CK, the PK and NPK treatments acidified soil by significantly 
decreasing soil pH from 6.48 to 5.53 and 6.16, respectively, while MPK application showed no significant differences of 
soil pH, indicating alleviation of soil acidification. Moreover, all fertilization significantly increased soil organic matter 
(OM) and soybean yields, with the highest observed under MPK regime. In addition, the community composition 
at each taxonomic level varied considerably among the fertilization strategies. Bacterial taxa, associated with plant 
growth promotion, OM accumulation, disease suppression, and increased soil enzyme activity, were overrepresented 
in the MPK regime, while they were present at low abundant levels under NPK treatment, i.e. phyla Proteobacteria and 
Bacteroidetes, class Alphaproteobacteria, and genera Variovorax, Chthoniobacter, Massilia, Lysobacter, Catelliglobosispora 
and Steroidobacter. The application of MPK shifted soil bacterial community composition towards a better status, and 
such shifts were primarily derived from changes in soil pH and OM.
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Introduction
Mollisols (black soils) are widely distributed in the north-
east of China and are considered to be highly fecund and 
productive (Wei et  al. 2008). However, these soil have 
degenerated over time due to intensive fertilizer appli-
cation (Liu et al. 2015). The widespread use of inorganic 
fertilizers has also reduced black soil quality and overall 
environmental health since large scale reclamation was 

initiated around the middle of the last century (Yin et al. 
2015). Take soil OM for example, the original level of soil 
OM content on the top layer (0–20 cm) is about 10% or 
more, as soil OM accumulates faster than it is decom-
posed during the relative cold seasons (Wen and Liang 
2001). After farming started, soil OM content drasti-
cally dropped to half of its original level in 20–30 years, 
and now stabilized at 2–4%. In addition, overuse of N 
fertilizer has caused soil acidification, as well as a reduc-
tion in soil microbial biomass and bacterial diversity 
(Guo et al. 2010). Our previous studies found that long-
term N application changed the microbial community 
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composition in black soils by reducing bacterial and fun-
gal diversity and the bacteria to fungi ratio, which led to 
soil degradation (Zhou et al. 2015, 2016; Ding et al. 2016). 
Constant N input can also lead to changes in plant spe-
cies composition and a loss of plant diversity (Clark et al. 
2007). In response to soil degradation associated with 
excessive inorganic N fertilizer, reductions in inorganic N 
input have been advocated.

In contrast to inorganic N fertilizers, the benefits of 
organic fertilizer for agricultural production and soil 
fertility cannot be overemphasized. Organic fertilizer 
can increase soil organic carbon and total N (TN) (He 
et  al. 2015), improve soil aggregate stability (Xie et  al. 
2015) and have residual N effects in subsequent years 
(Schröder et  al. 2007). Manure, an important source of 
organic matter, can improve disordered bacterial com-
munity structures in soil that result from the overuse of 
inorganic fertilizer (Ai et al. 2015), thereby improving soil 
quality (Davidson 2009). Several studies have explored 
the influence of fertilization on plant communities, soil 
properties, microbial community structure, and micro-
bial activity (Hallin et al. 2009; Ramirez et al. 2010; Wertz 
et  al. 2012; Hartmann et  al. 2013; Zhong et  al. 2015). 
However, little is known about the overall impacts of 
different fertilization strategies on bacterial community 
composition, especially when manure is substituted for 
inorganic N fertilizer. In this study, soils were collected 
from a 35-year field experiment of Chinese Mollisols, 
which was ideal for investigating the effects of fertiliza-
tion strategies on soil microorganisms (Geisseler and 
Scow 2014). We used high-throughput pyrosequencing 
and qPCR technology to describe soil bacterial com-
munity composition under organic manure and inor-
ganic fertilizer regimes. Here, we hypothesize that (1) 
bacterial community composition and abundance differ 
among fertilization strategies due to altered soil proper-
ties, especially soil pH and OM; and (2) manure shifts soil 
bacterial communities towards a better status, whereas 
inorganic fertilizer has the opposite effect. In summary, 
understanding the responses of bacterial community 
composition to different fertilization strategies is an 
effective way to reveal the relationship between intensive 
fertilization and black soil degradation. The results high-
light the potential use of manure for sustainable develop-
ment in Chinese Mollisols.

Materials and methods
Field experiments and soil sampling
The field experiment, established in 1980, was located at 
the Heilongjiang Academy of Agricultural Sciences, Hei-
longjiang Province, China (45°40′N, 126°35′E, altitude 
151 m). The experiment was set up as a block design and 
each block was treated with different fertilizer strategies 

in triplicate: no fertilizer (CK), inorganic phosphorus 
(P) and potassium (K) fertilizer (PK), inorganic N, P and 
K fertilizer (NPK), and inorganic P and K fertilizer plus 
manure (MPK). Blocks were randomized into plots of 
9 ×  4  m. Doses of inorganic fertilizers were 75  kg  ha−1 
N (urea), 150  kg  ha−1 P2O5, 75  kg  ha−1 K2O and 
18,600 kg ha−1 horse manure. Soils were collected from 
plant rows after soybean harvest in September 2014.

For each replicate plot, six cores were collected from 
the topsoil (5–20  cm) using a 3-cm diameter soil corer. 
Plant residue and gravel were removed and samples were 
mixed uniformly to form one composite sample. Each 
composite sample was divided into three parts. One part 
was stored at − 80 °C and the other two were used as two 
independent samples. Thus, a total of 24 soil samples 
were obtained for analyses.

Soil properties and soybean yield
Prior to chemical characterization, soil samples were air 
dried at room temperature and passed through a 2.0 mm 
sieve. Soil samples were diluted 1:1 in water and pH was 
measured using a pH meter. Soil OM was measured 
using the K2Cr2O7-capacitance method (Strickland and 
Sollins 1987). The Kjeldahl method was used to meas-
ure TN (Huang et al. 2007). NH4

+–N and NO3
−–N were 

tested according to Hart et  al. (1994). Atomic absorp-
tion spectrometer and flame photometry were used to 
measure total K (TK) and available K (AK) (Helmke and 
Sparks 1996). The total P (TP) and available P (AP) were 
determined by colorimetric methods (Garg and Kaushik 
2005) and resin extraction with modification (Hedley and 
Stewart 1982), respectively. Soybean yields were recorded 
after harvest.

High‑throughput pyrosequencing and qPCR analysis
Total DNA was extracted using a MOBIO Power-
Soil DNA Isolation Kit (Qiagen, Carlsbad, CA, USA) 
with modifications to the incubation step as previ-
ously described (Fierer et  al. 2012b). For each of the 24 
soil samples, six replicate extractions were combined 
together to obtain sufficient quantities of homogene-
ous DNA (Ding et  al. 2016). DNA was purified, and 
then, DNA concentration and quality (A260/A280) of 
the extracts were estimated visually using a NanoDrop 
ND-1000 UVevis spectrophotometer (Thermo Scientific, 
Rockwood, TN, USA). The V4 region of the 16S rRNA 
gene was amplified using primers 515F and 806R (Pei-
ffer et al. 2013), which were designed to be universal for 
bacterial and archaeal taxa (Ramirez et  al. 2012). Given 
the rare abundance of archaea (normally less than 1% of 
sequences), only the results for bacterial communities are 
presented. Illumina MiSeq Sequencing was carried out at 
the Personal Biotechnology Co. Ltd. (Shanghai, China), 



Page 3 of 11Ma et al. AMB Expr  (2018) 8:20 

according to the methods of Caporaso et al. (2012). The 
16S rRNA gene sequences were submitted to the NCBI 
Sequence Read Archive with the Accession Number SRP 
045472.

In spite of some inherent limitations, qPCR can be still 
used to estimate microbial abundance (Liu et  al. 2015). 
The 515F/806R primer set was used for qPCR using an 
Applied Biosystems 7500 detection system (Applied Bio-
systems, Foster City, CA, USA). The reaction mixture 
(25  μL) and amplification conditions were performed 
according to the methods of Lauber et  al. (2013) and 
Zhou et al. (2015). The qPCR was carried out in triplicate 
for each extracted DNA sample.

Bioinformatics and statistical analyses
Mothur software (v1.32, http://www.mothur.org/) was 
used to assemble pyrosequencing reads as described 
by Schloss et  al. (2011). Operational taxonomic units 
(OTUs) were identified using a cut-off of 97% similarity 
and were invalid in the case that less than four replicates 
were detected in one sample. Singletons, non-bacterial 
OTUs were removed, and the OTU abundance lev-
els were normalized based on the sample with the least 
number of sequences. To perform a fair comparison 
between samples, all subsequent analyses were per-
formed according to the normalized data (Zhou et  al. 
2016). The Ribosomal Database Project Naïve Bayesian 
rRNA classifier was used with a minimum percent iden-
tity threshold of 60% for taxonomic assignment (Li et al. 
2014). Bacterial α-diversity (CHAO1, ACE and Shannon 
and Simpson indices) was calculated with ten times sub-
sampling using Mothur software (v1.32). Weighted Uni-
Frac distances were calculated and principal coordinates 
analysis (PCoA) was carried out to identify variations in 
bacterial community composition. Linear discriminant 
analysis coupled with effect size (LEfSe) was performed 
to identify significant differences in abundance of bacte-
rial genera between MPK and NPK treatments (Segata 
et  al. 2011). The linear discriminant analysis (LDA) 
score threshold was set to greater than 3.0. Relationships 
between bacterial community composition and soil prop-
erties were revealed by redundancy analysis (RDA) using 
CANOCO 5.0 software. Variance analysis of all experi-
mental data was performed using SPSS (v.19). In all tests, 
P < 0.05 were considered statistically significant.

Results
Soil properties and soybean yields
The three fertilization strategies significantly increased 
concentrations of AP, AK, TP and TK (Table  1). Com-
pared with CK, both NPK and MPK treatments increased 
the concentrations of NO3

− and TN. NPK and PK sig-
nificantly decreased soil pH from 6.48 to 5.53 and 6.16, 

respectively, while the MPK application alleviated soil 
acidification. Moreover, MPK treatment also had an 
accumulative effect on soil OM. In addition, soybean 
yields were significantly higher under the fertilization 
regimes, with the MPK application being the most effec-
tive strategy (2702 kg ha−1).

16S rRNA gene abundances
The effect of different fertilization strategies on 16S rRNA 
gene abundances was assessed. The number of gene 
abundances ranged from 8.69 ×  109 to 1.59 ×  1010  g−1 
soil (Fig.  1). PK and MPK treatments significantly 
increased, whereas NPK treatment decreased the num-
ber of 16S rRNA gene abundances compared with CK.

Bacterial α‑diversity
A total of 538,485 high-quality sequences (70% of total 
sequences) were detected with an average read length 
of 270 bp. Based on a similarity cut-off of 97%, the mini-
mum Good’s coverage value was 0.95, meaning that a 
sufficient number of reads were obtained to evaluate 
bacterial diversity. With regards to bacterial α-diversity 
(Table 2), NPK treatment significantly decreased CHAO1 
and the Shannon indices in comparison with the other 
three treatments.

Bacterial community composition
Relative abundances at the phylum level (> 1%) are shown 
in Table  3. All samples were dominated by the phyla 
Proteobacteria, which accounted for 29.59–35.73% of 
the total sequences, followed by Acidobacteria (13.23–
16.39%), Actinobacteria (9.26–10.83%), Verrucomicrobia 
(8.62–9.92%), and Planctomycetes (7.03–8.04%). MPK 
treatment resulted in the highest abundance of Proteo-
bacteria. Moreover, the abundance of Bacteroidetes and 
Nitrospirae were also higher in MPK regime than those 
of NPK.

A total of 14 abundant classes (relative abundance 
>  1%) were identified (Table  4). Alphaproteobacteria, 
which represented 12.66–20.61% of the total sequences, 
was most abundant followed by Betaproteobacteria 
(6.74–10.48%), Actinobacteria (7.76–8.61%), Spartobac-
teria (6.75–8.36%) and Gemmatimonadetes (6.03–8.40%). 
NPK and MPK treatments significantly increased the rel-
ative abundance of Alphaproteobacteria and Gammapro-
teobacteria. Betaproteobacteria abundance was lower 
in the three fertilization strategies compared with CK, 
with the lowest abundance observed in NPK. NPK appli-
cation also caused a significant reduction in the abun-
dance of Deltaproteobacteria. Compared with CK, NPK 
application increased abundance of Solibacteres, Ther-
moleophilia, Phycisphaerae, Acidobacteriia, and Gemma-
timonadetes, whereas these classes were present at low 
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levels in MPK treated samples. NPK treatment resulted 
in the lowest abundance of Nitrospira, whereas abun-
dance was significantly increased in the MPK regime. 
Cluster analysis demonstrated that bacterial community 
composition of PK, MPK and CK treatments clustered 
into one group with a similarity of 98.85% that was sepa-
rated from the NPK treatment (Fig. 2).

At the genus level, significantly different taxa (aver-
age relative abundance > 0.01%) were identified between 
NPK and MPK regimes (Fig.  3). Many bacterial genera 
were significantly more abundant in the NPK regime (e.g. 
Sphingomonas, Gemmatimonas, Bryobacter, Rhodano-
bacter, Xanthomonas, Nitrosospira, Mucilaginibacter, 
etc.), whereas other taxa were overrepresented in the 
MPK regime (e.g. Nitrospira, Blastocatella, Flexibacter, 
Chthoniobacter, Catelliglobosispora, Massilia, Variovo-
rax, Steroidobacter, Lysobacter, etc.).

Bacterial β‑diversity
The results of PCoA analysis based on the weighted Uni-
Frac distance matrix showed a clear separation between 
different fertilization strategies (Fig.  4). PC1, PC2 and 
PC3 explained 54, 12 and 5% of the variation, respec-
tively. CK, PK and MPK plots were clustered together in 
the upper part, whereas the NPK plot was located sepa-
rately in the bottom.

Relationship between bacterial community structure 
and soil properties
Based on RDA analysis, selected soil properties (soil pH, 
AP, AK, NH4

+, NO3
−, TK, TP, TN and OM) accounted 

for 54.2% of the variance of the model (Fig. 5). The first 
and second axes explained 28.54 and 7.5% of the total 
variation, respectively. Compared with NPK, CK, PK, 
and MPK treatments clustered together in the first and 
fourth quadrants, confirming the results of the cluster 

analysis. The selected soil properties affected the bacte-
rial community composition in the following order: pH > 
OM > TN > AP > AK > TP > NO3

− > TK.

Discussion
Inorganic PK plus manure application increased soybean 
yield and improved soil quality
Although all tested fertilization treatments increased 
soybean yield, MPK treatment was considered to be the 
optimal fertilization strategy, which were attributed to 
the slow release of manure nutrients into the soil (Zhao 
et al. 2014). PK treatment also resulted in higher soybean 
yield than NPK treatment, indicating a negative effect of 
inorganic N fertilizer. Indeed, high available N prevents 
plants from providing carbon for nutrient-absorbing sys-
tems (Wei et al. 2013). Inorganic N has also been shown 
to inhibit biological N fixation, which provides N needed 
for soybean growth (Gelfand and Robertson 2015).

In agreement with previous findings that the applica-
tion of inorganic fertilizer alone can acidify soil (van Die-
peningen et  al. 2006), we found that both NPK and PK 
treatments significantly decreased soil pH. In particular, 
a decline of almost one pH unit was detected in response 
to NPK treatment in our study. In analysis and compari-
son of 10 long-term experimental fields, Guo et al. (2010) 
also found that significant soil acidification occurs in 
NPK-treated plots (P < 0.001). In contrast, MPK applica-
tion had positive effects on the alleviation of soil acidi-
fication due to the buffering function of carbonates, 
bicarbonates, carboxyl and phenolic hydroxyl groups 
(Whalen et al. 2000; Garcia-Gil et al. 2004). Soil OM also 
accumulated in response to MPK treatment, which might 
be attributed to the macronutrient status of manure 
(Xie et al. 2014). Consequently, manure might stimulate 
the microbial biomass and increase soybean yield. With 
increased productivity, the amount of soybean residues 
returned to the soil after harvest also increases, leading 
to increased OM as residues decompose over time (Geis-
seler and Scow 2014). Overall, manure may be a potential 
substitute for inorganic N fertilizers for improvement of 
soybean growth and soil quality.

Inorganic PK plus manure application increased bacterial 
diversity
The number of 16S rRNA gene abundances was signifi-
cantly different between the fertilization strategies. Com-
pared with CK, MPK treatment significantly increased, 
whereas NPK treatment decreased the number of 16S 
rRNA gene abundances. Soil pH has been identified 
as a crucial factor in determining bacterial population 
dynamics (Zhou et al. 2015), since the optimal pH range 
for bacterial growth is limited (Rousk et al. 2010a). Ahn 

Fig. 1  Number of 16S rDNA copies in different fertilization regimes. 
Different lowercase letters above columns indicate significant differ-
ences according to Tukey’s multiple comparison tests
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et  al. (2012) also reported that bacterial abundance was 
correlated with soil pH.

There were no significant differences in CHAO1 and 
Shannon indices between CK, PK, and MPK regimes. 
However, similar to previous reports (Geisseler and Scow 

2014; Zeng et  al. 2016), NPK treatment significantly 
decreased these indices, indicating that inorganic N fer-
tilizer has a greater influence than P or K on ecosystem 
instability (Chaer et al. 2009). Organic manure has been 
shown to have profound effects on bacterial population 

Table 2  Bacterial α-diversity and Good’s coverage estimator for different fertilization strategies

Values are mean ± standard deviation (n = 6). Values within the same column followed by different lowercase letters indicate significant differences according to 
Tukey’s multiple comparison tests. Operational taxonomic units defined based on a 97% similarity threshold

Fertilization strategy CHAO1 Ace Simpson Shannon Coverage

CK 3231.9 ± 133.0b 3347.9 ± 149.0a 0.0076 ± 0.0007a 6.3 ± 0.03b 0.95 ± 0.006a

PK 3262.7 ± 154.8b 3386.1 ± 256.1a 0.0076 ± 0.0012a 6.3 ± 0.05b 0.96 ± 0.007a

NPK 2866.6 ± 63.3a 3328.8 ± 414.7a 0.0115 ± 0.0009b 6.0 ± 0.02a 0.95 ± 0.006a

MPK 3421.6 ± 94.3b 3541.9 ± 98.8a 0.0077 ± 0.0005a 6.3 ± 0.03b 0.96 ± 0.001a

Table 3  Relative abundance of bacterial phyla of different fertilization strategies (relative abundance > 1%)

Values are mean ± standard deviation (n = 6). Values within the same column followed by different lowercase letters indicate significant differences according to 
Tukey’s multiple comparison tests

Phylum CK (%) PK (%) NPK (%) MPK (%)

Proteobacteria 30.79 ± 0.98ab 29.59 ± 1.00a 33.47 ± 0.57ab 35.73 ± 8.96b

Acidobacteria 15.92 ± 0.94b 16.39 ± 1.78b 13.61 ± 1.26a 13.23 ± 1.56a

Actinobacteria 10.30 ± 0.83a 9.35 ± 3.54a 10.83 ± 1.46a 9.26 ± 3.29a

Verrucomicrobia 8.69 ± 0.33a 9.22 ± 1.57a 9.92 ± 0.84a 8.62 ± 1.32a

Planctomycetes 7.32 ± 0.36ab 8.04 ± 0.74b 7.66 ± 0.52ab 7.03 ± 0.96a

Gemmatimonadetes 7.23 ± 1.07ab 7.24 ± 0.92a 8.40 ± 0.91b 6.03 ± 1.11ab

Chloroflexi 7.51 ± 0.28b 6.94 ± 0.6ab 6.50 ± 0.47a 6.49 ± 1.34a

Bacteroidetes 4.18 ± 1.36ab 4.82 ± 1.49ab 3.04 ± 0.37a 5.35 ± 1.8b

Thaumarchaeota 2.89 ± 0.69a 3.47 ± 1.59a 3.62 ± 0.70a 3.76 ± 1.61a

Nitrospirae 2.71 ± 0.28ab 2.49 ± 0.18ab 1.01 ± 0.12a 2.40 ± 0.30b

Table 4  Relative abundance of bacterial classes of different fertilization strategies (relative abundance > 1%)

Values are mean ± standard deviation (n = 6). Values within the same column followed by different lowercase letters indicate significant differences according to 
Tukey’s multiple comparison tests

Phylum Class CK (%) PK (%) NPK (%) MPK (%)

Proteobacteria Alphaproteobacteria 12.66 ± 0.88 a 13.39 ± 0.84a 19.72 ± 0.77b 20.61 ± 10.18b

Betaproteobacteria 10.48 ± 0.97c 8.86 ± 1.58b 6.74 ± 0.51a 7.13 ± 0.81a

Deltaproteobacteria 4.53 ± 0.57b 4.17 ± 0.37b 2.81 ± 0.17a 4.32 ± 0.32b

Gammaproteobacteria 3.06 ± 0.49a 3.09 ± 0.46a 4.04 ± 0.38b 3.59 ± 0.18b

Acidobacteria Acidobacteriia 1.90 ± 0.13b 2.18 ± 0.20b 3.88 ± 0.45c 1.51 ± 0.17a

Solibacteres 0.62 ± 0.14a 1.00 ± 0.21b 2.02 ± 0.15c 0.78 ± 0.11a

Actinobacteria Actinobacteria 8.61 ± 0.58a 7.76 ± 2.99a 8.19 ± 1.10a 7.89 ± 2.81a

Thermoleophilia 1.69 ± 0.27a 1.59 ± 0.56a 2.65 ± 0.40b 1.37 ± 0.49a

Verrucomicrobia Spartobacteria 6.75 ± 0.52a 7.47 ± 1.47ab 8.36 ± 0.98b 7.06 ± 1.25ab

Planctomycetes Phycisphaerae 2.77 ± 0.15a 3.97 ± 0.41b 4.20 ± 0.42b 3.05 ± 0.52a

Planctomycetia 3.52 ± 0.29a 3.27 ± 0.25a 3.19 ± 0.18a 3.13 ± 0.48a

Gemmatimonadetes Gemmatimonadetes 7.23 ± 1.07ab 7.24 ± 0.92ab 8.40 ± 0.91b 6.03 ± 1.11a

Bacteroidetes Sphingobacteriia 3.17 ± 0.73ab 4.25 ± 1.32b 2.75 ± 0.30a 4.45 ± 1.55b

Nitrospirae Nitrospira 2.71 ± 0.28c 2.49 ± 0.18bc 1.01 ± 0.12a 2.40 ± 0.30b
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diversity (Naeem and Li 1997) and nutrient cycling rates 
(Philippot et  al. 2013), which play an important role in 
microbial functions and processes (Chaer et al. 2009).

Inorganic PK plus manure application improved bacterial 
community composition
In the current study, Proteobacteria was the dominant 
phylum in all samples, which may be explained by the 
fact that members of this phylum can utilize a wide range 
of complex organic molecules and survive in various 

habitats (Bouskill et  al. 2010). MPK treatment had the 
highest abundance of Proteobacteria, which were attrib-
uted to the greatest amount of soil nutrients available for 
copiotrophic bacterial growth (Fierer et al. 2012a). High 
abundance of Proteobacteria is particularly important for 
soybean growth, as members of this phylum have been 
shown to promote plant growth and facilitate horizontal 
transfer of genes related to photosynthesis (Makhalan-
yane et al. 2015). Additionally, many taxa within Proteo-
bacteria had disease-suppression activity improving soil 

Fig. 2  Cluster analysis of the 16S rDNA composition of soil-dwelling microbial communities at the class level

Fig. 3  Bacterial taxa with significantly different abundances between NPK and MPK treatments. a Histogram of LDA scores for features with signifi-
cantly different abundance between NPK and MPK treatments. b Taxonomic representation of statistically and biologically consistent differences 
between NPK and MPK treatments
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health (Mendes et  al. 2011). Acidobacteria formed the 
second largest group in our dataset and was significantly 
lower in NPK and MPK regimes, which supported previ-
ous findings that oligotrophic bacteria such as Acidobac-
teria were negatively correlated with soil nutrients (Fierer 
et  al. 2012a). Furthermore, MPK treatment significantly 
increased Bacteroidetes and Nitrospirae compared with 
NPK, indicating a positive effect on OM accumulation 
(Eilers et al. 2012) and nitrite oxidation (Cebron and Gar-
nier 2005).

At the class level, bacterial community composition 
differed significantly among the fertilization treatments. 
Both NPK and MPK treatments significantly increased 
the abundance of Alphaproteobacteria and Gammapro-
teobacteria, probably due to the highly nutritious soil 
(Ahn et  al. 2012). Increased abundance of these classes 
may be beneficial for soil quality, as Alphaproteobacteria 
can use recalcitrant forms of carbon and supply carbon 
intermediates to other microorganisms (Campbell et  al. 
2010). Additionally, members of the class Gammaproteo-
bacteria have been shown to defend plants from fungal 
disease by a putative chlorinated lipopeptide (Mendes 
et al. 2011). NPK application led to a higher abundance 
of Phycisphaerae than CK and MPK treatments, probably 
increasing the performance of nitrate removal (Xiao et al. 
2015). In addition, higher abundances of Solibacteres and 
Thermoleophilia were detected in response to NPK treat-
ment, which confirmed previous findings that these two 
classes are positively correlated with N addition (Zhou 
et al. 2017). Finally, with the decline of soil pH, Acidobac-
teriia abundance increased in the NPK regime, suggest-
ing that soil environment was favorable to acidophilic, 
chemoorganotrophic bacteria (Wu et al. 2017b).

LEfSe analysis was performed to identify significantly 
different genera between NPK and MPK treatments. 
Genera with negative impacts on soil quality were over-
represented in the NPK regime, i.e. Sphingomonas, Xan-
thomonas, Rhodanobacter and Nitrosospira, while they 
were present at low levels in the MPK treatment group. 
Multiple species of Sphingomonas and Xanthomonas 
are considered animal and plant pathogens (White et al. 
1996; Barak et al. 2016). Rhodanobacter is likely involved 
in the denitrifying process leading to N losses in low pH 
soil (Green et  al. 2012). Furthermore, besides ammonia 
oxidation, members in Nitrosospira can perform nitrified 
denitrification, resulting in reduced conversion of nitrite 
to N2O and emission of greenhouse gas (Shaw et  al. 
2006). In addition, MPK treatment increased the abun-
dance of beneficial genera, such as Variovorax, Chtho-
niobacter, Massilia, Lysobacter, Catelliglobosispora and 
Steroidobacter. Variovorax is considered to be a plant 
growth-promoting rhizobacterium (Jiang et al. 2012) and 
Chthoniobacter plays important roles in carbohydrate 

Fig. 4  Principal components analysis of pyrosequencing reads 
obtained from soils treated with different fertilization strategies based 
on the weighted Fast UniFrac metric. The first three axes are drawn 
and the percent of variance explained by each axis is given. Treat-
ment: (circle) CK, no fertilizer; (square) PK, inorganic phosphorus and 
potassium fertilizer; (triangle) NPK, inorganic P, K and N fertilizer; (star) 
MPK, inorganic P and K fertilizer plus manure

Fig. 5  Redundancy analysis (RDA) of soil bacterial composition and 
soil properties. Soil factors indicated in arrows include Avail P (avail-
able phosphorus), Avail K (available potassium), pH, NO3– (nitrate 
nitrogen), TN (total nitrogen), TK (total potassium), TP (total phospho-
rus) and OM (organic matter). Treatment: (star) CK, no fertilizer; (circle) 
PK, inorganic phosphorus and potassium fertilizer; (square) NPK, 
inorganic P, K and nitrogen fertilizer; (triangle) MPK, inorganic P and K 
fertilizer plus manure
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metabolism (Brewer et al. 2016). Species in Massilia and 
Lysobacter produce violacein (Myeong et  al. 2016) and 
lytic enzymes (Li et al. 2008) that allow them to colonize 
plant roots and protect against infection by soil-borne 
plant pathogens (Ko et al. 2009; Ofek et al. 2012). Simi-
larly, higher abundances of Catelliglobosispora and Ster-
oidobacter in the MPK treatment group may indicate 
improved soil saccharase (Sun et  al. 2014) and catalase 
activity (Sakai et  al. 2014), respectively. However, Blas-
tocatella and Nitrospira were also increased, suggest-
ing an increase in ammonia oxidation (Alma et al. 2016) 
and nitrite oxidation through the nitrification process 
(Wu et  al. 2016). Wu et  al. (2017a) explored the effects 
of fertilizer application over a 20-year period on soil N 
transformation and found that inorganic fertilizer plus 
manure increased N mineralization rate and available soil 
N. However, in practical applications it should be consid-
ered that higher N nitrification is also induced by manure 
application, which may lead to increased N losses (Wu 
et al. 2017a).

Primary soil properties shape bacterial community 
composition
Soil microorganisms rapidly respond to changes in soil 
properties and these shifts can affect soil quality and 
plant growth (Marschner et al. 2003). In agreement with 
previous findings (Rousk et  al. 2010b; Williams et  al. 
2013; Zhou et  al. 2015), bacterial community composi-
tion was affected by soil pH and OM changes induced 
by long-term fertilization. Based on cluster and RDA 
analysis, the bacterial community composition of CK, 
PK and MPK treatment groups clustered together and 
were separated from NPK. Thus, inorganic N fertilizer 
input altered bacterial β-diversity. As Zhou et al. (2017) 
previously reported, long-term N application decreased 
soil pH and soil pH was highly correlated with UniFrac 
distance between bacterial communities. Soil pH plays a 
key role in shaping bacterial composition due the narrow 
pH range tolerated by most bacteria (Rousk et al. 2010a). 
Additionally, soil pH may indirectly affect bacterial com-
munity structure by responding to other variables and 
may provide an integrated index of soil conditions (Lau-
ber et  al. 2009). Hydrogen ion concentration varies by 
many orders of magnitude across various soils and, as 
numerous soil properties are related to soil pH, these fac-
tors may have driven the observed shifts in community 
composition (Xiong et al. 2012; Shen et al. 2013).
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