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Key Points: 

 A data assimilation technique was used to improve the simulated estimation of the 

surface mass balance of the Greenland ice sheet along the K-transect stations.  

 A particle batch smoother technique was used to condition the prior estimates of 

surface mass balance on MODIS-derived albedo. 

 Results show that data assimilation techniques can be used to reduce uncertainty of 

the modeled surface mass balance estimates.   
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Abstract  

Estimating the Greenland Ice Sheet (GrIS) surface mass balance (SMB) is an important 

component of current and future projections of sea level rise. Given the lack of in situ 

information, imperfect models, and under-utilized remote sensing data, it is critical to combine 

the available observations with a physically based model to better characterize the spatial and 

temporal variation of the GrIS SMB. This work proposes a data assimilation framework that 

yields SMB estimates that benefit from a state-of-the-art snowpack model (Crocus) and a 16-

day albedo product. Comparison of our results against in-situ SMB measurements from the 

Kangerlussuaq transect shows that assimilation of 16-day albedo product reduces the root mean 

square error (RMSE) of the posterior estimates of SMB from 1240 millimeter water equivalent 

(mmWE/yr) to 230 mmWE/yr and reduces the bias from 1140 mmWE/yr to -20 mmWE/yr. 

Plain Language Summary 

Diagnosing the surface mass balance (SMB) of the Greenland Ice Sheet (GrIS) is a 

critical objective, which, despite its importance, continues to contain large uncertainties from 

significant errors in modeled precipitation as well as errors related to sub-grid process 

representation. This work uses a data assimilation framework (which has not been used in 

estimations of the GrIS SMB) and a satellite-derived 16-day albedo product to improve the 

estimates of the SMB on the southern Greenland ice sheet.  We used the K-transect point-scale 

SMB measurements to validate our results over the 2009-2010 hydrological year. The data 

assimilation technique (i.e., particle batch smoother) reduces the spatial root mean square error 

of SMB over the K-transect stations by 82% from 1240 millimeter water equivalent (mmWE) 
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to 231 mmWE and bias of the estimates by 98% from 1142 mmWE to -20 mmWE. It was 

shown that this methodology has the potential to resolve the spatial variability of the surface 

processes along the K-transect stations and surface albedo which is not resolved by the model 

at a resolution of 25km. The modularity of the algorithm makes it possible to combine nearly 

any land surface model with different satellite-based or ground-based measurements. 

 

 

1 Introduction and Background  

The Greenland ice sheet (GrIS) is losing mass through ice discharge from outlet glaciers 

and surface processes (e.g. meltwater runoff, sublimation, and evaporation). Enderlin et al., 

(2014) showed that contribution of ice discharge to the total GrIS mass loss has been reduced 

from 58% during 2000-2005 to 36% during 2005-2009 and 32% between 2009 and 2012. More 

recently, van den Broeke et al. (2016) showed that surface processes, particularly meltwater, 

are more important than ice dynamic processes in recent GIS mass changes. Despite the 

importance of surface mass loss, estimates of GrIS SMB from different methodologies contain 

significant uncertainties mainly because of the complexities of the ice sheet surface dynamics 

and nonlinearities of underlying surface mass loss mechanisms.         

Given the limitations of observation-based methods (i.e., in situ and remote sensing 

retrievals), spatially and temporally continuous estimates of surface mass loss fluxes generally 

require physically based numerical modelling. Some recent efforts (e.g. Larour et al. 2014; 

Navari et al. 2016) have taken advantage of both models and remotely sensed measurements 
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by combining these two data streams to construct reanalysis estimates of surface mass loss 

fluxes. In this approach, measurements can be optimally merged with a model using data 

assimilation techniques, which have proven to be a more robust alternative to deterministic 

modelling approaches (Margulis et al. 2015).  

 

In this work, a satellite-derived 16-day albedo product is used to update a priori 

snow/ice model estimates to generate reanalysis estimates of the GrIS SMB and associated 

spatial variability along the Kangerlussuaq transect (K-transect) stations in west Greenland 

over 2009-2010. Specifically, we aim to answer the following questions: (1) How much does 

the ice sheet lose mass through surface processes along the K-transect stations? (2) How do 

posterior estimates (conditioned on remotely-sensed albedo) compare with the simulation-only 

estimates and in-situ SMB measurements in the K-transect stations? (3) What is the spatial 

variability of the SMB along the K-transect?  

          

2 Models and Method 

2.1 Regional climate model and snow physical model 

We used meteorological outputs from the regional climate model Modèle 

Atmosphérique Régional (MAR; Gallée and Schayes (1994)) and a stand-alone version of 

surface mass/energy balance snow physical model Crocus (Brun et al. 1989, 1992) in the data 

assimilation framework in this study. Aside from the modifications listed below, the model 

setup and initialization are similar to those used in our previous work (Navari et al. 2016) in 



 

 

© 2018 American Geophysical Union. All rights reserved. 

which nominal forcing from MAR (version 2, Fettweis et al. 2013) at 25km resolution was 

used to run Crocus offline for 2009-2010 over the GrIS. We used an ensemble batch smoother 

data assimilation approach to evaluate the feasibility of generating a reanalysis estimate of the 

GrIS surface mass fluxes via combining remotely sensed ice surface temperature measurements 

with a priori estimate from Crocus. Navari et al. (2016) showed that the DA methodology is 

able to generate posterior estimates of the surface mass fluxes that are in good agreement with 

the synthetic true estimates. 

2.2 Snow model adaptation 

Albedo parameterization  

The original Crocus albedo parameterization has been described in Brun et al. (1992). 

Crocus computes snow albedo for three spectral ranges including the visible range (0.3-0.8μm), 

and two near infrared ranges (i.e. 0.8-1.5μm and 1.5-2.8 μm). As MAR uses a modified version 

of Crocus snow and ice albedo as described in Lefebre et al. (2003) and Alexander et al. (2014), 

the original Crocus albedo module was modified here to be more consistent with MAR. The 

reader is referred to the supporting information (Text S1) for a detailed discussion on 

modification of the albedo module in Crocus.  

2.3 Method (Particle Batch Smoother algorithm) 

A Particle Batch Smoother (PBS: Margulis et al. 2015) framework is implemented to 

assimilate satellite-derived 16-day albedo with prior states to generate posterior state and flux 

estimates. Unlike commonly used filtering methods, in which states are sequentially updated 

when a measurement becomes available (e.g., Dumont et al. 2012; Charrois et al. 2016), PBS 
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updates the states in a single step using all measurements in the assimilation window (i.e. one 

year). By construct, the method provides a historical reanalysis, where state and flux estimates 

benefit from all measurements within the assimilation window. Note that, both the sequential 

and batch smoother data assimilation techniques use all observations. For a more detailed 

discussion about the methodology, see the supporting information (Text S2). 

 

3 Study Site and Data 

3.1 Study site  

The focus of this work is on K-transect stations. Since 1990, SMB measurements 

(conducted in late August every year) have been carried out at eight locations on the southern 

Greenland ice sheet, near the town of Kangerlussuaq at different elevations. Among the stations, 

seven stations (S4, S5, SHR, S6, S7, S8, S9) are located in the ablation zone where the annual 

surface mass balance is negative and one station (S10) is located in the percolation zone where 

melt occurs but annual SMB remains positive (van de Wal et al., 2012). Figure 1 shows the 

location of the K-transect stations and the different GrIS mass balance zones and in-situ SMB 

measurements at these stations for year 2009-2010 are listed in Table 1. The ablation zone is 

defined as the region of the GrIS where the annual surface mass balance is negative. The dry 

snow zone is defined as the region where the mean annual temperature is less than -25º C (based 

on Crocus model output). The area between the ablation zone and the dry snow zone is 

considered the percolation zone. 
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3.2 Data 

3.2.1 Satellite-derived albedo data 

Albedo plays an important role in controlling the surface mass and energy exchange 

between the GrIS and atmosphere (van den Broeke et al. 2011; Vernon et al. 2013). Many 

studies have investigated the impact of the positive ice-albedo feedback and suggested that this 

mechanism is likely responsible for extensive melt in recent years (e.g., Box et al. 2012, 

Tedesco et al. 2011, 2016). Given the large impact of albedo on GrIS mass and energy balance, 

it is critical to extract information contained in satellite-derived albedo measurements to 

improve the SMB estimates of the GrIS. 

The albedo product used in the reanalysis estimate proposed in this work is the MODIS 

16-day composite (MCD43B3) dataset available online at https://lpdaac.usgs.gov/. The 

MCD43B3 product is a high quality combined product using MODIS data from both the NASA 

Terra and Aqua satellites to provide 1-km albedo. The product algorithm uses atmospherically 

corrected, cloud-cleared MODIS reflectance data measured over 16-day periods to generate an 

integrated albedo measurement every eight days (i.e., this product is produced every 8 days 

with 16 days of acquisition). Using partition coefficients for direct beam and diffuse radiation 

(Allen et al. 2006), we linearly combined directional hemispherical reflectance (black-sky 

albedo) and bi-hemispherical reflectance (white-sky albedo) at local solar noon to obtain the 

true blue-sky albedo which better represents the model generated albedo. Stroeve et al. (2005, 

2006) suggested that the quality of albedo products decrease under the condition where the 

solar zenith angle is larger than 70º. To account for this quality control step, solar zenith angle 

https://lpdaac.usgs.gov/
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was computed for all stations over the simulation period and all the observations corresponding 

to solar zenith angles larger than 70º were removed from the dataset, which accounts for 50% 

of the dataset. In addition, an aggregation operator was used to map the 16-day albedo from 

the measurement space of 1 km to the MAR model resolution of 25 km. Figures 2a-d show the 

albedo map for day of year (DOY) 129, 161, 193, and 225. As can be seen, there is a significant 

variation in albedo along the K-transect stations. On DOY 129 and 162 (May 9 and June 11) 

albedo gradually increases with elevation (Figure 2a-b). On DOY 193 and 225 (July 12 and 

Aug 13), the albedo maps show different patterns (Figure 2c-d). Albedo is higher in the margin 

of the ice sheet where the first 3 K-transect stations (i.e., S4, S5, and SHR) are located and 

decreases around -49º longitude and then gradually increases. The irregular variations around 

-49º are likely driven by snow and ice impurities (e.g., dust, black carbon, and organic material) 

this area is also called the dark zone (Wientjes et al. 2011). When snow from previous 

accumulation season covers the impurities, there is a smooth transition between high and low 

albedo along the K-transect stations (Figure 2a-b). With the advancing melt season, winter 

snow cover gradually disappears and bare ice with impurities become exposed (Figure 2c-d). 

Impurities and biological material significantly reduce the albedo and increase the absorbed 

solar radiation and consequently enhance the magnitude of the snow/ice melt. The albedo 

gradient (Figure 2) shows an apparent correlation with in-situ SMB measurements at the K-

transect stations (Table 1). Therefore, it is reasonable to expect that, MODIS based albedo data 

would provide useful information for constraining modeled SMB estimates. Previous works by 

Dumont et al. (2012) and Charrois et al. (2016) showed successful application of albedo within 
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assimilation frameworks.   

3.2.2 Model input data 

The snow/ice model (Crocus), applied in this study, uses the meteorological data from 

the hourly MAR output for the years 2009 and 2010 and is run at the same spatial resolution 

of the MAR data (i.e., 25 km).. Here, the nominal forcings from MAR integration (i.e., 

precipitation, short wave, long wave, and air temperature) were perturbed to generate the 

ensemble of meteorological forcing variables. The perturbed MAR based hourly forcings were 

used as input to the Crocus to generate prior estimates of mass fluxes which are the main 

components of reanalysis estimates of SMB. For a more detailed discussion about the input 

data and perturbation technique, the reader is referred to Navari et al. (2016).    

 

4 Experimental design  

The model setup and open loop simulation are very similar to that explained in Navari 

et al. (2016). Hence, for brevity, only the key points are repeated here. In order to adjust the 

initial states of the snow/ice model to quasi-stationary conditions, a one-year model spin-up 

was performed with Crocus initialized by MAR, which has been properly spun-up and run from 

1979 to 2009.  Snow processes in the GrIS ablation zone are very similar to those of seasonal 

snow, therefore, the spin-up period does not affect the simulation results over the ablation zone. 

However, in the percolation zone the melt water affects the firn structure and density, which 

will carry over from one year to the next. Therefore, for a longer simulation it might be more 

accurate to use a longer spin-up period. A data assimilation analysis was performed for the 
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two-year period from January 2009 through December 2010. The years 2009 and 2010 were 

chosen because the hydrological year 2009-2010 was characterized by an extreme negative 

SMB of 2.6 standard deviations below the 1958-2009 average (Tedesco et al. 2011). Moreover, 

the ice surface temperature (IST) record also shows that the GrIS has experienced a large 

positive IST anomaly in summer 2010 (Hall et al. 2013).   

The measurement error standard deviation dictates how much measurements are trusted 

relative to the prior estimate of the state variable in the assimilation step. The measurement 

error standard deviation at the simulation grid resolution (i.e. 25 km) depends (among other 

factors) on sensor spatial resolution and accuracy. Stroeve et al., (2005) compare the MODIS 

16-day albedo measurements with in-situ measurements at the Greenland Climate Network 

(GC-Net) stations and report a root mean square error (RMSE) of 0.07. Alexander et al., (2014) 

compared the 16-day albedo product with the GC-Net and K-transect in-situ measurements and 

report a RMSE of 0.09. However, the range of RMSE error ranges from 0.12 for the S5 station 

to 0.03 for S10 station. Here, we chose to use white Gaussian measurement errors with a 

standard deviation of 0.05. We have also run the simulation with a measurement error standard 

deviation of 0.1. The results (not shown) indicate that the bias and RMSE increase by 40% and 

60% respectively.  

 

5 Results  

For illustration, representative individual pixels are presented, which allow for an 

understanding of how the PBS algorithm works. Figure 3a-b shows the time series of prior 
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estimates of albedo, satellite-derived 16-day albedo observations, and posterior estimates of 

albedo for the year 2010 at the model computational grid cells co-located with the S6-S7 and 

S9 stations (see Figure S1 in the SI for other stations). The prior estimates are those before 

assimilation of albedo and posterior estimates are estimates after assimilation of the 16-day 

albedo product. Both the prior and posterior provide statistical information, which can be used 

to evaluate the accuracy of the estimates. The median represents the central tendency of 

estimates and the interquartile range (IQR) can be used to describe the variability of the 

estimates around the median. 

As shown in Figure 3a, the ensemble median of the prior estimates of albedo at the 

above-mentioned grid cells are higher than the observations over the entire period and the 

ensemble spread of the prior estimates is very large (i.e, IQR ranges from around 0.4 to 0.85). 

For the grid cell co-located with the S6 and S7 stations (Figure 3a) the observed albedo 

decreases from about 0.8 to 0.3 during early May to late July and remains about 0.3 until late 

August before starting to increase. The median posterior estimate drops from 0.8 to 0.4 in early 

May to early June and then remains about 0.4 until late August before starting to increase 

during the accumulation season. The 16-day albedo shows significantly low values due to the 

snow melt and presence of the liquid water in the snowpack at the beginning of melt season 

and the exposure of bare ice and surface impurities later in the melt season. This indicates that 

the satellite sensor is able to capture the evolution of snow processes during the melt season. 

In addition, it shows that the Crocus albedo module cannot properly model the evolution of 

albedo due to both errors in the forcing data (e.g. winter accumulation driving the appearance 
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of low albedo zones) and overestimation of the bare ice albedo in Crocus which is a constant 

value over the whole ice sheet. The PBS actually uses this signal (i.e., the difference between 

observation and model) to update the prior estimates. Figure 3b shows a similar pattern for grid 

cells co-located with the S9 station where on average the prior estimates do not simulate 

appearance of bare ice or dark firn. However, as can be seen by moving toward the higher 

elevation (from S6 to S9) both the simulated and observed albedo increase.  In the grid cell co-

located with the S9 station more than 50% of the ensemble members do not show melt; 

therefore the median of the ensemble remains very high during the summer (Figure 3b). The 

lower bound of IQR indicates that at least 25% of the ensemble members show considerable 

melt and cause bare ice with low albedo to become exposed.        

As show in Figures 3a-b, by construct, the posterior albedo is closer to the observations. 

The PBS heavily weights ensemble members that closely fit the observations, while those very 

far from the observations have reduced weights, which consequently decreases the uncertainty 

of the posterior estimates. Note that the 2009 time series has not been shown because the melt 

season for the measurement year 2009-2010 (i.e., September 1st, 2009 to August 31st, 2010) 

takes place in summer 2010 only.  

Figure 3c shows the reanalysis estimates of SMB relative to the prior estimates and in-

situ observations at the K-transect stations in the measurement year 2009-2010. The PBS 

extracts the implicit information contained in albedo measurements to update the prior 

estimates of SMB at each computational grid cell. Posterior SMB for grid cells covering the 

K-transect stations were computed by applying the posterior weights to the prior SMB from 
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the Crocus simulations. Then the posterior SMB values from September 1st, 2009 to August 

31st, 2010 were compared against the open-loop and in-situ measurements.  

At the margin of the ice sheet where the computational grid cell is co-located with the 

S5 and SHR stations, the PBS improves estimates of SMB relative to the open-loop estimates. 

The red and blue error bar in Figure 3c represents the uncertainty (IQR) of the SMB estimates 

for the prior and posterior estimates. Observed SMB at both S5 and SHR stations falls within 

the uncertainty range of the posterior estimates and the uncertainty of the posterior estimates 

are clearly smaller than that of the prior estimates. The albedo assimilation provides superior 

estimates of the SMB at the grid cell that is co-located with S6 and S7 stations. SMB estimates 

from the assimilation of albedo at the grid cell co-located with the S8 station matches the in-

situ measurement. The PBS substantially reduces the uncertainty of the posterior estimates and 

increases the confidence in model estimates. At the grid cell that encompasses the S9 station 

the PBS significantly improves the estimate. While the prior estimates show a positive SMB 

(i.e., accumulation) without appearance of low albedo snowpack in summer, the PBS shows a 

significant mass loss. However, it slightly underestimates the in-situ SMB measurement. The 

posterior SMB estimates at the grid-cell co-located with the S10 station matches the measured 

SMB. Figure 3c also shows the variability of the SMB along the K-transect stations in the 

ablation and percolation zones. It is evident that most of the surface mass losses take place in 

the relatively narrow ablation zone areas. Table 1 shows the SMB in mmWE estimates from 

the open loop and posterior simulation, and in-situ measurement. It should be noted that 

mmWE and kg/m2 are used interchangeably as the SMB unit. 
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6 Discussion and Conclusion  

In this work a PBS data assimilation methodology was implemented to assimilate the 

MODIS 16-day albedo product with the a priori estimates of SMB provided by the Crocus 

snowpack model.  Crocus is applied at the MAR regional climate model grid-cell co-located 

with the K-transect stations for 2009 and 2010. We showed that the PBS is able to reproduce 

the observed K-transect SMB given the uncertain forcing data from MAR. Grid-scale 

comparison between the PBS estimates, open loop simulation estimates and in-situ 

measurements demonstrates the advantages of assimilating the 16-day albedo measurements.  

It was hypothesized that the modeled SMB is biased due to the complexities of the 

surface ice/snow spatial variability, the presence of impurities and nonlinearities of underlying 

surface mass loss mechanisms. We used the K-transect point-scale SMB measurements to 

evaluate our results over the 2009-2010 hydrological year. It was shown that the PBS was able 

to overcome the prior SMB bias by using the information contained in the 16-day albedo to 

optimally select relevant ensemble members. The PBS significantly reduced the bias by using 

ensemble members that pass near the observations and weighting them heavily, thereby fitting 

the observations within the expected measurement error.  

A successful application of PBS also depends on prior estimates of the assimilated 

variable (i.e., 16-day albedo). In other words, if the dynamic range of the prior estimate of 

albedo is significantly biased or shows unrealistically low bias that does not cover the 

measurements, then the PBS will fail to find a robust fit, usually by heavily weighting a small 
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number of replicates at the extreme tail of the distribution that are close to the measurements. 

This was the main reason for increasing the upper limit of the ice-albedo from 0.45 to 0.55 in 

this study (See Text S1 in the supporting information). This change allows some ensemble 

members to be able to mimic the integrated observed albedo at 25 km resolution and also 

adequately covers the measurements.  

The results from the assimilation of the 16-day albedo product are promising and 

estimates from the albedo assimilation capture the evolution of SMB at K-transect stations. 

The PBS reduces the spatial RMSE of SMB over the K-transect stations by 82% from 1240 

mmWE/yr to 231 mmWE/yr and bias of the estimates by 98% from 1142 mmWE/yr to -20 

mmWE/yr knowing that the mean K-transect SMB has been -2600 mmWE/yr (see Table 1). 

However, results from this work are based on a single year experiment and the PBS provided 

good results for this extreme negative SMB year. We acknowledged that a more robust 

evaluation of the methodology needs multiple years of evaluation. Finally, it should be noted 

that point scale measurements may not be adequate to represent a model grid cell of 25 km. 

It was shown that assimilating remote sensing data into a snow model is an effective 

methodology to reduce error and uncertainty in SMB estimates. It was also shown that, this 

methodology has the potential to resolve the spatial variability of the surface processes along 

the K-transect stations and surface albedo which is not resolved by the model at a resolution of 

25 km. Extending the methodology to the entire GrIS and evaluating the feasibility of directly 

updating the MAR SMB will be the focus of our future work.  
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Table 1: In-situ SMB measurements at the K-transect stations, and the prior and posterior 

Crocus SMB estimates at the MAR grid cells co-located with the K-transect stations for the 

measurement year 2009-2010 in mmWE/yr.   

 MAR grid cell/K-transect stations 

 S5 SHR S6 S7 S8 S9 S10 

In-situ measurement -5120 -4390 -2950 -2990 -1930 -1010 200 

Open loop  -3390 -1740 -470 260 280 

Posterior -4660 -3010 -1890 -1300 200 

Note: the in-situ measurements adapted from van de Wal et al., (2012)  
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Figure1: The Greenland ice sheet mask from MAR (filled area) at resolution of 25km, including 

the ablation zone (blue), the percolation zone (dark green), and the dry snow zone (bright green) 

based on an offline Crocus simulation for the year 2010. The black circles show the location 

of the K-transect stations. 
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Figure 2: The 2010 16-day albedo map for day of year (a) 129, (b) 161, (c) 193, and (d) 225. 

The black circles show the location of the K-transect stations S4, S5, SHR, S6, S7, S8, and S9, 

S10 respectively from left to right. The dark blue areas in c-d represent the Greenland dark 

zone with very low albedo.  
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Figure 3: (a) Time series of albedo [-] for the grid cell co-located with the S6-S7 stations. The 

red and blue shaded areas represent the prior and the posterior uncertainty band (IQR) and the 

red and blue lines represent the median of the prior and the median of the posterior respectively. 

The green circles represent the satellite-derived 16-day albedo. (b) Similar to (a) but for the S9 

station. (c) SMB (in mmWE/yr) at MAR grid cells co-located with the K-transect stations. The 

prior and posterior SMB estimates are shown by red and blue columns respectively and black 

circles represent the in-situ measurements. The error bars (IQR) represent the uncertainty of 

estimates. The width of the column represents dimension of the MAR computational grid cell 

and the height of the column represents SMB of the ice sheet at that location at the end of 

simulation (August 31st, 2010). The zero represents the surface of the ice sheet at the beginning 

of the simulation (September 1st, 2009)002E 


