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Abstract

BONNET Stéphanie (2018). Very High Resolution & 3D Remote Sensing Data for

Supporting Forestry in Wallonia. What Resolution? What Scale? What Purpose? PhD Thesis.

Université de Liège - Gembloux Agro-Bio Tech, Belgium. 152 p., 23 tabl., 50 fig.

The forest, which represents one-third of the Earth surface, has always been in
close interaction with human societies. Forests provide many environmental ser-
vices: soil and water resources protection, reduction of impact of gas emissions,
biodiversity reservoir and conservation... Concerns about global changes add
to social functions such as recreational activities or wood production and about
forest management and silviculture practices. The need for information about
the forest resource has never been greater to ensure a sustainable management.
The description of the forest stands (location, extent, composition, structure ...)
and their dendrometric characterization (dominant height, number of trees per
hectare, mean quadratic circumference, basal area and volume per hectare ...)
have become crucial prerequisites indispensable for planning. Remote sensing
enables information acquisition over large areas and overcomes the capacity and
accessibility limitations inherent in field data collection, which mobilizes signif-
icant human and financial resources. The Walloon forest is characterized by a
great diversity of situations and preoccupations: type of owner, structure, compo-
sition, spatial distribution, stations, fragmentation, silvicultural practices. This
diversity makes it particularly relevant to use remote sensing as an informa-
tion acquisition tool. This thesis lies in this context. The main purpose was
the implementation of different types of three-dimensional remote sensing data
to determine how they could contribute properly to forest management in Wal-
lonia. First, we considered the use of low-density and regional-scale Airborne
Laser Scanning (ALS) data in combination with the data collected by the Walloon
Regional Forest Inventory. This combination has shown its potential for quan-
tifying coniferous forest attributes, coupled with regional allometry built on the
inventory database. In parallel with the importance of coniferous forest, a major
concern is the development of a close-to-nature forestry, promoting natural re-
generation. The presence of gaps in the stands is therefore essential information.
We focused on a robust mapping of gaps in broadleaved forests from high-density
ALS data. To complete our progression in the use of three-dimensional data,
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we focused on data acquired by drones. Our study showed their effectiveness in
detecting (dominant, co-dominated, dominated) trees in coniferous stands as a
basis for quantifying forest attributes. The potential use and relevance of several
photogrammetric products (ortho- or rectified images, digital surface model, and
correlation maps) have been tested to detect individual trees as a basis for forest
characterization. We investigated the association of the individual tree detection
approach and the area-based approach for the assessment of forest attributes
with drone data. As a conclusion, we argue the importance of a strong interaction
between the different kind of remote sensing data as indispensable support for
forest managers.
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Résumé

BONNET Stéphanie (2018). Very High Resolution & 3D Remote Sensing Data for

Supporting Forestry in Wallonia. What Resolution? What Scale? What Purpose? PhD Thesis.

Université de Liège - Gembloux Agro-Bio Tech, Belgium. 152 p., 23 tabl., 50 fig.

La forêt, qui représente un tiers de la surface de la Terre, a toujours été en
étroite interaction avec les sociétés humaines. Les forêts fournissent de nombreux
services environnementaux: protection des sols et des ressources en eau, réduc-
tion des impacts des émissions de gaz, réservoir de biodiversité et conservation
... Les inquiétudes relatives aux changements globaux s’ajoutent aux fonctions
sociales telles que les activités récréatives ou la production de bois et aux préoccu-
pations concernant la gestion des forêts et la sylviculture. Le besoin d’information
sur la ressource forestière n’a jamais été aussi grand pour assurer une gestion
durable. La description des peuplements forestiers (localisation, étendue, compo-
sition, structure ...) et leur caractérisation dendrométrique (hauteur dominante,
nombre d’arbres par hectare, circonférence quadratique moyenne, surface ter-
rière et volume par hectare ...) sont devenues des préalables indispensables à
la planification. La télédétection permet une acquisition d’information sur des
zones étendues et surmonte les limites de capacité et d’accessibilité inhérentes à
la récolte de données sur le terrain, qui mobilise des ressources humaines et fi-
nancières conséquentes. La forêt wallonne se caractérise par une grande diversité
de situations et de préoccupations: type de propriétaire, structure, composition,
répartition spatiale, stations, fragmentation, sylvicultures mises en place. Cette
diversité rend particulièrement pertinente l’utilisation de la télédétection comme
outil d’acquisition d’information. Cette thèse s’inscrit dans ce contexte. L’objectif
principal est la mise en œuvre de différents types de données de télédétection
tridimensionnelles afin de déterminer comment elles pourraient contribuer de
manière appropriée à la gestion forestière en Wallonie. Nous avons première-
ment considéré l’utilisation de données ALS (Airborne Laser Scanning) à basse
densité et à l’échelle régionale en interaction avec les données collectées par
l’inventaire forestier régional wallon. Cette combinaison a montré son poten-
tiel pour la quantification des attributs de peuplements résineux, couplée à une
allométrie régionale construite sur base des données de l’inventaire. En par-
allèle de l’importance de la forêt résineuse, une préoccupation majeure est le
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développement d’une sylviculture proche de la nature, favorisant la régénération
naturelle. La présence de trouées dans les peuplements est donc une informa-
tion essentielle. Nous nous sommes dès lors concentrés sur une cartographie
robuste des trouées en forêts feuillues à partir de données ALS haute densité.
Pour terminer notre cheminement dans l’utilisation des données tridimension-
nelles, nous nous sommes intéressés aux données acquises par les drones. Notre
étude a montré leur efficacité à détecter les arbres (dominants, co-dominés, dom-
inés) dans les peuplements résineux, comme base pour la quantification des
attributs forestiers. L’utilisation potentielle et la pertinence de plusieurs pro-
duits photogrammétriques (images ortho- ou rectifiées, modèle numérique de
surface, cartes de corrélation) ont été testées pour détecter des arbres individuels
comme base pour la caractérisation forestière. Nous avons étudié l’association de
l’approche de détection des arbres individuels et de l’approche par placette pour
l’évaluation des attributs forestiers avec les données drone. En conclusion, nous
soutenons l’importance d’une interaction forte entre les différents types de don-
nées de télédétection comme un appui indispensable aux gestionnaires forestiers.
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Chapter 1

Introduction

"Between two pines is a doorway to

a new world."

John Muir

1.1 General Context

The forest, which represents one third of the Earth surface, has always been
in close interaction with human societies. Forests provide many environmental
services : soil and water resources protection, mitigation of local climate variation,
reduction of impact of gas emissions, biodiversity reservoir and conservation [33,
57]. Therefore, current concerns about global change, deforestation and carbon
sequestration are all issues facing the forest. These considerations must be taken
into account in addition to the social functions in daily life for human beings
as recreation or wood production, preoccupations about forest management and
silviculture.

Forest management is all the necessary actions to reach the aims decided
by the forest planning. To support the planning, an important descriptive and
prospective phase is needed to define the different objectives, based on the ini-
tial situation. Silvicultural decision-making and definition of long-term goals for
stands heavily rely on indicators of forest structure and density. Number of trees,
basal area and volume are measures of stand density used to control level of
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thinning and predict growth. Structure and diameter distribution, based on data
collected at tree-level are also relevant indicators. Spatial variability of basal area
at the stand-scale is useful for the forest manager, as a dendrometric indicator
and a variable for forest typologies as silvicultural baseline. Basal area value can
be a guideline for promoting regeneration of specific species.

The need for information about the forest resource has never been greater to
ensure a sustainable management. The description of the forest areas (location,
extent, composition, ...) and their dendrometric characterization have become
crucial prerequisites for planning and are realized traditionally through field in-
ventories. This work is carried out on potentially large surfaces and mobilizes
significant human and financial resources. Remote sensing allows repeated ac-
quisitions of information over extensive areas and overcomes the limits of capacity
and accessibility inherent in field data prospecting. With the constant develop-
ment of digital technologies, the use of remote sensing has become a central and
indispensable player thanks to the development of efficient techniques adapted
to the characterization of the forest resource and the development of new data,
methodologies and tools.

This thesis lies in this context, with a specific focus on the Walloon forest case
(Southern Belgium). Considering the broad issue of forest remote sensing, the
purpose of this thesis was the use of several types data for the quantitative and
qualitative characterization of forest stands considering different working scales,
from local to regional. This introduction gives some key features about the Wal-
loon forest resource and the need of information regarding the current concerns
for forest managers. Some background is then provided about forest inventory
and remote sensing data. Specificities of these data in the Walloon context are
highlighted. Finally, the aims, structure and organization of the thesis are pre-
sented.

1.2 The Case of the Walloon Forest

1.2.1 Key Features about the Resource

The forest policy is handled at a regional level in Belgium (Wallonia, Flanders
and Brussels Figure 1.1). Forest lies therefore within the Walloon government’s
competence. The forest is a major natural resource [76] in Wallonia (Figure 1.2
(a)), extending over 33% of the Region (556200 hectares divided into 475200
hectares of forest stands and 81000 hectares of non-productive areas as forest
roads, firebreaks...) with 57% of broadleaved species and a proportion of 49% of
public properties. The public forest (273700 hectares, 49%) is managed by the
Forest Administration, a part of the regional Administration (Service Public de
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Wallonie, SPW). The Walloon Region owns 67800 hectares and 194800 hectares
belong to the municipalities. Norway spruce (Picea abies (L.) H. Karst.) stands
represent 34% of the forest, oaks (Quercus petraea (Matt.) Liebl. and Quercus

robur L.) stands 18% and 9% for beech (Fagus sylvatica L.). Oaks and Beech
stands are together 57% of the broadleaved pubic forests while Norway Spruce
and Douglas-fir represent 79% of the coniferous private forests (Figure 1.3). The
public forest is composed of 1655 properties, with an average area of 170 hectares
while the private forest is characterized by an average area of 3 hectares for 89790
properties.

Figure 1.1: The forest policy is handled at a regional level in Belgium. The
country is divided into three Regions: Wallonia, Flanders and Brussels.

There are geographical differences in the distribution of forest for example
regarding public versus private properties or the types of stands (e.g. broadleaved
versus coniferous). Environmental specificities are formalized with the concept of
bioclimatic regions (Figure 1.2 (b) & (c)). The Walloon Region is splitted into 10
bioclimatic regions based on climatic data (temperatures, precipitation and solar
radiation) and knowledge on species autecology [141]. The spatialization of the
climatic indicators had led to an ecological stratification of the Walloon territory
[141]. The extent and the composition of the stands have specificities according
to the type of the owner, the province (Figure 1.4) or the bioclimatic regions. For
example, the percentage of forest cover is 57,2% in Ardenne versus 23.5% in
Condroz.
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Figure 1.2: Land use/land cover map (a), gradient of altitude (b) and bioclimatic
regions (c) of Wallonia. The forest is covers 33% of the Region which is splitted

into 10 bioclimatic areas based on climatic & environmental factors and
knowledge on species autecology.
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Figure 1.3: Proportion of forest types in Wallonia regarding the type of owner.
The forest covers 33% of the Walloon territory (namely 556200 hectares divided

into 475200 hectares of forest stands and 81000 hectares of non-productive
areas (class "Other" as forest roads, firebreaks...).

Figure 1.4: Proportion of forest types, forested area and forest cover percentage
in Wallonia in each Walloon province (Brabant wallon, Hainaut, Liège,

Luxembourg, Namur).
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The broadleaved forest is diversified in terms of composition (Figure 1.5). Oaks
are the most common ahead precious hardwoods species. The latter category in-
cludes mix of oaks and beech and pure or mixed stands of ash (Fraxinus excelsior

L.), red oak (Quercus rubra L.), wild cherry (Prunus avium L.), elm (Ulmus sp.)
or sycamore maple (Acer pseudoplatanus L.). Recent evolution shows a trend to-
wards more diversification. Other broadleaved stands are composed with at least
50% deciduous trees but do not fit into other categories. Regarding coniferous
trees, the Norway spruce stands are the majority despite a decline observed since
the 1980s. Other coniferous stands are composed with at least 50% coniferous
trees but do not fit into other categories. The evolution of the coniferous sur-
faces is more remarkable than that of the hardwoods [76]: strong decrease of
pines (Pinus sp.), significant increase of Douglas-fir and disappearance of species
outside the station following the application of the forest codes and Natura 2000
(mainly for the Norway spruce stands).

Figure 1.5: Proportion of the main species for coniferous or broadleaved stands.
Precious hardwoods species include mix of oaks and beech and pure or mixed
stands of ash, red oak, wild cherry, elm or sycamore maple. Other broadleaved
or coniferous stands are composed with at least 50% deciduous ou coniferous

trees but do not fit into other categories.
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1.2.2 Current Needs for Information

The issues concerning the Walloon forest, its management and the threats it
faces are varied. In order to highlight the specific context of Wallonia, and the need
for information on the forest resource, this section briefly presents current major
problems: diversification and transformation to uneven-aged stands, regeneration
of broadleaved species (especially oaks), in the framework of resilience to global
change [75, 161, 3].

The impact of climate change will be particularly marked by an increase in
the growing season and the frequency and intensity of water stress or extreme
weather events. Natural resource managers will have to adapt by favoring the
resilience of stands by the choice of indigenous or acclimated species, by compo-
sitions, structures and biodiversity which are diversified. In this context, develop-
ing surveillance and characterization strategies for the Walloon forest is essential.
A basic guideline must seek more resilient and stable ecosystems, for example by
heading vertically stratified stands. Modeling and simulation tools can be used
to evaluate the impact of different silvicultural factors and scenarios on stand
evolution. These types of tool are based on a reliable quantitative assessment of
the initial situation.

The Regional Forest Inventory (RFI) estimates more than 40.000 hectares of
Norway spruce stands that will soon be regenerated in Wallonia. Often, natural re-
generation is abundant and represents an opportunity to overcome clear-cutting,
the reduction of the forest environment and the increasing risk of windfall in
neighboring stands. At the same time, there is a clear trend to transform the
even-aged forests into irregular stands, which are considered as more resilient to
global changes. This transformation to uneven-aged stands is, however, largely
unknown in the context of the Walloon forest. In order to compare different sil-
vicultural scenarios to uneven-aged transformation, the monitoring of inventory
plots with information on each individual tree by mean of remote sensing data,
could be particularly interesting.

Different strategies exist for the transformation of coniferous forests to uneven-
aged stands [129]. They are conditioned by the stage of development. The concept
of precision forestry, involving the characterization of the resource at the tree level,
therefore makes a lot of sense in the management of irregular forests. Standing
capital, structure and composition are all guides for the forester in the procedure
of transformation. Standing capital is often measured by the basal area, which
can serve as a benchmark for determining the optimum of a stand. The structure
and spatial distribution of the trees vertically (vertical stratification of heights)
and horizontally (girth variability) are also elementary traits.
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The dynamic of irregular stands is based on the natural regeneration of the for-
est. However, the high density of ungulates is an issue for the renewal of stands,
especially those based on palatable species such as oak. Oak-Beech forests in Ar-
dennes are more developed on acid soils and in conditions more favorable for the
beech which becomes highly competitive and regenerates more effectively and is
less depressed by deer. The oak allows the diversification of the beech forests and
the improvement of the functioning of the ecosystem, in particular its resilience
against the climatic and phytosanitary hazards. Unfortunately, the effective nat-
ural regeneration of oak, previously favored by its qualities and heritage value, is
sporadic [3]. It is therefore important to look at gaps as potential areas for regen-
eration. The presence of gaps changes the amount of incident light reaching the
ground and influences nutrient cycling and moisture availability, providing po-
tential settlement sites for regeneration. The characterization of gaps is important
to locate suitable conditions for the regeneration of target species. The study of
forest gap dynamics is thus important for forest management. The development of
remote sensing tools and in particular the use of aerial Light Detection And Rang-
ing (LiDAR) technology offers opportunities for the forest domain in large-scale
automatic gap detection.

1.3 Sources of Information

1.3.1 Field Data

Regional Forest Inventory

As a major natural resource, the Walloon forest must be managed sustain-
ably and it’s management has to be based on reliable and up-to-date data. The
characterization of the Walloon forest is made through the RFI [127, 4], led by the
Forest Administration. This structure is active since 1994 and allows establish-
ing a complete inventory of the forest, theoretically, every 10 years (14 years in
practice). The sampling method applied by the RFI is a single-phase, non strati-
fied inventory using a systematic sampling design with Permanent Sample Plots
(PSP). One-tenth of these PSP are remeasured each year (17 months in practice)
according to a predefined scheme ensuring that the whole territory is uniformly
covered [127]. The entire Walloon Region is covered by 33000 plots with 11000
in forest.

The sample units are concentric circular plots (Figure 1.6). Data are collected
in productive forest land. Three main circular plots (radius of 4.5, 9 and 18
m radius) are used to measure living trees with a minimum circumference of
respectively 20, 70 and 120 cm. Total height is measured for all hardwood species
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and only for dominant trees for coniferous species. Four circular sub-units of
2.25 m radius are established for natural regeneration. More general variables
are collected within a 36 m around the plot center: ownership status, topography,
soil, structure, age, composition...

Figure 1.6: The inventory relies on a systematic sampling design with
Permanent Sample Plots (PSP). The sample units are concentric circular plots.

Data are collected in productive forest land. Three main circular plots (radius of
4.5, 9 and 18 m radius) are used to measure living trees with a minimum

circumference of respectively 20, 70 and 120 cm. Total height is measured for all
hardwood species and only for dominant trees for coniferous species. Four

circular sub-units of 2.25 m radius are established for natural regeneration.

Data are collected in the field via an electronic field recorder allowing a first
quality control. Plot position is now updated by Global Positioning System (GPS).
The other tools used are a measuring tape and a vertex (Figure 1.7). Three refer-
ence trees were marked during the installation of the plot (first field visit) to allow
the triangulation of the plot center in the next measurement campaign. Back to
the office, the data are centralized in the main database. They are processed in
order to have forest information as the proportion of forest types and structures,
wood and biomass stocks, growth and the quality of the habitats. Collected, mea-
sured and processed data are available for any user in various forms as tables,
graphics and maps. Detailed information on the methodology and results of the
Walloon RFI can be found in [4, 76].

Forest Inventory for Planning

Forest management plans require reliable, descriptive and quantitative data
on the resource. In order to help the managers, especially the Walloon Forest
Administration, Gembloux Agro-Bio Tech has set up a methodology for carrying
out systematic sampling inventories in forests for the preparation or revision of
management plans [79]. In this context, a software has also been developed,
including an office component as well as a field component [37].
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Figure 1.7: Material for forest inventory: (a) Vertex for height, distance and
angle measurement ; (b) a measuring tape for circumference ; (c) GPS for

positioning and navigation.

Figure 1.8: Grid example of Planning Forest Inventory. This type of inventory
has a low sampling rate (< 10%) along a systematic sampling grid. The plot size
is variable, defined by a minimum number of tree. The principle is to focus the
effort of measurement on a relatively small set of trees (usually 10 to 15 trees)

located within the plots. The low number of tree measurements is compensated
by a greater rigor and an increased precision during the field data collection.
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The main characteristics of this type of inventory are:

Û a low sampling rate (< 10%) along a systematic sampling grid whose size
allows the installation of 1 plot/ha at 1 plot/12.5 ha

Û plots of variable size defined by a minimum number of tree (commonly 15
trees)

Û accurate measurement of circumference at breast-height (CBH) of all trees
and measurement of height of a selection of trees (to be defined according
to the stands and objectives)

Û the description of the trees including health status and the presence of
damage.

The principle is to focus the effort of measurement on a relatively small set of
trees located within the plots. The low number of tree measurements is compen-
sated by a greater rigor and an increased precision during the field data collection.
Similar to RFI, the measuring tape, vertex and GPS are commonly used. Refer-
ence trees can be selected in the field in the case of permanent plots to ease
re-measurements. Amongst the results of this type of inventory, the main syn-
thetic dendrometric parameters are crucial: number of stems, basal area, volume
per hectare, dominant height. Several other information can be mentioned: a
characterization of the structure and composition (number stems by size class
and species), estimates of regeneration cover, estimates of the frequency of de-
fects or damage to trees in the forest or natural regeneration, estimates of growth
increment in circumference or volume (in case of remeasuring in the plots of a
previous inventory). Planning inventories can cover several thousand hectares of
forest. This survey can be implemented by teams of two operators. The speed of
execution of the measurement is highly variable and depends mainly (1) on the
size of the sampling grid that influences the travel times between plots and (2) the
nature and diversity of the collected variables.

1.3.2 Remote Sensing Data

The variety of remote sensing data available has become very large as the
technology evolves but data can be synthetically distinguish following a typology
based on 5 characteristics [56, 82, 64].

Û Platform: satellite, plane, helicopter, microlight plane, Unmanned Aerial
Vehicle (UAV). The type of platform impacts the extent of the area of data
acquisition.
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Û Sensor: passive or active, visible or multispectral or hyperspectral. The
sensor is dedicated to specific applications.

Û Product: images or point clouds

Û Resolution: from low to very high and formalized in cm or point density.
The resolution is inversely proportional to the size of detection for object of
interest.

Û Acquisition frequency: few days with satellite constellation or to be planned
with plane. This characteristic is highly dependent of the financial resources
and the speed of change of the object study.

The following sections present in more details data available and used for
research purposes in Wallonia, in terms of product type.

Imagery

The most common remote sensing data are aerial or satellite images. These
images are acquired by sensors installed on plane or satellite platforms. These
sensors record the electromagnetic radiation emitted or reflected by the surface
of the globe [64]. There are different types of sensors, producing several types of
images that can be used in a large number of environmental applications. These
types of image are derived from passive sensors, as opposed to active sensors. A
passive or optical system records the natural radiation emitted or reflected by an
object as a result of sunlight (the main source of electromagnetic energy received
on Earth). In the case of an active system, such as LiDAR, there is emission of
energy by the sensor itself to the object; the system records the signal returned
by the target [82]. Active systems do not depend on sunshine, so they are less
sensitive to weather conditions. The characteristics of the sensors and platforms
(sensitivity, flight altitude, orbit, ...) rule the properties of the images and their
use. These are defined by several types of resolution: spatial, spectral, radiometric
and temporal.

The spatial resolution corresponds to the size of the pixels that constitute the
basic elements of an image. In general, aerial images have a finer spatial resolu-
tion (between 10 cm and 1 m) than satellite images (between 1 m and 1 km) [82].
The size of the pixel of an image determines how the landscape is understood.
Smaller pixels make it possible to capture finer levels of detail. Unlike larger
pixels will gradually erase the details present in a scene. The sensors record
the radiation emitted or reflected from the Earth’s surface for certain wavelength
ranges, termed spectral bands. These correspond to certain portions of the elec-
tromagnetic spectrum, some of which being part of the visible spectrum. The
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spectral resolution corresponds to the number and the size of the spectral bands
recorded by the sensor (Figure 1.9). The radiometric resolution is the ability of
the sensor to distinguish differences in reflectance; the sensitivity of the sensor
to the signal strength. The greater the radiometric resolution, the more accurate
the image will be. Radiometric resolution is quantified in number of bits, typically
in the range of 8 to 16 bits. Finally, the temporal resolution corresponds to the
frequency of acquisition of an image at a given location. This notion is mainly
used in the case of satellite images, satellites being designed to fly over the same
places at regular intervals (from 1 to 16 days) [64].

Figure 1.9: The 13 spectral bands of Sentinel-2 (compared with the spectral
bands of Landsat 7 and 8) overlapped with atmosphere transmission. The

spatial resolution depends on the spectral band: 10 m (bands 2, 3, 4, and 8) , 20
m (bands 5, 6, 7, 8a, 11, and 12) and 60 m (bands 1, 9, and 10).

Û Satellite images

Thanks to their orbit, satellites allow a repetitive and continuous coverage
of the surface of the Earth. Since decades, Earth observation satellites
have provided images for the study of the terrestrial biosphere, with variable
temporal, spatial, spectral and radiometric resolutions. A major limitation
to the exploitation of satellite images is the presence of cloud cover. Landsat
images (30 m resolution) are available free of charge. Commercial satellites
provide images with a resolution of less than 10 m but with payment (Ikonos,
Quickbird, Pléïades, ...). Recently, a compromise emerged with a new type
of satellite data: Sentinel-2. The launch of the two Sentinel-2 satellites is
an opportunity to enhance forest characterization on a large areas. The
multispectral 13-band sensors produce high-quality images (Figure 1.10) at
a 5-day equatorial temporal resolution. Such an availability of free data is
unprecedented and will substantially promote research in this topic. On
28 February 2008, the European Union (EU) and European Space Agency
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(ESA) signed an agreement over the creation of the COPERNICUS program.
The aim of this program is to provide earth surface monitoring services
[44] (Land, Atmosphere & Marine Monitoring, Climate Change, Security &
Emergency Management Services). Sentinel-2 on-board the passive Multi-
Spectral Instrument (MSI) providing 13 spectral bands [136, 45] with a Focal
Of View (FOV) of 290 km tiled at 100km2 in UTM/WGS84 projection [136].

Figure 1.10: Example of two Sentinel-2 images (August 2015 and May 2016 for
the same area). The infrared false color composition (Near infrared (red), green

(blue), red (green)) gives a good contrast between coniferous, broadleaved,
agricultural areas and roads. The two dates allow to visualize variation in land

cover and phenology of broadleaved species.

Û Aerial images

Aerial images are photographs commonly taken vertically from an aircraft
with a highly-accurate camera. This kind of images are acquired approx-
imately at 3000 to 4000 meters altitude and can be used for the creation
of ortho-images, through a process called "orthorectification" often followed
by mosaicking and final tiling. The mission for the acquisition of the aerial
photos is planned according to the characteristics of the sensor and the
desired result as well as the characteristics of the aircraft. The cameras
used are metric, that means the geometric and chromatic deformations of
the lens are well measured and known. An important parameter during the
acquisition is the longitudinal and side overlap which is determining for the
further processing of the images especially photogrammetry.
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Figure 1.11: The four main species of the Walloon forest are oak (a, b, c), beech
(d, e, f), Norway spruce (g, h, i) and Douglas-fir (j, k, l). These four species are
illustrated with three types of images and resolutions, from left to right for the
same area: UAS 10 cm image, aerial 25 cm image and Sentinel-2 10 m image.
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Û Unmanned Aerial System

A drone, also called UAV or Unmanned Aerial System (UAS), is an aircraft
without pilot and remotely controlled, with a certain autonomy of flight [43]
thanks to the on-board navigation instruments: GPS, inertial station (mea-
surement of the orientation), compass, barometer (measurement of the flight
height). Drones navigate with a flight plan composed of a set of navigation
points. UAS are able to carry on board sensors relevant for environmental
monitoring (Figure 1.12). Shooting must be planned with a large overlap be-
tween images (65 to 90 %). The quality of the result is influenced by many
flight parameters such as the altitude and the distance between two flight
lines, which will condition the lateral overlap of the images. The endurance
of flying an electric drone rarely exceeds 1 to 2 hours; it is the most limiting
factor for forestry use (except legal issues). The use has to be considered for
applications at local level [123].

Figure 1.12: Example of Unmanned Aerial System (UAS) image at 25 cm
resolution in East Belgium. The high spatial resolution allows to easily

distinguish individual tree crowns and the spectral variations between trees.

There are two types of drones: fixed-wing and rotor drones. Fixed-wing
drones have better flight autonomy and higher flight speed than rotor wing
UAS, resulting in a larger surface area for equivalent flight endurance [83].
However, they have less workability and are less versatile. Rotor wing UAS
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are able to perform stationary flights, to board larger payloads and are less
sensitive to changes in the center of gravity of the platform. In addition,
these allow a take-off and a landing in the vertical. The need for a landing
area without obstacle is a limiting factor in the deployment of UAS in the
forest environment.

The UAS imagery is very specific due to the characteristics of the acquisi-
tion platform. Drones fly at low altitude, thus the footprint of a raw image
is limited (between 50 and 300 meters in width) and the resolution is sub-
centimetric to decimetric. Cameras embedded on drones involve significant
distortions due to lens deformation [1]. The quality of the images also suffers
from a spun effect, from the movement of the drone, or from blur caused
by the vibrations. Besides, the changes of relief of the flown scene lead to
many omissions (hidden parts), called occlusions. As a result, to cover an
area of interest, it is necessary to acquire a considerable number of images
with a high overlap between them [43]. This overlap between images allows,
by means of homologous points, to orient them relative to each other and to
correct the distortions of the sensor. The sensors embedded in the drone are
not calibrated and are generally of poor quality. In addition, the orientation
of the camera at the time of shooting is slightly oblique, and very variable
between two successive shots. The inertial unit does not provide precise
external orientation data (position and orientation of the camera at the time
of shooting).

The figure 1.11 shows extracts of three types of images for the four main
species of the Walloon forest.

Point Clouds

A point cloud is a set of points with their position defined in a three-dimensional
(3D) coordinate system (x, y, z) and representing the external surface of an ob-
ject. Point clouds may be created by Airborne Laser Scanning (ALS, also called
aerial LiDAR) or photogrammetry from overlapping images. An important issue
about point cloud acquisition is the visibility of the target objects, without con-
sideration of the method (ALS or photogrammetry): the occlusion results in area
with no data. The resolution of point cloud datasets is quantified by the point
density (number of points by square meter or mean distance between two points).
Obviously, a higher density leads to a better representation of the complexity of
an object. Figure 1.13 illustrates a 2D projection of an ALS (lighter blue) and a
photogrammetric (darker blue) point clouds for the same area. The specificities of
these two types of clouds will be described hereafter.
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Figure 1.13: Example of two point cloud types. The dark blue points come from
a photogrammetric workflow. This cloud allows a characterization of the canopy

top. The light blue is an ALS point cloud with a high point density allowing a
better vertical description of the forest structure.

Figure 1.14: A Canopy Height Model (CHM) is a very relevant product regarding
forest assessment with remote sensing. A CHM can be created directly from an
ALS point cloud or by subtracting a Digital Terrain Model (DTM) from a Digital
Surface Model (DSM). A DSM is a raster representing the altitude of the object

top and a DTM is the ground altitude. A DSM can be created from
photogrammetric or ALS point cloud. Adapted from [20].

20



Chapter 1. Introduction

The interest of the point clouds lies in their 3D information, in particular in
the z coordinate, the elevation, which makes possible to obtain data about height
of the objects. The information contained in a 3D point cloud can be summarized
in 2D data as two rasters: the Digital Surface Model (DSM) and the Digital Terrain
Model (DTM). The first one represents the altitude of the top of the objects (tree
tops for example), the second one is the altitude of the ground. Finally, a Canopy
Height Model (CHM) can be computed as the difference between the DSM and the
DTM (Figure 1.14).

Û Airborne Laser Scanning

The data from ALS technology consists of a representation of the Earth’s
surface as 3D point clouds where each point corresponds to the point of im-
pact of the LASER (Light Amplification by Stimulated Emission of Radiation)
beam with an object. ALS data is a special case of LiDAR data acquired from
aerial platforms (there is also satellite and terrestrial LiDAR data but it is
beyond the scope of this introduction). LiDAR is an active sensor, based on
the emission of a LASER pulse by a transmitter installed on an air platform
(plane or helicopter) and the recording, after interception with the terrestrial
surface, of the return signal (echo) by a receiver [9, 92].

Figure 1.15: Principle of ALS data acquisition (modified from [22]). A pulse is
emitted by the sensor in the plane. A single return is recorded if the pulse

directly hits the ground. Several returns can be recorded if the pulse intercepts
obstacle as trees.
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The basic principle of LiDAR systems is based on the determination of the
distance between the target and the platform thanks to the time taken by
the LASER beam to intercept the target and return to the receiver [64].
The transformation of this raw "distance" into coordinates (x, y, z) involves
especially a Differential Global Positioning System (dGPS) and an Inertial
Measurement Unit (IMU). Many LASER systems have the property of being
able to record several echoes for the same transmitted pulse. Multi-echo
systems typically collect the first and the last echo [92]. The Figure 1.15
illustrates the principle of LiDAR data acquisition: a LASER pulse sent by
the transmitter to the ground can generate one or more echoes in return if
"objects" are located on the path of the impulse (stones, trees, buildings,...);
on the other hand, a single return will be recorded if the impulse reaches
the ground directly [92]. This feature is interesting in the forest area since
it is possible to collect information on the vertical structure of a stand.

Û Photogrammetry - Structure-from-Motion

Because of their high operational flexibility, UAS can deliver very fine spa-
tial resolution data at specific moments defined by the end users [5]. Flying
low and slow, a small UAS with an on-board optical sensor can acquire im-
ages of natural areas (e.g. forest canopies) and provide spectral information.
By their their versatile acquisition and high overlap at local scale, UAS im-
agery is characterized by a high level of information redundancy allowing
to accurately model the canopy surface at a very high spatial and temporal
resolution [87]. The concomitant improvements of image processing tech-
niques make todays’ novel "Structure-from-Motion" photogrammetry (SfM)
workflow (Figure 1.16), operational with UAS imagery [31]. The SfM pho-
togrammetry approach deals automatically with a collection of unordered
overlapping images from an uncalibrated camera [155]. The SfM algorithms
aim to produce a sparse 3D point cloud and camera orientations by auto-
matically determining scene geometry, camera calibration, camera position
and orientation from an unordered overlapping collection of images [132].
When used with UAS imagery, this modern photogrammetry technique de-
livers without difficulty two major final products of the photographed area
for the user : a 3D model of the relief and an orthophotomosaic. UAS im-
agery as basis for dense point-cloud generation on a forested area allows a
cost-effective alternative to ALS acquisition.
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Figure 1.16: Principle of photogrammetric workflow on UAS images

1.3.3 Specificities of Data Available in Wallonia

In Wallonia, there is a clear growing ambition to develop the use of remote
sensing for the characterization of the natural resource. Gembloux Agro-Bio Tech
conducts research in collaboration with the Forest Administration and Non Nav-
igable Watercourses Administration to lay the basis for future operational use
at various scales. In this context, several non-satellite data are acquired by the
SPW and used transversally by different departments or universities. In paral-
lel, Gembloux Agro-Bio Tech supports drone data acquisition. The SPW finances
data acquisition such as orthophotos and ALS and promotes access to data via a
geoportal.

Û ALS and orthoimages

The Public Service of Wallonia regularly produces aerial views of the Wal-
loon territory. In Wallonia, ortho-images have been produced initially for
agricultural applications in the framework of Common Agricultural Policy.
Collections of orthophotos of the Walloon territory are available for the fol-
lowing years: 1971, 1994-2000, 2006-2007, 2009-2010, 2012-2013, 2015
and 2016. The primary purpose of these images being the agricultural
control, the specifications allow that the acquisitions are made before the
budburst date of broadleaved species.

In terms of spatial and spectral resolutions, regional ortho-images could be
compared to Pléiades images. The advantages of the latter are a potential
daily revisit time, a reduced computer space and a clear sky probability of
less than 20%. Their spatial resolution (2 m/50 cm), although close, is
less (25 cm) than the aerial images which are acquired once a year and fully
preprocessed data provided by the SPW for the users. The acquisition period
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extends over several months. A major interest of the regional ortho-images
datasets is their availability for research purposes at a null or low marginal
cost thanks the collaboration between the SPW and universities. Besides,
recurring acquisitions are planned by the SPW for years to come.

A first ALS dataset was acquired in 2011 by the Walloon Non Navigable
Watercourses Administration in the Houille Watershed. The acquisition was
part of the Interreg project "Floods Houille- P2IH", and consisted in two
LIDAR high density (40 points/m2) surveys of the Houille basin (flights in
March and July). The study area corresponds to the Houille transboundary
watershed. A regional LIDAR dataset was acquired by the SPW between
2013 and 2014 (1 point/m2), with a flight in December 2012). The objective
of the LiDAR acquisition was to develop a DTM. In order to favor the presence
of ground points, the acquisition was mainly carried out between December
and March.

Û Sentinel-2 images

Sentinel-2 images are interesting data in terms of spatial, spectral and tem-
poral resolutions considering the extent of the data, the weekly revisit time,
the free data policy and the user’s autonomy to download the data. These
data are a great opportunity to conduct studies at an international scale,
with neighboring countries as in the framework of two Interreg projects.
These projets, partly financed by European Regional Development Fund, aim
to directly benefit the wood industry by better assessing the types of species
and wood volumes that will supply the market in the coming years. The In-
terreg V project "Feel Wood - Pro Bos Forest" concerns an area of 62 000 km2

straddling the Northeastern France and Western Wallonia and Flanders. In
a framework of valorization of the forest and short circuit for the wood sec-
tor, the objective of this project is the identification of the sources shortness
of breath of the die. The Interreg VA "Regiowood II" (2017-2019) bringing
together foresters from France, Wallonia, Germany and Luxembourg, as a
part of Objective 3 of Priority Axis 2: Ensure development respectful of the
environment and the living environment.

Û UAS data

The use of drones offers the chance to acquire customized very high reso-
lution data, as needed. A specificity of the acquisition of these data is the
legislation which surrounds it. In Belgium, the Royal Decree of April 10,
2016 regulates the use of remotely piloted aircraft systems (drones) in Bel-
gian airspace. In addition to the safety of other aircraft and persons and
objects on the ground, the decree also aims to guarantee the privacy of the
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citizen. A risk-based approach is applied to set proportionate requirements
for the different types of operations with drones. There are 5 types of ex-
ploitation/classes, based on the weight of the drone, the height of the flight,
the type of terrain overflown (private model aircraft terrain, other), the dis-
tance from view, the distance around obstacles, the pilot age. Private use
or use as model aircraft are not allowed for commercial or professional pur-
poses. Each flight has to be notified to the Belgian Civil Aviation Authority
(BCAA) before take-off.

Figure 1.17: Three types of drones are used in Gembloux Agro-Bio Tech. (a) The
Gatewing X100 used for the data acquisition in chapter 4 ;(b) An Multirotor,

octocopter; (c) A fixed wing UAS.

The Unit of Forest Management of Gembloux Agro-Bio Tech - ULiège makes
numerous acquisitions of data by UAS (Figure 1.17) for several scientific re-
searches in partnership with the Forest Administration and the Walloon Non
Navigable Watercourses Administration. In this particular context, the type
of operation falls within the class 1a because of the flight height, the weight
of the drone and non visual flight rules. In that case, the requirements of
the decree are: registration of the drone at the BCAA, a remote pilot license
according the class, an operations manual and risk assessment, or class 1
operations, the prior authorization of the BCAA.

1.4 Aims and structure of the thesis

As developed in the previous sections, the Walloon forest is characterized by a
great diversity of situations and concerns: type of owner, structure, composition,
spatial distribution, stations, fragmentation, silviculture. Supporting the different
forest policy directions (resilience and versatility to climate change, preservation
of biodiversity, support wood production, keep balance between broadleaved and
coniferous stands and between forestry and game populations, certification of
forest management plans) requires a good knowledge about the forest resource.
This framework makes it particularly interesting and useful to use remote sens-
ing as a support to management. Moreover, if we consider more precisely the
information collected on the forest by the Walloon RFI, several basic data are par-
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ticularly crucial and consistent to link to remote sensing data as the four main
stand attributes: top height, number of trees per hectare, basal area and volume
per hectare.

The diversity of remote sensing data goes together with the variety of possi-
ble applications involving different spatial resolutions and working scales. It is
important to be aware of the possibilities of the different data in order to bet-
ter understand the needs according to the objective and the expectations of a
forest manager towards remote sensing. Especially, 3D data (as ALS or pho-
togrammetric point clouds) are really relevant regarding forest characterization
and quantification.

è Given the different types and resolutions of 3D data and their interest for forest

applications, what are their relevant uses to acquire information on forest stands, in the

context of sustainable forest management in Wallonia?

Considering this broad issue, the purpose of this thesis is to use several types
of remote sensing data for the quantitative and qualitative characterization of
forest stands considering different working scales, from local to regional (Figure
1.18): UAV data, high and low density ALS. Our generic question is hinged on three
specific research questions corresponding to different working scales determined
by the spatial resolution and forest types specific issues:

Û How to combine ALS data and the Regional Forest Inventory to assess forest attributes

of coniferous stands at a regional-scale?

Û How reliable is a canopy gap mapping in broadleaved uneven-aged stands using

ALS data?

Û What is the potential of UAV imagery to characterize coniferous stands at local-scale?

These specific questions are dealt with three chapters (chapters 2 to 4) built on
three scientific papers listed below. We decide to implement complementary ap-
proaches by considering coniferous versus broadleaved forests, forest stands ver-
sus canopy gaps and forest attributes assessment versus mapping. The datasets
used in this thesis are presented in each chapter specific to each scale of interest.
The second chapter is a manuscript in preparation, complementary to [38] while
chapters 3 and 4 are the identical transcriptions of the published papers (listed
above). Last chapter is a general discussion and provides several perspectives.
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Figure 1.18: The three research chapters are related to three working scales in
line with the study area.

– Stéphanie BONNET, Gauthier LIGOT, Sébastien BAUWENS, Philippe LEJEUNE and

Adeline FAYOLLE. Monitoring of Coniferous Stands by Combination of ALS and

Regional Forest Inventory Datasets. In prep. (chapter 2 - Monitoring of Coniferous

Stands with a Regional ALS Dataset)

– Stéphanie BONNET, Rachel GAULTON, François LEHAIRE and Philippe LEJEUNE.

Canopy Gap Mapping from Airborne Laser Scanning: An Assessment of the Po-

sitional and Geometrical Accuracy. In: Remote Sensing (2015), 7, 11267-11294.

(chapter 3 - Canopy Gaps mapping in Broadleaved Forests with ALS)

– Stéphanie BONNET, Jonathan LISEIN and Philippe LEJEUNE. Comparison of UAV

Photogrammetric Products for Tree Detection and Characterization of Coniferous

Stands. In: International Journal of Remote Sensing (2017), 38(19) , 5310 - 5337.

(chapter 4 - Forest Attributes Assessment of Coniferous Stands with UAV Data)

Around the main papers, several ancillary co-authored papers are listed as
they contribute to the discussion. These latter are of scientific or popularised
nature (written in French in this latter case).
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– Stéphanie BONNET. Un modèle numérique de canopée pour l’estimation de la

hauteur dominante des peuplements résineux en Région wallonne. In: Forêt Wallonne

(2009), 98, 53-59.

– Stéphanie BONNET, François TOROMANOFF, François FOURNEAU and Philippe LEJE-

UNE. Principes de base de la télédétection et ses potentialités comme outil de

caractérisation de la ressource forestière. I. Images aériennes et satellitaires. In: Forêt

Wallonne (2011), 114, 45-56.

– Stéphanie BONNET, François TOROMANOFF, Sébastien BAUWENS, Adrien MICHEZ,

Laurent DEDRY and Philippe LEJEUNE. Principes de base de la télédétection et ses

potentialités comme outil de caractérisation de la ressource forestière – II. LiDAR

aérien. In: Forêt Wallonne (2013), 124, 28-41.

– Jonathan LISEIN, Marc PIERROT-DESEILLIGNY, Stéphanie BONNET and Philippe LEJE-

UNE. A Photogrammetric Workflow for the Creation of a Forest Canopy Height Model

from Small Unmanned Aerial System Imagery. In: Forests (2013), 4, 922–944.

– Laurent DEDRY, Olivier DE THIER, Jérôme PERIN, Adrien MICHEZ, Stéphanie BONNET

and Philippe LEJEUNE. FORESTIMATOR: un plugin QGIS d’estimation de la hauteur

dominante et du Site Index de peuplements résineux à partir de LiDAR aérien. In:

Revue Française de Photogrammétrie et de Télédétéction (2015), 211-212, 119-127.

– Adrien MICHEZ, Sébastien BAUWENS, Stéphanie BONNET and Philippe LEJEUNE.

Characterization of Forests with LiDAR Technology. In: Land Surface Remote Sensing

in Agriculture and Forest (2016), eds. Nicolas BAGHDADI, Mehrez ZRIBI, 331-362.

– Corentin Bolyn, Adrien MICHEZ, Peter GAUCHER, Philippe LEJEUNE and Stéphanie

BONNET. Regional Mapping of Forest and Forest Types by Supervised Per-Pixel Classi-

fication on Sentinel-2 Imagery. In: BASE (2018), submitted.
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Chapter 2

Monitoring of Coniferous Stands with a

Regional ALS Dataset

"On dit souvent que les arbres nous

empêchent de voir la forêt ; il est

tout aussi juste de dire qu’on ne voit

pas les arbres à cause de la forêt."

Ilya Ehrenbourg

Airborne Laser Scanning (ALS) can be efficiently used in forestry, providing
three-dimensional (3D) information to get insight of forest characterization. The
aim of this chapter is to examine the use of low density but very high spatial
resolution data available at regional-scale to help for the forest monitoring. The
integration of data from the Regional Forest Inventory (RFI) is also considered
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as an important reference source about silvicultural knowledge. This chapter is
based on two types of data available at the scale of the Walloon Region: rasters
at 1 m resolution based on low density ALS data, and field data coming from the
plot network of the RFI of Wallonia.

Regarding this chapter, we highlight three complementary steps aiming to de-
scribe qualitatively and quantitatively the forest stands: (i) the construction of
a individual height - circumference at breast-height (H-C) allometry for Norway
spruce and Douglas-fir at regional-scale with the aim to be used with remote sens-
ing data; (ii) the analysis of the spatial (environmental factors: altitude or slope)
and structural (age and stand density factors) variabilities of this H-C allome-
try; (iii) the combination of Area-Based Approach (ABA), Individual Tree Detection
(ITD) and allometry for forest attributes assessment.

2.1 Introduction

Forest ecosystems provide important services to society, sustainable manage-
ment and adapted policies are essential to maintain their ecological and socio-
economic functions. Forest managers and policy makers must consider the re-
lationships between forest functions and ecosystem characteristics and the evo-
lution of forests in order to manage forests and make regional decisions [48, 85].
Sustainable forest management requires an accurate and regular quantification
of the resource: height distribution, stem number, top-height, basal area and
stem volume are essential data for the forest managers. For decades, field inven-
tories have been used to better characterize forest. National inventories exist in
countries around the world and have evolved over time to adapt to users’ needs
[139]. Field inventories provide timely and accurate estimates of forest resources
and their evolution at a large scale. Nevertheless, this method is time-consuming
and quite expensive. Therefore, technological innovation is becoming crucial to
improve the efficiency of measurements and estimations while making the pro-
duction of inventory data simpler [98].

For many years, remote sensing data are usually used by forest managers
to help in the resource characterization. Remote sensing decreases the cost of
data acquisition, increases the area it is possible to cover without sampling, and
enables the production of map layers that give precious information about the
distribution of forest resources. These complement sample-based procedures
in the field and today are commonly used by researchers and managers [96].
Optical remote sensing (aerial or satellite) has increased the possible applications
through image classification in forestry. Airborne Laser Scanning (ALS) data and
digital photogrammetry technologies have made it possible to use 3D data, such
as Canopy Height Models (CHM) when investigating forests. These technologies
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improve the accuracy of image classification of forest classes [153]. The ability
of ALS to capture the 3D structure of vegetation cover has promoted research on
forest environments characterization. During the last two decades, ALS has been
widely studied for quantification, mapping and monitoring of forest resources
[58, 165, 164]. The accuracy of dendrometric variables derived from LiDAR data
(especially concerning height) can be considered comparable to that obtained by
inventory methods [105, 95]. Thanks to the experience acquired in forestry, the
use of ALS has progressed out of the realm of research and is beginning to be
used operationally to support forest management in several countries [157, 106,
94, 162].

Two fundamental approaches are recognized in ALS forest applications : area-
based approach (ABA) and Individual Tree Detection (ITD) approach. Many pub-
lications are focused on boreal forests because methods were initially developed
in boreal stands. Using ALS data in ITD approach consists mainly in detecting
individual tree tops and predicting the related attributes by mean of allometric
models. The tree tops detection can be followed or replaced by tree crown de-
lineation. A major issue to be considered is that all trees cannot be detected
regarding the detection algorithm, the forest conditions, especially the stand den-
sity and the spatial pattern [144]. Basically, the ABA does not detect each tree
top and consider globally the whole point cloud or the entire raster within the plot
extent. Several variables are extracted from the vertical distribution of the return
to describe the vegetation structure.

Top height is a measure commonly used in forest management. This is a
relevant indicator of the level of development that can be used to estimate the
productivity of even-aged stands. However, its measurement in the field is rela-
tively time-consuming and expensive. For several years, ALS has been known for
its ability to accurately estimate tree height. In their study, [38] developed and
presented Forestimator, a tool for characterizing the forest resource. It combines
a model exploiting ALS data with top height growth models [109, 108] to provide
updated top height and Site Index estimates for the two main coniferous species
planted in Wallonia. As Forestimator was focused only on top height, further
work is needed to strengthen the assessment of the other elementary attributes
as number of stems, basal area and volume.

King [68] defines the allometry as the relationship between size and shape
of trees. Allometry is an important issue in forestry as it influences the forest
structure and function. In forestry, relations between height and diameter or
circumference at breast-height (DBH, CBH) are crucial because measuring height
can be difficult and costly; CBH being privileged because easily accessible in
the field. Therefore H-C model can be used to reduce data acquisition costs by
predicting height from CBH. From a RS point of view, the easiest variable to
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measure is height and not circumference. The use of allometric models can allow
the estimation of diameter from height extraction.

The aim of this study is to evaluate the combination, at regional-scale, of low
density ALS data and H-C allometry based on RFI data for the monitoring of
coniferous stands by the assessment of important forest attributes (number of
stems, basal area & volume per hectare and quadratic mean of the CBH); the top
height assessment developed in [38], was considered as achieved and not longer
addressed in this study. We implement a simple and versatile workflow based on
these types of data acquired at regional-scale. For this purpose, we structured our
approach in three steps : (i) the construction of a H-C allometry at regional-scale
(RFI data) with the aim to be used with remote sensing data ; (ii) the analysis of the
spatial (environmental factors) and structural (stand density factors) variabilities
of this H-C allometry; (iii) the combination of ABA, ITD and allometry for forest
attributes assessment.

2.2 Material

2.2.1 ALS Data

A regional small-footprint ALS dataset was acquired at the average point den-
sity of 0.8 points/m2. Survey flights were realized from December 12, 2012 to
April 21, 2013 and from December 20, 2013 to March 9, 2014. The survey cov-
ered Wallonia with a regional Digital Terrain Model (1 m of Ground Sampling
Distance, XY resolution). Based on the raw ALS point cloud, a Digital Terrain
Model (DTM) and a Digital Surface Model (DSM) were generated for the whole
region with a 1 m resolution. A canopy height model (CHM) with 1 m resolution
was produced by the subtraction of the DTM from The DSM (Figure 2.1).

Figure 2.1: The CHM is computed by subtracting the Digital Terrain Model
(DTM) from the Digital Surface Model (DSM), both created from the low density

ALS point cloud at regional-scale. The points are classified beforehand to
differentiate the ground from the vegetation and then create the DTM and the

DSM.
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2.2.2 Forestimator

Forestimator is a forest management tool based on a top prediction model
with ALS data aiming to the assessment of Site Index in coniferous stands. The
estimates provided by this model are then coupled with pre-existing top height
growth models [109, 108] that allow for updating the top height over time and
estimating the Site Index. This tool was validated for stands of Norway spruce and
Douglas-fir on a geographic area corresponding to Wallonia. An easy access to this
tool is ensured by its integration into a QGIS Open Source software plug-in. The
tool, validated across this region, operates in the QGIS open source environment
and may be considered as a Web Processing Service. The GIS environment allows
the user to benefit from all the functionalities of such software (import/export of
data, spatial analysis, creation of layout...), to enhance the data provided by this
service. Free and easy to use, this plug-in is intended for both forest managers
and scientists.

Figure 2.2: Example of local maxima extracted from the CHM (ALS, 1m) used in
the plug-in Forestimator, overlaid on the CHM and on orthophoto IR.

The top height assessment is built on the detection of dominant trees from
the CHM derived from the regional ALS data presented previously. The dominant
trees were detected from the CHM using the CanopyMaxima function within FUSION
software [97]. This algorithm is based on the assumption that the local maxima
of a CHM generally correspond to the apex of a tree [121, 120]. The CanopyMaxima

function was used with a fixed window of 5 m and considering a threshold of 4
m height below which no maximum is detected. Then, a model is developed from
these local maxima to estimate the top height of plots or stands.
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2.2.3 Regional Forest Inventory Data

The sampling method applied by the RFI is a single-phase, non stratified in-
ventory using a systematic sampling design with permanent sample plots (PSP) at
the intersections of a 1000 m (east-west) x 500 m (north-south) grid. One-tenth of
these PSP are remeasured each year according to a predefined scheme ensuring
that the whole territory is uniformly covered [127]. The entire Walloon Region is
covered by 33000 plots with 11000 in forest. The sample units are concentric
circular plots. Data are collected in productive forest land. Three main circular
plots (radius of 4.5, 9 and 18 m radius) are used to measure living trees with a
minimum CBH of respectively 20, 70 and 120 cm. Total height is measured for all
hardwood species and only for dominant trees for coniferous species. Stand vari-
ables are collected within a 36 m around the plot center especially about structure
and composition. More details about the methodology of the Walloon RFI can be
found in [4]. For the purpose of this study, two datasets were built from the RFI
plots network.

Û Dataset for H-C allometry for coniferous species

This dataset consisted in reference data for the construction of a H-C allometry
at regional scale. Specifically, we focused on Norway Spruce (Picea abies (L.) H.
Karst.) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco). In Wallonia
(southern region of Belgium), Norway spruce, Douglas-fir and mixture of these
two species represent 82 % of coniferous stands and 33 % of the total forest area
[77, 109]. This stand type is well-established in Belgium. The silviculture of
these two species is widely based on high density plantations (2000 - 3000/ha),
establishing even-aged stands [77, 109].

We selected all trees measured (CBH and total height) in plots where Norway
spruce or Douglas-fir accounted for more than 80% of the total basal area. This
dataset is composed of 8784 Norway spruce and 906 Douglas-fir stands, the
main characteristics of these sampled stands are presented in Table 2.2. The
methodology of the RFI ensures that this dataset represents all site conditions
and the wide range of top-height, age and densities encountered. If several dates
are available in the database, the most recent data are kept. A total of 9690 trees
in 2525 plots make the dataset. Environmental variables were computed for each
plot and allocated to the trees.
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Figure 2.3: Two datasets are built from the RFI database according to the three
main goals of our study: (a) H-D coniferous allometry; (b) forest attributes

assessment. (c) is an example of the fine repositioning of the trees and plots
used with local maxima and ALS CHM at 1 m resolution.
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Û Dataset for forest attributes assessment in combination with ALS

For the assessment of the forest attributes with ALS CHM data, we selected
plots synchronous with ALS data. An excellent spatial match between RS data
and field data is crucial as we wanted to consider ITD approach to use H-C allom-
etry. A substantial phase of check and correction of the spatial location of trees
and plots based on the ALS CHM and local maxima.

The correction of the position of the trees and plots was done by photo-
interpretation based on a semi-automatic co-registration procedure. The local
maxima extracted from the CHM were selected in a buffer of 70 m around the plot
center. A pattern recognition algorithm, under development at Gembloux Agro-Bio
Tech, was used to find the field trees positions amongst the local maxima. Several
solutions can be identified by the algorithm and displayed on a GIS. The plot po-
sition was finally chosen by photo-interpretation. The operator/photo-interpreter
has the CHM, aerial images with high resolution and the local maxima displayed
in background on a GIS to ease the positioning. After this co-registration step,
179 plots (5874 trees) were available (Table 2.3).

Table 2.1: Statistics of circumference at breast-height (CBH) and total height of
the trees selected from the RFI database for the allometry fitting.

Min Mean Max St.Dev.

Two species - 9690 trees
Total Height (m) 5.3 25.99 50 5.8

CBH (cm) 20 120.2 290 36.5

Norway Spruce - 8784 trees
Total Height (m) 5.3 25.9 41.5 5.5

CBH (cm) 20 119.8 262 35.8

Douglas-fir - 906 trees
Total Height (m) 5.6 27 50 7.9

CBH (cm) 22 123.9 290 42.6

Table 2.2: Main attributes of the plots corresponding to the trees selected for
the H-C allometry from the RFI database, in even-aged stands composed of

Norway spruce, Douglas-fir or mixture of the two species.

Min Mean Max St.Dev.

Top Height (m) 0 23.4 52.8 11.2
N (N/ha) 10 755 5001 640

Basal Area (m2/ha) 1.2 38.6 101 12.2
Volume (m3/ha) 6.9 445.4 1526.3 175.3

Quadratic Mean of Girth (cm) 25.7 96.7 256.3 32.6
Altitude (m) 77.6 426.3 677.7 106.2

Slope (◦ ) 1.4 7.6 40.1 5.7
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Table 2.3: Main stand attributes of the plots selected from the RFI database,
composed of Norway spruce, Douglas-fir or mixture of the two species for the

forest attributes assessment.

Min Mean Max St.Dev.

Top Height (m) 0 28.3 41.5 5.1
N (/ha) 89.3 467.7 2222.3 311.5

Basal Area (m2/ha) 14.1 38.1 73.3 9.6
Volume (m3/ha) 158.2 480.9 1109.2 150.8

Quadratic Mean of Girth (cm) 49.3 112.1 184.3 27.9
Altitude (m) 128.4 439.9 656.5 98.8

Slope (◦ ) 2.1 7.1 34.2 5.7

2.3 Methodology

2.3.1 H-C allometry

The RFI dataset was used to fit tree-level allometric models linking the CBH
to the total height. Using this model will allow us to estimate the CBH of trees
detected with ALS data (local maxima) and the CHM value. The generalized non-
linear model was used to find the final equation. The vector of starting parameters
was set with a initial linear model fitting. The function gnls() from the nlme pack-
age [115] was used in R [124]. Heteroscedasticity was addressed using a variance
power function. The function nlme() was also used to introduce a random effect
on the coefficient a and test mixed models as trees belonging to a same plot are
not independent.

Several factor were studied and added in our analysis as influence on the
model : slope, altitude, density (number of trees and basal area) and age of the
stand. Slope and altitude were computed from the DTM created from ALS data.
Top height was computed from the CHM coming from ALS data. Number of
trees, basal area and age came from the RFI database. The Age variable has the
advantage of not requiring additional field measurement, if the year of planting is
known. The AIC was used to analyze the explanatory power of a series of models.
The best model was used to estimate CBH of trees for the plots selected for the
forest attributes assessment.
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Table 2.4: Several power-law models were tested for the H-C allometry for
Norway Spruce and Douglas-fir with the gnls/nlme functions. The coefficients

were tested species-specific or not. CBH is the tree diameter at breast-height, H
the individual height. Altitude and slope were extracted from the DTM at the plot

level. Basal area, number of trees, the quadratic mean of girth (Cqm) and age
come from the RFI database.

Model

Model 1 CBH ∼ a ∗ Hb

Model 2 CBH ∼ a ∗ Hb ∗ Altitudec ∗ Sloped

Model 3 CBH ∼ a ∗ Hb ∗ BasalAreaf ∗ NumbTreesg

Model 4 CBH ∼ a ∗ Hb ∗ Altitudec ∗ Sloped ∗ BasalAreaf ∗ NumbTreesg

Model 5 CBH ∼ a ∗ Hb ∗ Altitudec ∗ Sloped ∗ Cqmh

Model 6 CBH ∼ a ∗ Hb ∗ Altitudec ∗ Sloped ∗ Agei

2.3.2 Forest Attribute Assessment

Two alternative approaches are usually used to assess forest inventory at-
tributes with remote sensing data: (1) Area-Based approach relies on the ex-
traction of variables at plot-scale from point clouds or CHM while (2) individual
tree detection approach is obviously based on the detection if not delineation of
trees/crowns. These approaches, although traditionally opposed, are in fact com-
plementary. In order to take advantage of their respective strengths, we choose to
combine them (Figure 2.4). We identified a limited number of variables to reduce
the process of predictor selection among numerous variables, to limit over-fitting
and consider the low number of plots [65]. Table 2.5 presents the sixteen selected
variables representing the horizontal and vertical structures computed at the plot
level, from the local maxima and from the use of our allometric models.

From the CHM, the 95th percentile of the CHM within the plot (CHMp95) was
computed as a first variable related to the whole plot area. The canopy cover (CCp)
is the proportion of canopy inside the plot, where canopy is identified by a height
threshold of 5 m on the CHM. It is an indicator of the horizontal distribution of
the crowns area, highly significant for coniferous sites [23]. The volume below the
canopy top, normalized by the plot area (VolCHM-X), is computed at the plot level
from the CHM and is considered as a measure the structural stand complexity.
The number of trees (NTrees) is the number of local maxima classified as true
positives and normalized by the area of the plot. The maximum height (hmax) and
the coefficient of variation of height (hcv) are computed from the local maxima
within the plot. The aggregation index of Clark & Evans (Aggregals, Equation
4.1) describes the location diversity of the trees, based on the average distance
between trees (d̄Trees) and ranges between 0 and 2.1419. VXNTrees and VX_NTrees

are mixed variables, defined respectively as the product and ratio of VolCHM-X and
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Figure 2.4: Synthesis of the sources of variables for the models fitting of forest
attributes at plot level. The variables are explained in Table 4.5.

NTrees. CHMp95, hmax, and hcv are directly related to the height of trees and the
variability. NTrees and CCp describe the density of the plot (in particular, CCp is
related to the proportion of gaps within a plot). VolCHM-5 and VNTrees are considered
as a proxy for the amount of biomass. The two variables CBHmean and CBHCV are
respectively, the mean and the coefficient of variation of the CBH estimated for
each detected tree by the allometric model. In the same way, BAallo is the sum of
the basal area of the detected trees, computed from the estimated CNH and scaled
per hectare. VOlallo is the sum of the individual volume of the detected trees,
computed from the CBH and the height with the equation of volume mensuration
found in [32], and scaled per hectare.

Aggregals =
d̄Trees

( 1

2∗
√

NTrees
AreaPlot

)
(2.1)

To assess the forest inventory attributes (number of trees per hectare, volume
and basal area per hectare, quadratic mean of girth), we choose to use simple
linear regression with a parsimonious selection of variables. Model selection was
based on the best subset regression analysis (regsubsets in the R package “leaps”
[90]) and with the bayesian information criterion (BIC). Field inventory data were
used as reference. Assumptions for the linear regression (homoscedasticity, inde-
pendence of errors, normality of error distribution, absence of bias) were checked
(with several tests using the car and lmtest packages [46, 167]) to ensure model
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validity. The multicollinearity was also tested with the variance inflation factor
(VIF). A VIF value of less than 2 was considered the threshold for no collinearity.
The quality of the regression models was assessed using the R2 and the Root Mean
Square Error (RMSE) values.

Table 2.5: Sixteen variables are selected for construction of forest attribute
models. These variables are from the local maxima detection, or are computed at

plot-level (ABA), or are a combination of local maxima detection and ABA.

Variable Name Description Type

NTrees Number of trees (classified as true positives local maxima) ITD
within the plot

hmax local maximum with maximum height within the plot ITD
hcv Coefficient of variation of local maxima height within the plot ITD

Aggregals Clark & Evans aggregation index computed from local maxima ITD
CHMp95 95th percentile of CHM within the plot ABA

CCp Canopy cover is the percentage of plot area covered by canopy ABA
(canopy is identified by a height threshold of 5 m on the CHM)

VolCHM-5 Volume between canopy (defined by CHM) and 5-m-height ABA
threshold, normalized by plot area

VolCHM-16 Volume between canopy (defined by the CHM) and 16-m-height ABA
threshold, normalized by plot area

V5NTrees Product of VolCHM-5 and NTrees Mixed
V16NTrees Product of VolCHM-16 and NTrees Mixed
V5_NTrees Ratio of VolCHM-5 and NTrees Mixed
V16_NTrees Ratio of VolCHM-16 and NTrees Mixed
CBHmean Mean of the estimated CBH for the detected trees ITD (Allo)
CBHCV Coefficient of variation of the estimated ITD (Allo)

CBH for the detected trees
BAallo Sum of the Basal Area of the detected trees scale per hectare ITD (Allo)
Volallo Sum of the Volume of the detected trees scale per hectare ITD (Allo)

2.4 Results

2.4.1 H-C allometry

The construction of a H-C allometry has led to several models (Tables 2.6, 2.7
& 2.8 and Figures 2.5 & 2.6) to estimate individual tree CBH with individual tree
height extracted from a CHM and with the contribution of several other variables.
These ancillary variables are describing the environment of the plot in which are
the trees (altitude and slope) or describing the surrounding stands (basal area,
number of stems, quadratic mean of circumference and age). The coefficients of
the different models presented in Tables 2.6 are significant. Some models are
species-specific (one line per species). Model 2 was used for the forest attributes
assessment to compute variables at plot-scale. The inclusion of ancillary infor-
mation allows to improve the quality of allometries. The reported %RMSE (Table
2.8) are good.
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Table 2.6: Several models were fitted with the gnls function in R for Norway
Spruce (NS), Douglas-fir (DF) or both together (All or All (rd) for random effect).
Besides individual height (H) extracted from the CHM, ancillary variables are

used to describe the environment of the plot in which are the trees (altitude and
slope) or describing the surrounding stands (basal area, number of stems,

quadratic mean of circumference and age).

Species Model

Tree information only

model 1 All CBH = 2.45 ∗ H1.19

NS CBH = 2.2 ∗ H1.22

DF CBH = 3.85 ∗ H1.05

Integration of environmental variables

model 2a All CBH = 1.14 ∗ H1.22 ∗ Altitude0.13 ∗ Slope−0.04

model 2b All CBH = 0.91 ∗ H1.21 ∗ Altitude0.16

All (rd) CBH = 0.75 ∗ H1.24 ∗ Altitude0.17

model 2c All CBH = 2.55 ∗ H1.21 ∗ Slope−0.06

All (rd) CBH = 2.25 ∗ H1.25 ∗ Slope−0.06

Integration of structural variables
(needing a preliminary estimation by ABA for example)

model 3a All CBH = 42.35 ∗ H0.5 ∗ BasalArea0.3 ∗ NTrees−0.27

NS CBH = 52.53 ∗ H0.45 ∗ BasalArea0.33 ∗ NTrees−0.29

DF CBH = 11.56 ∗ H0.8 ∗ BasalArea0.13 ∗ NTrees−0.12

model 3b All CBH = 12.32 ∗ H0.92 ∗ NTrees−0.12

NS CBH = 12.83 ∗ H0.93 ∗ NTrees−0.13

DF CBH = 7.2 ∗ H0.97 ∗ NTrees−0.06

model 3c All CBH = 2.98 ∗ H1.21 ∗ BasalArea−0.07

model 4 All CBH = 25.43 ∗ H0.56 ∗ Altitude0.05 ∗ Slope−0.02 ∗ BasalArea0.27 ∗ NTrees0.25

NS CBH = 32.38 ∗ H0.51 ∗ Altitude0.05 ∗ Slope−0.02 ∗ BasalArea0.3 ∗ NTrees−0.27

DF CBH = 6.9 ∗ H0.82 ∗ Altitude0.07 ∗ Slope−0.02 ∗ BasalArea0.14 ∗ NTrees−0.11

model 5a All CBH = 21.09 ∗ H0.54 ∗ Cqm0.51

All (rd) CBH = 22.43 ∗ H0.52 ∗ Cqm0.53

NS CBH = 24.46 ∗ H0.49 ∗ Cqm0.55

DF CBH = 8.59 ∗ H0.81 ∗ Cqm0.23

model 5b All CBH = 13.48 ∗ H0.6 ∗ Altitude0.05 ∗ Slope−0.02 ∗ Cqm0.47

NS CBH = 9.58 ∗ H0.55 ∗ Altitude0.05 ∗ Slope−0.02 ∗ Cqm0.51

DF CBH = 6.14 ∗ H0.84 ∗ Altitude0.05 ∗ Slope−0.02 ∗ Cqm0.21

Integration of stand age

model 6a All CBH = 2.48 ∗ H0.88 ∗ Age0.26

NS CBH = 2.47 ∗ H0.77 ∗ Age0.34

DF CBH = 3.4 ∗ H0.77 ∗ Age0.29

model 6b All CBH = 1.8 ∗ H0.94 ∗ Altitude0.06 ∗ Slope−0.05 ∗ Age0.23
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Figure 2.5: Selection of allometric models. The red points correspond to the tree
data extracted from the Regional Forest Inventory database (total height in m
and breast-height circumference in cm) for the two coniferous species (Norway

spruce and Douglas-fir). The four panels are a selection of four allometric
models (reference of the model in Table 2.6) without distinction of species and

with integration of one ancillary variable: altitude for (a), slope for (b), basal area
for (c) and age for (d). The blue gradient lines are the model curves with different

values of the ancillary variables.
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Figure 2.6: Selection of two species-specific allometric models with integration
the number of stems (left side) or quadratic mean of circumference (Cqm, right
side) as structural ancillary variable. The red points correspond to the tree data

extracted from the Regional Forest Inventory database (total height in m and
breast-height circumference in cm) for both Norway spruce and Douglas-fir (a)
and (b), for Douglas-fir only (c) and (d), and for Norway spruce only (e) and (f) .
The details of the models are found in Table 2.6 following the reference in the

panel. The blue gradient lines are the model curves with different values of the
ancillary variables.
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Table 2.7: Comparison of the H-C models based upon AIC and deltaAIC which
is the difference between the AIC for the current model and the lower AIC.

Model Type AIC deltaAIC

model 1 All 82369.87 5675.8
Species-specific 82265.01 5570.9

model 2a All 81171.83 4477.8
model 2b All 81442.73 4748.7

All (random) 81819.86 5125.8
model 2c All 81715.64 5021.6

All (random) 82210.29 5516.2
model 3a All 77421.61 727.5

Species-specific 77062.37 368.3
model 3b All 79690.16 2996.1

Species-specific 79563.63 2869.6
model 3c All 82058.45 5364.4
model 4 All 77033.07 339.0

Species-specific 76694.07 0
model 5a All 77468.14 774.1

All (random) 77891.66 1197.6
Species-specific 77136.04 442.0

model 5b All 77074.40 380.3
Species-specific 76759.22 65.1

model 6a All 79349.48 2655.4
Species-specific 78819.57 2125.5

model 6b All 78617.23 1923.2

2.4.2 Forest Attribute Assessment

In this study, we focused on the assessment of four forest attributes to char-
acterize coniferous plots (volume, basal area and number of stem per hectare,
quadratic mean of circumference) with a low number of selected predictors (Table
4.5). A model with ABA variables only and a model with all types of variables were
fitted for each attribute (Table 2.9 and Figure 2.8). The inclusion of ABA, tree and
allometric variables improved undeniably the results. However, especially in the
case of Cqm, the ABA model gives good results which is encouraging in an iter-
ative approach to obtain a preliminary estimate of this attribute, which could be
injected as complementary variable in an allometric model. The presented models
respect the assumptions for linear regression, except for the number of stems
which is the most problematic model. It can be explained by the high omission
error of detected trees coming from Forestimator (Fig 2.7).

In order to improve our basal area model, we tested the integration of Cqm and
N/ha previously estimated by our combined ITD + ABA approach. This strategy
allows to globally enhance the model quality by increasing the R2 from 39% to
44% and the %RMSE from 19.4% to 18.6%.
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Table 2.8: Comparison of the H-C models based upon bias, RMSE and %RMSE.
The p-Value comes from a paired t-test used to compare the observed and

predicted CBH values.

Model Type Bias (cm) p-Value RMSE (cm) %RMSE

model 1 All -0.01 0.97 17.5 14.5%
Species-specific 0 0.98 17.4 14.4%

model 2a All 0 0.99 16.3 13.5%
model 2b All 0 0.99 16.5 13.7%

All (random) -0.01 0.39 16.5 13.7%
model 2c All 0 0.99 16.8 14%

All (random) -0.09 0.45 16.8 14%
model 3a All 0 0.99 13.4 11.1%

Species-specific 0 0.99 13.2 10.9%
model 3b All 0 0.98 15.4 12.8%

Species-specific -0.01 0.97 15.3 12.7%
model 3c All -0.01 0.97 17.2 14.3%
model 4 All 0 0.99 13.12 10.9%

Species-specific 0 0.99 12.9 10.7%
model 5a All 0 0.99 13.5 11.2%

All (random) 0 0.96 13.5 11.2%
Species-specific 0 0.99 13.3 11%

model 5b All 0 0.99 13.2 11%
Species-specific 0 0.99 12.9 10.8%

model 6a All -0.01 0.96 15.6 13%
Species-specific -0.01 0.97 15.1 12.6%

model 6b All -0.02 0.91 14.9 12.4%

Figure 2.7: Comparison of the number of stems detected by Forestimator [38]
with the reference number of stems for each plot selected from the RFI database

and synchronous with the ALS dataset.
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Figure 2.8: Observed versus fitted values for the forest attributes models.
Comparison between area-based only (a to d) and mixed (e to h) approaches.
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Table 2.9: Performance and variables selected for each forest attribute model
and comparison between ABA only with all predictors (mixed approach).

Attributes Type Variables Intercept Coefficients

Volume ABA VolCHM-5 91.94 30.16
(m3 ha-1) All VolCHM-5, CBHCV, Volallo 135.09 12.19; 0.73; 0.45

Basal area ABA VolCHM-5, CHMp95 35.36 2.43; -1.06
(m2 ha-1) All NTrees, CBHCV, Volallo 3.43 0.05; 0.15; 1.6

Number of trees ABA VolCHM-5, CHMp95 1835.80 -74.79; 49.85
(ha-1) All NTrees, CCp , Volallo -213.62 2.13;3.09; -0.45

Quadratic mean ABA VolCHM-5, CHMp95 -0.39 -0.03; 0.07
of girth (cm) All Aggregals, CBHmean, BAallo -0.39 0.17; 0.01; -0.01

Figure 2.9: Observed versus fitted value for the basal area estimation model
that integrates the estimation of the quadratic mean of breast-height

circumference (Cqm) as an estimator.
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2.5 Discussion

ALS data processing makes it possible to detect and individualize trees and
estimate their total height and thus estimate top-height and density (number of
tree per hectare) of stands. These data, combined with allometric models could
be sufficient to estimate fairly precisely other important dendrometric parameter
such as total basal area or total stand volume. Our approach aimed at testing a
method for combining ALS and RFI data to monitor the coniferous forest resource
at regional-scale. The first step was the construction of a H-C allometry based
on regional dataset and enhanced with environmental and structural variables.
The purpose of this allometry was to be used with local maxima detected on an
ALS CHM, to enrich the set of variables for ITD and to benefit of the potential
of a tree-level approach. With this study, we wanted to test the potential of the
data used in the Forestimator plug-in with the underlying idea to complete this
tool. The goal was to take advantage of an existing tool and methodology that was
originally only dedicated to the top height assessment. Our research has led us
to highlight several key points presented below.

2.5.1 RFI dataset - Representativity for allometry

The dataset from the RFI which is the basis of the development of allometries
can raise questions. Indeed, in view of the methodology of the regional inventory,
only the height-circumference pairs of the three dominant trees are measured,
which could represent a problem of representativeness. However, considering
that the allometry will be used on the local maxima detected from the CHM, so on
data assimilated to dominant trees, there is always a consistency. A second point
considering the representativeness of the data is the proportion between Norway
spruce and Douglas-fir. Although overall, an improvement of the allometries is
observed with models specific to each species, the coefficients are close to those
of the Norway spruce, which represent 91% of the dataset. The evolution of forest
areas will therefore be a factor to take into account.

2.5.2 H-C Allometry

Five types of models were tested species-specific or not. Introducing the top
height variable was tested but never significant, alone or combined with other
variables. The allometries are characterized by an error-ranging from 10.7% to
14.5%, with a variable degree of complexity. The integration of ancillary variables
describing the surrounding plot had improved the quality, for example the best
model was the species-specific model 4 which used four ancillary variables (10.7%
%RMSE and lowest AIC and RMSE).
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The integration of ancillary variables characterizing the plot (slope, altitude,
stand density or development stage) had improved the quality of the results. When
there is convergence, considering the species-specific model improves slightly the
results. The greater proportion of Norway spruce explain probably this fact, as
the coefficients of the All-species models are close to the Norway spruce models.

Altitude and slope have a low impact (low power coefficient value). On equal
height, slope has a negative impact on circumference. Adding structural variables
about the stand change the type of the relationship (power value lower than 1).
Models with the age variable are intermediate in terms of quality. Taking the
age into account has the advantage to improve the model but without difficulty.
Indeed, age is a information easily available for even-aged stands (planting date).
The use of structural variables (N/ha, BA and Cqm) is dependent on the possibility
to extract these information reliably, for example by an ABA which would be seen
as a preliminary step in an iterative workflow. The introduction of a random
effect on the coefficient a has had few impact on the coefficients and quality of the
models 2b, 2c, 5a.

The different plot variables can be interpreted empirically: the altitude is re-
lated to the fertility of the stand, the Cqm and age are a measure of the develop-
ment stage and slope can be read as a corrective factor of the height estimated
by ALS, and an indicator of the growing condition. The effect of the structural
variables is higher for Norway spruce than for the Douglas-fir. This could be ex-
plained by the greater diversity of stand conditions for Norway spruce. This latter
is wider spread and for longer including in unsuitable situations.

2.5.3 RFI dataset - Tree positioning

An important step but particularly time-consuming was the repositioning of
the inventory data in relation to the CHM. The field data were synchronous with
the ALS data but although positioned at the GPS, the quality of the positioning was
rather poor, probably because of the device used. In order to improve the location
of trees mapped in the field, a step of co-registration with the local maxima from
the CHM has been implemented. A pattern recognition algorithm was used to
compare the arrangement of the trees with that of the local maxima, in order to
be able to translate the trees.

One difficulty encountered was that the RFI plots are concentric and the lack of
measurement for all the trees. On the other hand, the presence of undetected trees
is also a source of confusion. The matching of identification is very dependent
on the detection of local maxima. A total of 179 plots were repositioned, making
it possible to have a good dendrometric diversity of the dataset. A large search
radius had been fixed (70 m around the theoretical plot center) to manage the
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potential important uncertainty of the plot location. The algorithm frequently
offers many possible solutions for matching local maxima and field trees. This
phase of the work must therefore be considered semi-automatic, more as a tool
for facilitating work, but always involving expertise and human interpretation,
which is indispensable.

2.5.4 Forest attributes assessment

Forest attributes models at plot-scale were implemented based on a low num-
ber of predictors to follow a parsimonious approach and avoid over-fitting. We
compared two approaches for forest attributes assessment: ABA and ITD. For
both, models were fitted with variables computed from the CHM only for ABA and
for CHM and local maxima extracted from CHM for ITD.

Several variables were chosen as predictors in forest attributes models either
in ABA or ITD. This study used only a few numbers of variables (by comparison
to the possible metrics computed from ALS datasets). The chosen variables were
similar to those use in [21] with UAS data and closely related to the attributes of
interest. The accuracy was significantly higher for models combining the different
kind of variables (plot, tree, mixed, allometric).

The volumetric variable VolCHM-5 is the most frequent predictor in the different
models. The models provided R2 ranging from 33% to 73% for ABA and for 39% to
84% ITD. The assessment of the number of stems is the weakest model, especially
considering high densities. The best model is obtained for the quadratic mean of
circumference (R2 = 84% and %RMSE = 9.8%). The integration of variables coming
from ITD and allometric model allowed to improve the quality of fitting for the four
forest attributes.

The assessment of Cqm gave the best result either for ABA only or mixed ap-
proach. The use of this structural attributes seems henceforth a good compromise
when considering an allometric model with ancillary variables.

The model for N/ha is troublesome for high density of stems (but not so high
if we consider values greater than 500 trees per ha). Omissions concern few
dominant trees which certainly contribute mostly to the wood volume. These
tree detection problems were not felt in the previous work about top height in
Forestimator. Errors due to omissions have more impact on small areas but
should be smoothed over larger areas of interest (stands instead of plots, for
example). A stratified method for assessment with an a priori diagnosis of stand
density could mitigate such issue. This limitation of the method comes from
probably because of the resolution of data :a kind of saturation of the CHM limiting
the tree detection. But the type of dataset in this study is easy to use, regionally
available at low cost, meaningful for low density (aged) stands.
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2.5.5 General considerations

When comparing ABA and ITD, an advantage of the latter is the possibility of
a more complete and integrated approach including species discrimination. Also,
a parallel can be drawn between ITD and allometries classically used in forest
science. In this study, we change the paradigm and we developed allometries for
using with remote sensing data instead of field data. An individual tree approach
is particularly interesting in the concept of precision forestry, for example in the
context of uneven-aged stand transformation, while an ABA must also be seen as
a mapping approach.

In an operational perspective, the use of simple and versatile models is at-
tractive, especially for successive ALS dataset acquisitions. The success of the
appropriation of a method by the forest managers depends on the relative sim-
plicity, in order to make accept the interest of this method and ease the knowledge
transfer.

The integration of the age in the allometries allows to improve the quality of
the models. In contrast to the other tested and stand-related ancillary variables,
this data has the advantage of being easy to obtain, particularly in the case
of coniferous stands with a known planting date. The age is already used in
Forestimator and allows to update the top height and to compute the Site Index
through its use with ALS data.

The integration of an allometric model and our approach to estimating for-
est attributes could be integrated into Forestimator relatively easily. This would
provide a more complete characterization of coniferous plots. In addition, the
integration of other models of growth or simulation could be interesting to de-
ploy more easily the cartographic dimension and the accessibility of this type of
approach.

Forest attribute models have been developed at the scale of inventory plots.
Their use must therefore be set up on the same scale but can be considered in
different ways. First, the implementation of these models can be handled with a
network of existing plots, for example to update the data. Secondly, an artificial
network of plots can be created on an area of interest that one wishes to describe.
Finally, a map approach in full to characterize stands deserves to be validated. A
division into pixels (from 10 to 30 m of resolution for example) of stands polygons
coupled with our approach would make it possible to analyze the spatial variation
of these forest attributes.

Our study has further strengthened our confidence that an iterative and strat-
ified approach is necessary for a reliable assessment of forest attributes. As well
as to promote a better cooperation with the RFI. Especially, a reflexion about the
methodology of the field data collection should be undertook to adapt the in-situ
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data to remote sensing considerations. As such, the concept of concentric plots
is a feature that complicates synchronization with remote sensing data.

We didn’t use information on crown diameter because we didn’t want to man-
ually digitalizing crown based on CHM or aerial images. We wanted to implement
a simple but versatile approach at regional-scale as we considered the resolution
of the CHM was too weak compared with other types of data. Besides, tree crown
delineation could be computationally intensive and limited to the upper canopy
even with 3D point clouds if the point density is low. The required cost and effort
may not be worth it.

2.6 Conclusions

In this study, we developed and tested allometric equations combined with the
use of ALS data. Our approach aimed at testing a method for combining ALS
and RFI data to monitor the coniferous forest resource. The first key point was
the construction of a H-C allometry based on regional data and enhanced with
environmental and structural variables. The purpose of this allometry was to be
used with local maxima detected on an ALS CHM, to compute attributes at tree-
level. Five types of models were tested species-specific or not. The allometries are
characterized by a %RMSE ranging from 10.7% to 14.5%, with a variable degree of
complexity (Tables 2.6 & ??). The integration of ancillary variables characterizing
the plot (slope, altitude, stand density or development stage) had improved the
quality of the results.

Then forest attributes models at plot-scale were implemented based on a low
number of predictors to follow a parsimonious approach and avoid over-fitting.
We compared two approaches for forest attributes assessment: ABA and ITD. For
both, models were fitted with variables computed from the CHM only for ABA and
for CHM and local maxima extracted from CHM for ITD. The H-C allometry was
also applied to the detected trees to enrich the set of variables for ITD and to
benefit of the potential of a tree-level approach. The volumetric variable VolCHM-5

is the most frequent predictor in the different models. The models provided R2

ranging from 33% to 73% for ABA and for 39% to 84% for combined ABA and ITD.
The assessment of the number of stem is the weakest model, especially when con-
sidering high density stands. The best model is obtained for the quadratic mean
of circumference (R2 = 84% and %RMSE = 9.8%). The integration of variables
coming from ITD and allometric model allowed to improve the quality of fitting for
the four forest attributes.

The present study has only investigated forest attributes assessment in conif-
erous stands. In Belgium, these stands are mainly even-aged resulting from
plantations. By contrast, broadleaved forests are uneven-aged (resulting mostly
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from natural regeneration) which makes individual tree modeling more complex.
The advantage of working on coniferous stands implies a low incidence of the date
of acquisition of ALS data, unlike broadleaved stands. Further work is needed
to developed relevant and reliable approach in such kind of forest. In the same
way, an advantage of ITD is the potential for a more complete workflow including
species discrimination.
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Chapter 3

Canopy Gap Mapping in Broadleaved

Forests with ALS

"Il n’y a pas de lumière sans ombre."

Louis Aragon

This chapter aims to estimate and map canopy gap with ALS data. Canopy
gaps are small-scale openings in forest canopies which offer suitable micro-climatic
conditions for tree regeneration. Field mapping of gaps is complex and time-
consuming. Several studies have used Canopy Height Models (CHM) derived from
ALS to delineate gaps but limited accuracy assessment has been carried out, es-
pecially regarding the gap geometry. This study offers a new prospect on canopy
gap mapping which is a major issue in sustainable forestry to promote natural
regeneration.
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The ability of ALS to describe the height and the forest structure, even un-
der the canopy is a huge advantage compared to other remote sensing data as
photogrammetric CHM. The raster data used in this research are produced from
high density ALS points cloud with a 50 cm resolution at a watershed-scale. The
precision and the richness of the ALS data depend on the point cloud density,
determined by the flight parameters. In this framework, we investigated three
mapping methods based on raster layers produced from ALS leaf-off and leaf-on
datasets: thresholding, per-pixel and per-object supervised classifications with
Random Forest. In addition to the CHM, other metrics related to the canopy
porosity were tested. The Geometric Accuracy was analyzed with the gap area,
main orientation, gap shape-complexity index and a quantitative assessment in-
dex of the matching with reference gaps polygons.

We highlight four originalities of our work: (i) a detailed geometric accuracy as-
sessment of the gaps which was missing in previous studies, especially in broad-
leaved forests; (ii) the use of leaf-off and leaf-on datasets; (iii) a comparison of
several methods including some which have not been previously used for gap
mapping (e.g. supervised classification with random forest and image segmenta-
tion) and (iv) the analysis of the influence of the forest stand type on the methods
performances.

3.1 Introduction

Defined as small-scale openings in forest canopy, gaps are created by man-
agement activities (thinning) or natural disturbances, such as windthrow [39]
or natural mortality. These openings alter micro-climatic conditions, increasing
plant diversity and allowing regeneration by increasing light levels [40, 130]. Be-
cause of their high regeneration potential, gaps are important for foresters seeking
to promote a nature-based silviculture, by emulating natural disturbances.

Spatial characteristics (size, shape, distribution, orientation) of gaps in forests
are of central importance in understanding regeneration, ecosystem dynamics,
species diversification and distribution [16, 66, 91, 128, 147, 154]. [73] high-
lighted the importance of gaps with different spatial properties for seed establish-
ment and determining the future forest structure. [84] proposed horizontal het-
erogeneity due to presence and distribution of gaps as a mechanism for conserving
forest biodiversity by maintenance of stand structural complexity. Gap shape, ori-
entation and size variation affect the gap dynamics, mainly through the variation
in the light environment and moisture levels [84, 122]. In his study, [55] used gap
shape metrics derived from Unmanned Aerial Vehicles (UAV) images to assess the
plant diversity in forests.
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Reliable survey methods are an important prerequisite for the analysis of spa-
tial patterns of gaps [66]. However, mapping and characterising canopy gaps is
a complex issue. Delineation of gaps in the field is difficult, time-consuming and
there is a lack of consensus about canopy gap definition and methods for describ-
ing regeneration [14, 147, 166, 130]. Besides, field survey is not always reliable
because of the difficulty of the ocular evaluation of the exact limits of the gap
[149].

A commonly used definition of a gap was introduced by [26] who defined it by
the canopy drip-line, i.e., the vertical projection of the external borders of the tree
crown with an height greater than 2 m. This definition is pragmatic in the field
but can lead to an underestimation of the area affected by the gap disturbance.
Thereafter, [128] introduced the concept of expanded gap which extends the gap
to the base of the trunks. But, this concept is not easily adapted for remote
sensing purposes as the position of trunks is hard to identify from above [50]. The
vegetation height is a common criterion to define the closing of a canopy gap. As
Airborne Laser Scanning (ALS) has become a common technique to assess forest
height, the use of Canopy Height Models (CHM) derived from ALS to delineate
gaps has been explored in a number of studies [149, 66, 147, 7].

3.1.1 Canopy Gap Mapping with ALS : A Background

Applying a fixed height threshold on an ALS CHM is the most common method
of canopy gap delineation, based on the definition of [26]. In most cases, studies
differ by the value of the threshold and a constraint of minimal area. [7] and
[24] quantified gap-size frequency distribution in Southern Peruvian Amazonia
by mapping gaps with a height threshold of, respectively, 1 to 20 m and 2 m
with a minimum area of 2 m2. [149] and [147] chose a fixed 5 m height with a
minimal gap size of 5 m2. [149] focused on gap dynamics, with two co-registered
CHM (1998 and 2003), whilst [147] identified understory vegetation types. [66]
studied patch dynamics, stand structure and spatial patterns in Pacific Northwest
forests by analysing the spatial distribution of gaps, delineated as 3 m maximum
height and larger than 9 m2. In 2004, [72] post-processed delineated gaps with
GIS functions (shrinking) to isolate gaps connected by corridors and to refine gap
shape and boundaries.

A second method of canopy gap mapping is the use of a relative height thresh-
old. Gaps are then defined depending on the neighbourhood stand height. This
approach requires typically, the creation of a canopy top raster. The gaps are
identified by comparison of the original CHM with the canopy top raster. In man-
grove forests, [169] used opening and closing operations on a CHM to produce a
surface representing the top of the canopy. Gap grid cells were detected after a
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black top-hat transformation using a relative height threshold (0.65). According
to the author, this approach gave better results than the fixed height method.
However, no complete accuracy assessment was performed against field reference
data. Instead, only a visual comparison of the gap boundaries was carried out,
using a slope raster derived from the CHM and based on the assumption that the
slopes along gap boundaries are steep. Such slope rasters were also previoulsy
used in [72] for helping to identify the fixed height threshold to apply. In the study
of [50], a canopy top raster was produced from a ALS CHM by applying a moving
window and setting the maximum value to the grid cell center. Then, CHM grid
cells with heights inferior to 66% of the corresponding height of the canopy top
raster were classified as gap. [14] use a similar approach in Nothofagus spp.
forest in New Zealand with a DSM produced from aerial photographs. In this
case, gaps were delineated as areas showing a difference of 12 m between the two
rasters.

To improve gap extraction, [50] mapped gaps directly from the point cloud by
initially identifying the canopy area. Their processing method was initiated by
the identification of local maxima corresponding to tree tops. Then, the returns
with a relative height of less than 66% of canopy height were removed to retain
only canopy returns, which were then clustered to a local maximum. The clus-
tered canopy returns were merged and delineated to retrieve gap extent. This
method avoids interpolation to a CHM and makes use of more complete height
information from the return points. After comparison with the raster method, the
authors demonstrated a small increase of accuracy compared to CHM methods,
especially for low density ALS data, but the point cloud method is much more
computationally expensive.

This latter approach favored a delineation of tree crowns and considers that
gaps are found ”by default“. Intrinsically, gaps and crowns are complementary as
their distribution defines the canopy structure. ALS sensors are able to capture
canopy structure wall-to-wall and are used for the estimation of canopy structural
variables as Vertical Canopy Cover (VCC), Angular Canopy Closure (ACC) or Leaf-
Area index (LAI) [69, 70, 71]. For example, the VCC is the total crown projection
area (defined by the outermost perimeter of the crown on the horizontal plane)
divided by the stand area. In this case, small gaps inside the crown are considered
to be a part of the crown. VCC and ACC are related to the penetration of light
through the canopy and are considered as indirect measurement of light regimes
[63].
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3.1.2 Aims of the Study

ALS makes detection and analysis of canopy gaps easier over large areas [134].
But further work is needed to assess the potential of ALS for accurate gap map-
ping, especially regarding retrieval of gap area and shape, with the importance of
these characteristics outlined previously.

In this context, we analyse the potential of ALS for canopy gap mapping in
uneven-aged broadleaved stands with a focus on geometric accuracy of gap re-
trieval. For the purposes of this research, three mapping methods based on raster
datasets produced from high density leaf-off and leaf-on ALS data are tested:
Thresholding, supervised classification of individual grid cells ("per-pixel" classi-
fication) and per-object supervised classification.

In this study, priority is given to the raster-based approach, more commonly
used and more suitable for use over extensive areas. Point-based delineation is
not tested here due to the computational costs and as it produces only relatively
small accuracy increases. Unlike in previous studies, we tested the use of ALS
rasters other than CHM. We analyse if alternative metrics could improve gap de-
lineation, especially in terms of retrieval of gap shape and borders. These rasters
aim to capture the three-dimensional structure of points cloud and to describe
the canopy porosity. For the thresholding method, several threshold values were
tested. For the per-pixel and per-object approaches, we used supervised classi-
fication by Random Forest [25]. The maps produced are compared in terms of
detection quality (through a confusion matrix) and geometric quality (through a
comparison with gaps mapped in the field).

The influence of the season is also considered by the use of both leaf-off and
leaf-on ALS datasets. Such a comparison of the effectiveness of several mapping
methods on both leaf-on and leaf-off ALS data sets, is novel for canopy gap de-
lineation. Besides, no previous studies have attempted to validate gap geometry
reliability. Furthermore, we investigate a new approach by which to classify forest
stands according to their canopy opening degree prior to gap mapping, to provide
a means to identify the optimal gap delineation method.

3.2 Data Sets

3.2.1 Study Site

The study area (≈ 18,000 ha, Figure 3.1) was located in the watershed of the
Houille river near the village of Gedinne (Wallonia, Belgium). Forests, which cover
approximately 60% of the area, are composed of uneven-aged broadleaved stands
with oak (Quercus petraea (Matt.) Liebl. and Quercus robur L.) and European
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beech (Fagus sylvatica L.) and even-aged coniferous stands dominated by Spruce
(Picea abies (L.) H. Karst.) and Douglas-fir stands (Pseudotsuga menziesii (Mirb.)
Franco). Four compartments (management units of the Forest Service) were se-
lected by a field visit and by photo-interpretation according to two main criteria:
predominantly broadleaved stands and exhibiting varying degrees of canopy clo-
sure (Figure 3.1).

Forty-two stands compose the four compartments of the study area. The limits
of the stands were available from the Forest Service but the quality of the bor-
ders were checked by photo-interpretation with ortho-images and corrected with
ArcGIS 10.1. Tree regeneration is present in the selected stands with a variable
cover (ranging from a few seedling stems to large seedling cover). The regenerating
species are oak, European beech and birch (Betula pendula Roth). The dominant
herbaceous species are Pteridium aquilinum (L.) Kuhn, Rubus fruticosus L., Rubus

idaeus L., Deschampsia flexuosa (L.) Trin, Luzula luzuloides (Lam.) Dandy & Willm

and Vaccinium myrtillus L.

Figure 3.1: Boundary of the watershed of the Houille river, near the
Belgium/France border. The four sites (compartments numbered one to four)

are scattered in the study area and their areas are respectively 113 ha, 39 ha, 49
ha and 85 ha. Several types of stands with different degrees of canopy closure
are illustrated by a subset of an infrared false color aerial image acquired in

2009 (50 cm resolution).
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3.2.2 Canopy Gap Definition

For the purposes of this study, a clear and simple definition was necessary to
identify gaps in the field. A definition similar to [26] was used. Throughout the
study, we defined gaps as openings in the canopy with a minimum area of 50 m2,
a minimum width of 2 m and a maximum vegetation height of 3 m. The vegetation
level value of 3 m is considered to indicate well-established regeneration [81] and
is a critical height for the survival of regeneration, especially against ungulate
predation. Most previous studies showed that ALS is able to detect very small
size gaps (around 5 to 10 m2). We consider gaps as priority areas for promoting
natural regeneration, especially for oak which has survival difficulties below beech
[3]. [27] concluded that the minimum opening area for oak regeneration is 70 m2

and the optimal is between 100 to 120 m2. Moreover, small gaps (<50 m2) close
very fast due to the crown growth of surrounding trees [107]. For this reason a
minimum gap size of 50 m2 is selected.

3.2.3 Field Data

Two field campaigns were conducted in August 2012 (in leaf-on conditions).
First, a systematic grid (50 m × 50 m) was created covering each of the four study
sites. Each point was visually interpreted in the field as “gap” or “not gap” areas
(with a distinction of forest tracks and new gaps made by recent exploitation).
A total of 1140 points were visited (295 of which fell in gaps). These data were
used for the assessment of the gap detection quality. The corrected position of the
theorical center of each 50 m × 50 m cell was established using a dGPS SXBlue
II during the field visit.

Secondly, 39 canopy gaps (55 m2 to 2400 m2) were mapped in the field with a
dGPS, electronic compass and laser rangefinder, with post-processing of the GPS
data to obtain a planimetric error of, on average, 20 cm. The gap boundaries
were delimited by the projection of the external borders of the crowns. Several
points were recorded along the gap where the gap boundary was judged to signif-
icantly change its orientation [50]. These reference gaps were used to assess the
geometric quality of the delineated gaps.

3.2.4 ALS Data

The ALS datasets were captured in March (leaf-off) and July (leaf-on) 2011 by
a Riegl LMS-Q680 (300 KHz), with a maximum scan angle of 15 ◦. First and last
returns were recorded and classified by the data provider as water, building, high
vegetation (returns with a height >1.5 m), ground and unclassified, according
to the LAS format standard. Intensity information was also available. The point
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clouds were organised by 500 m × 500 m tiles. The average number of returns per
1 m2 grid cell is 40 (average range between 1 and 238) and the average number
of first returns is 21 per m2 (average range between 1 and 190). The overall
planimetric accuracy of the ALS dataset is 25 cm.

3.2.5 Pre-Processing of ALS Data

ALS data pre-processing was carried out using Las2Pix, a software developed
by the Unit of Forest and Nature Management (University of Liège-Gembloux Agro-
Bio Tech). This software is based on LASTools [61] and allows the production of
raster metrics from the pre-classified ALS point cloud according to a number of
different statistical functions and constraints and at a given spatial resolution.
Each grid cell is assigned a value calculated from points falling inside the cell
(e.g., maximum height for single returns only). Raster metrics were produced
for each tile and thereafter, these were merged into one raster per compartment,
at 50 cm resolution. This spatial resolution was chosen as a good compromise
between the point density and the precision of the gap mapping (considering the
minimal gap size of 50 m2).

Figure 3.2: Metrics are produced from the raw airborne laser scanning (ALS)
data. The yellow polygon corresponds to a field mapped gap over an infrared
aerial image (a); The Canopy Height Model (CHM, b), the slope of the CHM

(Slope-H, c) and the Canopy Porosity Index (CPI, d) are illustrated.

The CHM was generated as the height of the highest return in each grid cell.
The Canopy Porosity Index (CPI) is the percentage of points below 3 m-high. This
metric is inversely proportional to the amount of leaves, branches and stems, and
considered as a measure of the degree of opening of the canopy (Figure 3.2). This
is the complementary of the Canopy Closure as defined in [66]. As with the CPI,
the Ground Point Ratio (GPR) is proportional to the porosity of the canopy and
is calculated as the percentage of points classified as ground in each grid cell.
The CPI and GPR are calculated on the basis of all returns. The Height-Scaled
Crown Openness Index (HSCOI) was developed by [78] and is based on the voxel
concept, calculated within a moving window. This index provides a quantitative
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measure of the relative penetration of ALS returns into the canopy. Three other
metrics were produced describing the canopy height: the standard deviation of
height (Std-H), the coefficient of variation of height (CV-H) and the slope of the
CHM (Slope-H). [169] used this latter metric to assess the quality of automatically
delineated gaps boundaries, as many gap boundaries are well captured by rings
of pixels with large slope values (Figure 3.2). Slope-H is tested here as a potential
approach to refine gap boundaries. Finally, an intensity metric was generated as
the mean intensity of single returns, to characterize the spectral response of the
high vegetation (Mean-I-S).

3.3 Methodology

3.3.1 Gap Mapping Methods

The three methods implemented in this study for gap detection (thresholding,
per-pixel supervised classification and per-object supervised classification) are
described in the following sections (Figure 4.4).

Figure 3.3: Synthesis of the mapping methods comparison. Three methods
(thresholding, per-pixel and per-object supervised classifications) are compared.
Per-pixel and per-object classifications are implemented with the Random Forest
algorithm in R. Quality assessment is by a confusion matrix (detection quality)

and by comparison with field-mapped reference gaps (geometric accuracy).
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Thresholding

LiDAR canopy gap mapping is basically to discriminate canopy areas and non-
canopy areas (corresponding to low vegetation or ground areas). In the simple
thresholding approach, a fixed threshold value was applied to a single raster
layer, either CHM, CPI or GPR to delineate gap areas. Three different metrics
to identify non-canopy pixels were selected : using a fixed height threshold on a
CHM, using a proportion of points classified as ground (GPR) or using a proportion
of points below a fixed height threshold, considering presence of low vegetation
and not only ground points (CPI). Several threshold values were tested for these
three rasters and the result of the simple thresholding approach was a binary
raster output (canopy or gap):

• CHM: gaps are identified as grid cells with a height below 3 m or 5 m;

• CPI and GPR: gaps are identified as grid cells with a CPI/GPR above a
threshold. A specific step to determine the optimum threshold values for
CPI and GPR (respectively for leaf-off and leaf-on) was implemented to avoid
a systematic test of several values for each datasets. This threshold selection
is presented in Section 3.2.1.

Secondly, multiple thresholding was implemented by adding three thresholded
binary raster layers (CHM, CPI and Slope-H). With this particular combination of
metrics, we aimed to improve gap delineation from the most commonly used CHM
thresholding approach by the complementary use of other LiDAR information,
especially in refining the boundaries using slope information and reducing the
impact of small areas of high understorey or regeneration, using the CPI. The
slope and CPI thresholds were set after a trial-error visual assessment and two
combinations were tested:

• Combination1: CHM-3m + CPI-75% +Slope-H-75%

• Combination2: CHM-5m + CPI-55% +Slope-H-60%

The binary rasters Slope-H-75% and Slope-H-60% participate in identifying
gaps areas by detecting the boundaries of gaps as grid cells with a slope above
75% and 60% respectively (slope of the CHM is usually steep along the gap border).
The results of the two combinations had grid cell values between 0 and 3 and thus
were reclassified into binary rasters (value 0 as canopy and values 1, 2 or 3 as
gap).
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Per-Pixel Supervised Classification

For the supervised classification process, 100,000 training points were se-
lected (equally distributed in gap or non-gap classes) for leaf-off and leaf-on
datasets. These reference points were chosen based on field data and photo-
interpretation, and were spread across the four study sites. Corresponding grid
cell values were extracted for four rasters metrics (CHM, CPI, Std-H, I-S) for each
reference point. We used the package randomForest [80] in R software [124] to
construct a Random Forest (rF). The rF algorithm was applied with ntree = 1000
and mtry = 4. Variable importance was calculated to analyse which metrics were
the most discriminatory. The out-of-bag error (OOB error) was derived as a robust
way to assess the global accuracy of the final classification by the rF algorithm.
After this training step, the constructed Rf was applied to the full extent of the
four sites.

Random Forests [25] are a very efficient and popular algorithm for classifica-
tion [52]. The OOB error is used to estimate the prediction error and to assess the
importance of each variable (VarImp) which allows sorting of predictors. There
are two objectives regarding variable selection by the VarImp measure: to find
variables related to the response for interpretation purposes and to find a small
number of variables that are sufficient for a good prediction. Calculation of the
OOB is based on a bootstrap sample of the data [80, 52].

Per-Object Supervised Classification

A segmentation was conducted in eCognition [10, 13], based on two raster
metrics (CHM and CPI) for both leaf-off and leaf-on datasets. The Multiresolution
Segmentation Algorithm [11] was used to extract small homogeneous areas, typ-
ically segments of tree crowns or gaps. The scale parameter was set to 10 for a
shape/color ratio of 0.5 and a compactness/smoothness ratio of 0.5. These ob-
jects were exported from eCognition in polygon shapefile format, with the following
object attributes: mean of the CHM, mean CPI, mean I-S, ratio of mean object I-S
to total scene average I-S (Ratio to Scene Intensity, RtS Int.), calculated as the
mean intensity of the object divided by the mean intensity of the entire scene),
standard deviation of the CHM, standard deviation of the CPI and standard de-
viation of the I-S. The four compartment shapefiles were merged in ArcGIS. We
selected training objects from among the eCognition segments for the four study
sites: 530 gap objects and 530 canopy objects for the leaf-off and leaf-on data
sets. We applied the rF algorithm with ntree = 1000 and mtry = 4 and calculated
the variable importance to analyse which metrics were most discriminatory.
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Morphological Filtering

A post-processing stage was then implemented (with ArcGIS tools) to obtain
the best possible match between the ALS mapping approaches and the definition
of a gap stated above. Thin corridors and small spaces between trees (width
inferior to 2 m) or holes within crowns, were eliminated by using the Shrink tool
(an erode function) which reduces the gap areas by 1 m around the classified gap
area by replacing gap pixels with the most frequently occurring value in the local
neighborhood. This step is followed by the application of the Expand tool (a dilate
function) which enlarges the classified raster gaps by 1 m (to return remaining
gap areas to the initial size before shrinking). We reduced the pixelization and
eliminated remaining trees within gaps by applying the Focal Statistics tool with a
circular neighborhood of 1.5 m radius and retaining the most frequently occurring
value (majority filter). Following this initial post-processing, the binary rasters
were converted into polygon shapefiles and forest roads were removed manually
with the Erase tool. Finally, gap polygons with an area <50 m2 were removed
(Select). These filters were applied consistently for all gap mapping methods.

3.3.2 Analysis of Mapping Quality

Gap Detection

For the CPI and GPR thresholding, a preliminary step is applied to select
an optimum threshold for both leaf-off and leaf-on datasets. For this purpose,
Receiver Operating Characteristic (ROC) curves are produced, by means of the
ROCR package [131] in R. ROC curves are used to visualise classifier performance,
to compare and evaluate prediction models, by changing the threshold value used
for the detection to computing, for each case, the True Positive Rate (TPR) and the
False Positive Rate (FPR). As a trade-off is present between the TPR and the FPR,
ROC curves help identify the optimum threshold value. To apply this technique,
we used the same training data as for the training step of Random Forests (3.1.2).

In order to compare the gap detection efficiency of the thresholding and super-
vised classification methods, a quality assessment was performed using a confu-
sion matrix (or error matrix) to derive global/overall, producer and consumer/user
accuracies for the gap class [82]. CA measures errors of commission specific
to the user’s map. The producer’s accuracy (PA) measures errors of omission.
As reference data, we used the 295 gap points of the systematic 50 m × 50 m grid
and 295 randomly selected points from among the 845 canopy (non-gap) points.
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Influence of Stand Type on Gap Detection

As ALS metrics can be used to describe the canopy cover, a range of metrics
were derived to characterize the opening degree of the forest stands and identify
“forest types” in our study area. Each stand was described by nine variables
derived from five ALS metrics: mean and standard deviation of the HSCOI, mean
and standard deviation of the CPI, mean and standard deviation of the CHM,
mean of CV-H, the percentage of the stand area with a height of < 3 m (P-3m,
based on the CHM) and the percentage of stand area with CPI ≥ 75% (P-CPI75). To
simplify comparison, this analysis was conducted with leaf-off data only. Before
the analysis, a negative buffer (5 m) was applied to limit the border effect. The
hierarchical clustering function hclust in the R software [124] was used to group
the stands, using the euclidean distance and the Ward method.

Subsequently, the quality of the gap mapping was examined in relation to the
forest type, to analyze if it is relevant to choose a gap mapping method based on
stand openness characteristics. The confusion matrices of all mapping methods
for the leaf-off dataset were analysed and compared for each cluster using PA, CA
and the Kappa Index (instead of GA). Kappa Index (KI) is a standard statistical
measure of the difference between observed agreement and the chance agreement
between reference and classified data [82]. KI is of relevance when the number of
reference points for the different classes is not identical, as is the case within the
forest types.

Gaps Geometry

The 39 field mapped gaps were used to evaluate the geometric quality of the
ALS delineated gaps. ALS gap polygons were selected which intersected the refer-
ence gaps. To assess the geometric accuracy, the reference gaps were compared
to the ALS delineated gaps using four geometric indicators. The area, the shape
complexity and the Index D describe the shape and size of the gap, which influ-
ences its functioning. Finally, the main direction of the gap is the global orien-
tation and is considered as a descriptor of the light environment. The following
measures were used:

• Gap Shape Complexity Index [72]

GSCI =
perimeter

2 ×
√
area × π

(3.1)

GSCI is a measure of the relative complexity of shape; it compares the shape
of the gap to a circle. It is computed as the ratio of a gap’s perimeter to the
perimeter of a circular gap of the same area. An increasing value of GSCI is
an increasing shape complexity [72, 55].
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• Area of the gap ( m2)

• Main direction (degrees): This is the azimuth of the longest line within the
boundaries of the polygon without crossing edges. This line is created by
the geom.polygonfetch command of Geospatial Modelling Environment. The
azimuth value ranges between 0 and 180 degrees.

• Index D: derived from Oversegmentation and Undersegmentation (Equa-
tions (3.2) to (3.4)). This index is used in several studies to assess the
accuracy of object-based image segmentation [103, 30], to determine best
segmentation parameters. Index D is a distance which varies between 0–
1 and is a quantitative assessment of the goodness of polygon matching.
Index D has to be minimized and a good balance between oversegmenta-
tion and undersegmentation has to be found to optimize the results. In
this analysis, polygons for which the ratio of the intersected area between
ALS and field gaps was a minimum 10% were retained (compared to 50% in
[103] and [30]).

Oversegmentation = 1 −
AreaIntersection
Areareference

(3.2)

Undersegmentation = 1 −
AreaIntersection
AreaALS

(3.3)

IndexD =

√
Oversegmentation2 + Undersegmentation2

2
(3.4)

3.4 Results

In Section 4.1, the gap detection results are presented, while Section 4.2 fo-
cuses on the influence of the stand type on gap mapping. Finally, Section 4.3 is
dedicated to the assessment of the geometric accuracy.

3.4.1 Gaps Detection Accuracy

Optimum Threshold Selection for CPI and GPR

To select an optimum threshold for CPI and GPR data, ROC curves were used
with a training dataset. Two types of graphics are analysed : changes in the
TPR and FPR according to the threshold values (Figure 3.4) and changes in the
global accuracy according the threshold value (Figure 3.5). Based on the ROC
curves, the following values for CPI and GPR were selected : CPI-60 for the leaf-
off dataset, CPI-50 for the leaf-on dataset, GPR-60 for the leaf-off dataset. These
thresholds were the only CPI and GPR simple thresholding methods retained in the
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subsequent analysis. The optimum CPI and GPR thresholds in leaf-off conditions
are the same, but GPR performance is systematically lower. CPI and GPR global
accuracy curves (Figure 3.5) are very similar for the leaf-off datasets and for CPI
leaf-on for thresholds >50%. Leaf-off accuracies are superior in general to leaf-on,
which can be explained by the difference in vegetation density. Decreasing the
GPR threshold does not really improve the quality of gap detection. This tendency
seems to highlight the importance of the low vegetation influence on the results.
Based on the low gap detection accuracy, GPR thresholding is not considered in
further analysis for leaf-on data sets.

Figure 3.4: Receiver Operating Characteristic (ROC) curves for Canopy Porosity
Index (CPI) and Ground Point Ratio (GPR) performance, for thresholds between
0% and 100%. The dots correspond to threshold values between 0 to 100% by

10%-step. Below a certain value, a plateau of True Positive Rate (TPR) is
observed with an increasing of False Positive Rate (FPR).

73



VHR & 3D Remote Sensing Data for Supporting Forestry in Wallonia

Figure 3.5: Comparison of the global accuracy obtained from CPI and GPR
thesholding according to the threshold applied (0% to 100%)

Summary of the Confusion Matrices

The results of the gap detection accuracy assessment for the nine selected
methods, for the two seasons, are summarized in Table 3.1. These results allow
a number of comparisons to be made: leaf-on vs. leaf-off data, thresholding vs.

supervised classification, per-object vs. per-pixel, CHM vs. other ALS metrics.
Based on global accuracy, the three best methods are: per-pixel classification in
leaf-on and leaf-off conditions, CPI-60 for leaf-off data and combination1 multiple
thresholding in leaf-on conditions. CHM-5m thresholding also produces high
global accuracy in leaf-off conditions, but has a significantly lower producer’s
accuracy, indicating larger omission errors. The specific results of supervised
classifications are presented in Table 3.2 and Figure 3.6 and discussed further in
Sections 3.4.1 and 3.4.1.

Leaf-on vs. Leaf-off

Global accuracies are, in general, greater for leaf-off conditions. Leaf-off pro-
ducer’s accuracies lie between 52% and 94% against 19% and 86% for leaf-on
conditions. Leaf-off producer’s accuracies are around 10% greater than leaf-on
for all methods (Table 3.1). In consequence, omission errors are lower in win-
ter conditions. The difference between leaf-off and leaf-on data is lower for the
consumer’s accuracy. The commission errors are small (7 to 22%, excluding
Combination2 multiple thresholding) meaning that areas identified as gaps are
reliable, but are generally underestimated from leaf-on data.
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For the per-pixel and per-object supervised classifications (Table 3.2), the ac-
curacy results (OOB, global, producer and consumer accuracies) are similar for
leaf-off and leaf-on data. The VarImp parameter (Figure 3.6) highlights Mean-I-S
and CPI as important for the leaf-on dataset when using per-pixel classification,
whereas the CHM is of relatively greater importance for leaf-off data. This contrast
is lower for the leaf-off dataset. No such differences in the importance of intensity
are observed for per-object classification between the two seasons.

Table 3.1: Accuracy assessment of gap detection (summarized from the
confusion matrix) for the different methods in leaf-off and leaf-on conditions.

Leaf-off Leaf-on

Type Global Producer Consumer Global Producer Consumer
acc. acc. acc. acc. acc. acc.
(%) (%) (%) (%) (%) (%)

Simple thresh.

CHM-3m 78 60 93 72 50 90
CHM-5m 81 66 93 77 60 91
CPI-50 78 63 91
CPI-60 82 73 88
GPR-60 76 52 89

Multiple thresh.

Combination1 79 81 78 80 71 87
Combination2 62 94 58 73 86 68

Supervised classif.

Per-pixel 81 73 88 81 73 90
Per-object 79 77 81 80 72 86

Figure 3.6: The mean decrease accuracy is a way to measure the variable
importance for a) per-object and b) per-pixel classifications. This indicator allows

the sorting of the variables according to their discriminatory abilities.
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Thresholding vs. Supervised Classification

Gap detection by CHM thresholding shows an average producer’s accuracy but
consumer’s accuracy is very high, more so than for per-pixel or per-object clas-
sification. On average, the discrepancy between consumer’s and producer’s ac-
curacies is greater for thresholding-based methods, but global accuracy remains
relatively similar and good for all methods, except for GPR leaf-on thresholding.
Based on global accuracy, CPI-60 is the best performing method, but high and
similar accuracy is obtained from per-pixel classification.

Per-Object vs. Per-Pixel

The OOB accuracies for per-pixel and per-object classifications are given in
Table 3.2; the values are similar and very high. The importance of variables
involved in the supervised classification are shown in Figure 3.6. Owing to the
definition of objects (group of several grid cells), more variables can be utilised in
the per-object classification process, as the mean and the standard deviation of
the grid cell values can be calculated. The most important variable for leaf-off and
leaf-on per-object classification is the mean of the CHM, followed by the mean CPI.
The variable importance analysis for per-pixel classification identifies a different
order of the variable importance. The Mean-I-S is the most discriminating variable
for the per-pixel classification in both leaf-off and leaf-on data sets.

Table 3.2: The out-of-bag accuracy is an evaluation of the global accuracy of the
final classification. The results are given for the per-object and the per-pixel

supervised classifications for both leaf-off and leaf-on conditions.

Per-Object Per-Pixel
Leaf-off Leaf-on Leaf-off Leaf-on

98.1% 96.3% 97.0% 97.2%

Table 3.3: Amount of improvement over Canopy Height Model (CHM)-5m
thresholding for the three best methods selected based on gap detection

accuracy. The leaf-off results are compared with leaf-off CHM thresholding and
leaf-on with leaf-on CHM thresholding.

Per-Pixel CPI-60 Combination1
Leaf-on Leaf-off Leaf-on

Global accuracy 4% 1% 3%
Producer accuracy 13% 7% 11%

Consumer accuracy –1% –5% –4%
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CHM Thresholding vs. other Metrics

CHM thresholding did not produce the best accuracies in this comparison,
particularly in terms of the omission error (CHM-3m had a low producer’s accu-
racy). Use of a higher threshold for the CHM (5 m) improves the gap detection,
with an increase of 6 to 10% for producer’s accuracy. The GPR has poor perfor-
mance compared to CPI and CHM metrics due to a high omission rate. CPI-60
in leaf-off conditions provides the highest global accuracy and the best balance
between omission and commission errors.

Table 3.3 presents the improvement in gap detection of the three best perform-
ing alternative methods over CHM thresholding (per-pixel classification of leaf-on
data, CPI-60 thresholding of leaf-off data and Combination1 multiple threshold-
ing of leaf-on data). The leaf-off results are compared with leaf-off and leaf-on
with leaf-on for all methods. The consumer’s accuracies vary less than producer’s
accuracies between the methods and are best for the CHM thresholding. Alterna-
tives to CHM thresholding provide higher global accuracy, but these are relatively
small improvements (1%–4% increase in global accuracy). The most important
improvement is the decrease in omission error.

3.4.2 Influence of Stand Type on Gap Detection

The hierarchical clustering of the 42 stands produced a dendrogram from
which three groups were extracted. Analysis of these clusters shows a separation
according to the opening degree of the canopy. The following three stand types
are identified: opened canopy with isolated trees only (cluster 1), closed canopy
(cluster 2) and heterogeneous canopy (cluster 3). Two main variables amongst
the nine are particularly useful to differentiate the three clusters: the P-3m and
P-CPI75 (Figure 4.6). The two variables are highly correlated and thus only one is
sufficient to discriminate the three groups. The choice may depend on the forest
type, the recruitment characteristics or the ALS data. The P-3m is the easiest
indicator to use as only a CHM is needed.

Figure 3.8 shows the Kappa index, consumer and producer accuracies for
each method for each of the three stand types. The Kappa index shows the great-
est differences between the methods. The discrepancies in accuracy between the
methods varies according to the stand type: commission errors are more stable
between methods, but are higher for open canopy (consumer accuracies were
greater than 80% in general for heterogeneous and closed canopies), whilst omis-
sion errors are more variable between methods for closed canopy. Heterogeneous
canopies have the highest Kappa index for most methods. Regarding Kappa index,
the best methods for each stand type are : combination1 multiple thresholding for
closed and open canopies and CPI-60 thresholding for heterogeneous canopies.
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Figure 3.7: Three clusters are identified from the hierarchical clustering,
corresponding to three stand types: open canopy with isolated trees only (cluster
1), closed canopy (cluster 2) and heterogeneous canopy (cluster 3). These types
are well defined by two indicators: the percent of stand area with height < 3 m

and the percent stand area with CPI ≥ 75%.

Figure 3.8: Kappa Index, producer’s and consumer’s accuracies of the three
stand types for each gap detection method using the leaf-off dataset.
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The analysis of the Kappa index (in this case, for leaf-off data only) shows
that the best global methods may be different from the best methods for specific
stand types. The three best leaf-off methods when considering all stands (Table
3.1) are per-pixel classification, CPI-60 CHM-5m thresholding. Amongst these
three methods, per-pixel classification performs most consistently across all stand
types, but CPI thresholding is best in heterogeneous and closed stands. CHM
thresholding (5 m threshold) gives lower accuracies, with notably higher omission
errors, especially in closed canopy. In such closed stand types, all these meth-
ods are significantly outperformed by Combination1 multiple thresholding, which
performed less well for leaf-off data in the global case.

3.4.3 Gaps Geometry Accuracy

This section will provide a synthesis of the accuracy of the different methods
in retrieving characteristics of gap geometry. Figure 3.9 illustrates four typical
gaps with example delineations from the three methods giving the best detection
results. A particularly poor result is observed in Figure 3.9 G and K, where the
ALS delineation resulted in large and very branched gaps, which encompassed
several reference gaps (becoming connected by corridors). Such results appear in
stands where openings in the canopy are small or medium and spread throughout
the stand, forming a network of connected openings. The gaps delineated in this
case are more complex in shape than isolated ones and may be less well fitted
to the definition of a gap used in this study and to accurate field delineation. To
overcome this issue, which may bias comparison of geometric accuracy, highly
branched and interconnected gaps were therefore eliminated from the subsequent
analysis of geometric accuracy by applying a selection based on the GSCI (GSCI<
5). In the following sections, ALS gaps are compared to reference gaps based on
the error, computed as the difference between the reference value and the ALS
value; except for the case of Index D, which is intrinsically a comparison with
reference data (Figure 3.10).

GSCI

Regarding GSCI, the weakest results are obtained for multiple thresholding :
Combination2 for leaf-off data produces no gaps with GSCI <5 and Combination1
has the largest mean error and high extreme values (for both leaf-off and leaf-
on). The two CHM thresholding methods are quite similar with a tendency to
overestimate shape-complexity in comparison to field data, as for all the methods.
The best performance is from per-pixel classification of leaf-off data.
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Gap Area

CPI thresholding and per-pixel classification perform well for both seasons.
Multiple and GPR thresholding show the worst results, especially for the leaf-on
dataset. The average errors are acceptable but, despite the GSCI-based filtering,
there are still extreme values, mainly representing large overestimates of gap area
(except for CHM thresholding in leaf-on conditions).

Figure 3.9: Four examples of canopy gap mapping results (yellow polygons) are
compared with the the reference gaps (black-yellow dashed polygons) overlain on

a near-infrared composite (50 cm, year 2009): (A) to (D) are per-pixel
classification of leaf-on data; (E) to (H) are CPI-60 thresholding of leaf-off data

and (I) to (L) are Combination1 multiple thresholding of leaf-on data. These four
cases are typical of results obtained in this study: a good correspondence

between the field and ALS gap ((A) and (E)); a good coverage of the reference gap
but in several parts ((B), (F), (J)), a weaker result resulting in a large and very
branched airborne laser scanning (ALS) gap ((C), (I) and especially (G) and (K))
corresponding to several separate reference gaps, which is typical of sparse or

heterogeneous canopy cover; and small gaps missed or partially missed in more
closed canopy ((D), (H), (L)).
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Figure 3.10: The geometric accuracy of the selected mapping methods is
assessed by four indicators : gap-shape complexity index (a,b), area (c,d), main

direction (e,f) and Index D (g,h). The error is computed as the difference between
the reference value and the ALS-value. The results are summarized in boxplots

for the two seasons (left for leaf-off and right for leaf-on).

81



VHR & 3D Remote Sensing Data for Supporting Forestry in Wallonia

Main Direction

For both leaf-off and leaf-on datasets, and all methods, the average error in
azimuth is close to 0, but there is large dispersion or errors with extreme error
values (up to 150%). The best results are obtained from CPI-60 thresholding of
leaf-off data and per-pixel classification of leaf-on data. The standard deviation of
errors for the azimuth is lower for the leaf-off dataset, suggesting more consistent
prediction of gap orientation.

Figure 3.11: Examples of oversegmentation and undersegmentation values for a
sample of gaps. (a) large value for undersegmentation corresponds to an ALS

gap overestimating the reference gap (e.g., very large and branched ALS gap, b).
This situation is often associated with a small oversegmentation value because

the reference area is often entirely covered by the ALS-derived gap. Small values
of undersegmentation occur when a reference gap is covered by several small
ALS gaps (c) or a single ALS gap but with a good coverage and a satisfactory

global shape (a). (d) is an intermediate case.
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Index D

A good match between reference and ALS delineated polygons corresponds
to a low Index D and indicates a good balance between oversegmentation and
undersegmentation (Figure 3.11). Index D is, in general, lower for leaf-off datasets,
and CPI-60 thresholding from leaf-off data has the smallest Index D value with a
good oversegmentation/undersegmentation ratio. In leaf-on conditions, per-pixel
classification is the most effective method. Undersegmentation is higher in leaf-
off conditions, which confirms the tendency to delineate excessively large gaps
from leaf-off data. The multiple thresholding methods generally produced the
poorest results for this index, although Combination1 performed better in leaf-on
conditions. The CHM-3m and 5m thresholding show similar results for leaf-off
and leaf-on datasets.

3.5 Discussion

Three methods are highlighted as producing the best gap detection results:
per-pixel supervised classification of leaf-on data, Combination1 multiple thresh-
olding of leaf-on data and CPI-60% simple thresholding of leaf-off data. The global
accuracies achieved using these best methods (81%–82%) compare favourably
with those of past studies (e.g., 73.1% of field and ALS gap length matched along
transects in [149] or 77%–88% global accuracy in [50] using a computationally
expensive point cloud based approach). The choice between methods implies
trade-offs dependent on the study requirements, i.e., more reliable gap detection
but with a risk of missing some gaps or more detected gaps with a risk of false
detection. For example, multiple thresholding methods provide the highest pro-
ducer’s accuracy (greater than 80 % for leaf-off data, 90 % for leaf-on), but at the
cost of higher commission errors. These methods also have variable performances
regarding geometric accuracy. Independently of the gap detection accuracy, CPI-
60 thresholding of leaf-off data and per-pixel classification of leaf-on data give
acceptable results for geometric accuracy by most measures, unlike Combina-
tion1 multiple thresholding of leaf-on data which produces a poor final map in
terms of GSCI and Index D.

Optimum thresholds for CPI and GPR were identified through ROC curves, but
it is acknowledged that the thresholds used are derived empirically. Further re-
search to examine their physical basis would be valuable. However, the identified
thresholds appear reasonable, as within a correctly identified gap, substantial
numbers of returns > 3 m in height (e.g., a CPI of up to 40%) may result from
very sparse but high understorey or regeneration, small within-gap tree crowns
or mixed canopy and gap cover within pixels along the gap boundary.
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In general, better results were obtained from most methods in leaf-off condi-
tions (with the exception of multiple thresholding and per-object classification) re-
garding gap detection and geometry. The high point densities of the ALS datasets
used in this study allow good characterisation of tree crowns, even in leaf-off
conditions, and the absence of leaves decreases occlusions and improves rep-
resentation of the ground. In deciduous forest, leaf-off data may therefore be
generally preferable to leaf-on data unless point density is low, but the transfer-
ability of this finding to other forest types and datasets needs further examination.
GPR thresholding performed worse for leaf-on data than CPI thresholding, whilst
CPI and GPR leaf-off results are more similar. These findings likely indicate an
effect of the low understorey vegetation presence in summer on gap detection (few
returns penetrating to the ground in leaf-on conditions even within gaps) with
GPR-based methods. The effect of the season is also highlighted in the per-pixel
classification. The variable importance shows a relatively greater importance of
CHM for leaf-off data versus Mean-I-S and CPI for leaf-on data. This is probably
due to the higher contrast in reflectance between elements in leaf-on conditions
(e.g., ground vs. leaves).

Despite the relative technical simplicity of the method, thresholding is not
clearly surpassed by supervised classification. Given the complexity of imple-
mentation and the similar performance compared to other simpler methods, clas-
sification methods may not always be the most efficient choice. Image segmen-
tation used eCognition and was intentionally simple but the use of such soft-
ware requires a learning process by the user and remains a black box approach.
The simpler per-pixel approach also outperforms the per-object classifier based
on global accuracies from the confusion matrix. The preparation of the training
samples is time-consuming for both supervised classification methods.

The results of this study also suggest that CHM thresholding is outperformed
by other methods (see Table 3.3). However, choice of threshsold is also important
if using a CHM. An increase in the height threshold (3 m to 5 m) improves the de-
tection. This is probably due to better representation of the gap border, with closer
correspondence to the canopy drip line, but the results of the 3m threshold could
also be influenced by high understorey vegetation. The CHM-based method also
performs less consistently between stand types (high omission errors in closed
canopies), although this may be improved by the use of relative rather than fixed
height thresholds, as proposed by, for example, [169] and [50]. Methods based on
CPI thresholding from leaf-off data and per-pixel supervised classification based
on ALS-derived raster layers are, according to our results, the most accurate and
reliable, (i.e., using canopy porosity index, rather than a CHM, decreases the
under-estimation of canopy openings). However, it should be noted that CHMs
have other very useful applications in forestry and are valuable ALS products.
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The creation of a CHM has other advantages for a forest manager, such as allow-
ing height estimation and a CHM is therefore more multi-purpose. The CHM is
also likely to be less sensitive to ALS point density than the CPI. Moreover, CHMs
can also be produced from a photogrammetric DSM by subtracting an existing
DTM. Photogrammetry can be, in some cases, more cost-effective than ALS. The
relatively small accuracy gains over the use of CHM thresholding may therefore
not always justify the use of other metrics, such as CPI, for gap mapping.

The results of the geometric accuracy assessment indicate poor agreement
with field data in many cases, especially in terms of gap shape. In this case, a
complementary explanation could lie not only in the gap mapping method, but
also in the field survey, during which challenges arise when mapping complex
gaps or interconnected gap networks. It is likely that neither the field mapping
or the ALS-derived gaps fully represent the true gap geometry. Whilst gaps have
been field surveyed with a good degree of accuracy, subtle details of gap bound-
aries may be better represented by ALS, resulting in more complex shapes. To
some extent this is to be expected, due to the high resolution of the ALS data
relative to field mapping and some differences between reference and ALS gaps
may therefore reflect this issue. Even though many errors were larger than would
be accounted for by this factor, future studies are needed to investigate the pos-
sibility of using more advanced approaches, such as terrestrial laser scanning, to
improve validation. The increasing use of unmanned aerial vehicles also provides
a potential alternative method for mapping gaps [54]. The relatively easy acquisi-
tion of very high-resolution images and the possibility for programming repeated
acquisitions [87] should foster the development of gap dynamic studies.

Particular challenges were encountered in obtaining comparable ALS and field
delineations, in terms of gap geometry, for the heterogeneous stand type. How-
ever, a more detailed analysis reveals that two subgroups composed this stand
type, with the same global gap coverage but differing spatial distribution: one with
larger open areas, more isolated and well defined and a second where openings
are distributed more diffusely within the stands. Extensive networks of intercon-
nected gaps are a source of error, due to challenges in both gap definition and the
field data collection. The chosen definition of gaps in this study fits better with
the concept of isolated gaps. When considering issues such as light availability
for regeneration, alternative conceptual approaches to examining gap geometry,
size distribution and spatial arrangement in heterogeneous or open stands are
likely to be required, moving away from the concept of isolated gaps (which is
appropriate in closed canopies) to an ’open matrix model’ [59, 15]. ALS mapping
of the distribution of gap space has potential to facilitate this over larger spatial
extents.
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3.6 Conclusions

Gap mapping is a topic of major importance for forest managers and ecologists.
A reliable mapping of canopy gaps is the basis for numerous research and man-
agement applications (for example gap dynamics, gap distribution at the scale of
the landscape, habitat modelling and silvicultural applications). This paper has
investigated canopy gap mapping through four types of methods (simple thresh-
olding, multiple thresholding, per-pixel supervised classification and per-object
supervised classification) applied to leaf-off and leaf-on datasets (with an aver-
age density of 40 returns per m2), taking into account the mapping accuracy in
terms of both gap detection accuracy (590 validation points) and geometric quality
(analyzed for 39 reference gaps mapped in the field).

Our findings demonstrate that mapping of canopy gaps with ALS is not triv-
ial, especially regarding errors in gap areas (maximum error up to 2000 m2) and
geometry (e.g., mean Index D = 0.43 for Combination1). This study indicates that
ALS can be used to map canopy gaps in uneven-aged broadleaved forests with
gap detection accuracies of up to 82%. New methods, based on thresholding of
CPI and per-pixel supervised classification of ALS-derived raster layers, show par-
ticular promise for obtaining accurate gap detection (82% for CPI-60 leaf-off and
81% for Per-pixel leaf-on) and geometric representation (GSCI mean error 16◦ and
13◦ for CPI-60 leaf-off and Per-pixel leaf-on respectively and main direction mean
error –0.7 and –0.55). But taken together, the results suggest the importance of
and difficulty in identifying an optimum mapping method for all circumstances.
The choice of method is generally likely to be a trade-off between producer’s and
consumer’s accuracy or between detection and geometric accuracy, e.g., GPR-60
Leaf-on global and consumer’s accuracy equal to 76% and 89% but producer’s ac-
curacy equal to 52%. Beyond the performances of the specific methods presented
here, we argue the critical need for future ALS-based gap studies to consider the
geometric accuracy of their results, even if ALS remains the best option for gap
mapping over large extents.

Further challenges arise regarding the selection of an appropriate definition
of canopy gaps, compatible with remote sensing, and in achieving a meaningful
comparison of ALS and field delineations. Despite the challenges, understand-
ing the differences in gap geometries and gap size distributions obtained from
traditional field survey methods and from ALS delineation is vital, if conclusions
regarding gap dynamics and spatial patterns from studies utilising these different
approaches (in different locations or at different time periods) are to be compared
and understood.
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The most appropriate approach to mapping of canopy gaps will depend on
the forest type and the application. This implies the adaptation of methods, for
example in the choice of threshold, of morphological filters and in the methodol-
ogy for the field survey. Moreover, as the effect of the understory vegetation has
important implications, future studies should examine the assessment and char-
acterisation of low vegetation and regeneration with ALS data. The effects of ALS
acquisition parameters such as scanning angle, point density and derived raster
resolution were not assessed in this paper, but also need to be further explored
[148, 50].
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Chapter 4

Forest Attributes Assessment of

Coniferous Stands with UAV Data

"A fool sees not the same tree that a

wise man sees."

William Blake

The use of UAS has opened a new era for remote sensing and forest manage-
ment by allowing the acquisition of images with a centimetric resolution. Except
legal constraints, the flight are done on-demand by the user. The resolution and
the data acquisition flexibility make it a tool suitable for issues that require in-
formation up to tree scale. However, the technical constraints (mainly battery life
and flight control) involve flights over small areas (about 1000 hectares).
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The management and processing of the data require expertise and important
technical resources that make difficult to extent over large areas. As Single-
Tree Detection is an important issue in sustainable precision forestry, this study
develops an application of UAV data processing for forestry. We propose a compre-
hensive workflow to detect trees and assess forest attributes using UAV imagery,
from data acquisition to model construction.

We implement a Local Maxima Detection (LMD) to identify the tree tops, based
on a fixed-radius mobile window in a Canopy Height Model (CHM) and images
produced from UAV surveys. To compare the contribution of different photogram-
metric products, we analysed the local maxima detected from the CHM, based on
three image types and a combination of the LM from the CHM and each image
type. A filtering process of false positives was also implemented, using a super-
vised classification. Based on the LMD combined with an area-based approach,
we constructed models to assess top height, number of stems, basal area, volume,
and individual tree height.

Specifically, we highlight four key points which form the originality of our
work: (i) the synergy between the CHM, the correlation map and the imagery
to improve the local maxima detection; (ii) The implementation of a process to
filter the false positives during the local maxima detection; (iii) the proposal of a
complete methodology from the data acquisition to forest attributes assessment
and (iv) the use of a deliberately limited number of predictors to rationalize the
variables selection for the forest attributes assessment.

4.1 Introduction

With the advent of small Unmanned Aerial Systems (UAS), robotic and ge-
omatic technologies have established a new paradigm of aerial remote sensing
[31]. Because of their high operational flexibility, UAS can deliver very fine spatial
resolution data at specific moments defined by the end users [5]. Flying low and
slow, a small UAS with an on-board optical sensor can acquire images of natural
areas (e.g. forest canopies) and provide spectral information. The concomitant im-
provements of image processing techniques make todays’ novel "Structure-from-
Motion" photogrammetry workflow operational with UAS imagery [31].

While traditional photogrammetry requires a metric camera, a specific im-
age block configuration, and a substantial amount of work by the operator, the
Structure-from-Motion photogrammetry approach deals automatically with a col-
lection of unordered overlapping images from an uncalibrated camera [155]. When
used with UAS imagery, this modern photogrammetry technique delivers without
difficulty two major final products of the photographed area for the user : a three-
dimensional (3D) model of the relief and an orthophotomosaic.
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A recent view of the literature shows a diversity of applications of drones within
the natural resource management framework. [55] and [54] extract canopy gaps
from UAS images (1) to assess the floristic biodiversity of the forest understorey
from spatial characteristics of gaps and (2) to analyse their spatial patterns related
to the spatio-temporal dynamics in several managed and unmanaged forests.
The article of [150] is a first attempt of elephants census by UAS survey while
[83] browse deeper the strengths and drawbacks of UAS for wildlife monitoring.
[114] use UAS data to produce very high resolution digital elevation model in the
domain of soil conservation for which the flexibility of data acquisition constitutes
a leverage after major rainfalls to model relief changes. [2] compare UAS-based
cameras for purposes of land-cover classification, by object-based image analysis.
[86] and [101] explore time series of UAS imagery to discriminate tree species and
health conditions in deciduous and riparian forests using supervised classification
methods. Following the same idea, [99] develop a workflow to map three riparian
invasive species based on spectral and textural variables computed from UAS
images.

The development of drones as a source of very high resolution data is an
opportunity for forest resource management and give more emphasis to precision
forestry, focusing on plot-level and on individual trees [41]. Sustainable forest
management requires an accurate and regular quantification of resources. Height
distribution, stem number, top height (or dominant height), basal area, and stem
volume are key data for forest managers. Sampling inventories are generally
undertaken to estimate these variables through a limited number of plots because
their installation in the field is very expensive and time-consuming. Inventory at
the tree level is highly relevant for forest structure characterization, whether for
silvicultural purposes or for the modeling of forest ecosystems (e.g. mapping of
habitat quality, vegetation biomass, or regeneration spots).

Very high resolution images and 3D model of the relief are well suited to the
forest manager’s needs for high-quality mapping [47]. Indeed, the spatial resolu-
tion of low oblique vantage aerial images allows for a single-tree inventory of the
forest stands, particularly interesting for silvicultural and harvesting operations.
As canopy height measurements are the basis for extracting trees and stands
attributes, UAS data could be used, at a local scale, to substitute or update air-
borne laser scanning (ALS) and its proved ability for describing the 3D structure
of forest [165, 60, 133, 93]. However, this opportunity remains strongly linked to
the availability of an existing DTM to compensate for the lack of data at ground
level and especially under the canopy [157].

Several studies confirm the potential of UAV to monitor structural properties
of forest as new inventory tool. [87] developed a photogrammetric workflow with
Structure-from-Motion approach on UAS images combined with LiDAR digital ter-
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rain model to assess top height in deciduous plots and compared results with ALS
data. [123] highlighted the determination of the applicability of drone technology
as accurate and timely forest inventory information at local scale. They highlight
the following major strengths of UAS : adaptive planning, high project customiza-
tion and rapid implementation of data acquisition even under challenging weather
conditions, and the high spatial and temporal resolution of data. In a conifer-
dominated boreal forest, they assess Lorey’s mean and dominant height, stem
number, basal area, and volume. The relevance of spectral information in forest
attributes modelling is evaluated but results appear not conclusive. Similarly,
[140] extract 3D, spectral, and textural features from orthoimages and canopy
height data to assess dendrometric attributes of plots following an important step
of variable selection with genetic algorithm method for two consecutive years and
two different platforms and cameras. Two spatial resolutions were tested (20 and
50 cm) but the effect on the forest variables estimations was small. They note
an important variation of quality between the two years, explained by changes in
weather and/or solar illumination conditions, identified as a stumbling issue.

Although the great potential of UAS for ecology is arising in the literature, en-
vironmental remote sensing with UAS is still relatively new. There is still limited
understanding of how the data are acquired, processed, and used [160]. The rise
of UAS expands the possibilities and flexibility of remote-sensing data acquisition
in forestry, involving not only new prospects for quantification of the resource but
also new challenges regarding the data variability. Some questions remain re-
garding the adequate processing of drone imagery for utilization in forestry. Some
standard of traditional photogrammetry still needs to be revisited in order to better
fit both characteristics of low-altitude and low-quality imagery and the specificity
of the forest structure. In this context, the objective of this study is to implement
a comprehensive workflow to detect tree tops and assess forest attributes using
UAS imagery and photogrammetry, from data acquisition to model construction.
Finally, we outline several issues requiring further improvement and highlight
several recommendations.

4.2 Material

4.2.1 Study Site

The study area, named Hattlich, is located in the high plateau of the eastern
Hertogenwald near the city of Eupen (in eastern Belgium, close to the German
border, Figure 4.1). It occupies an area of about 3000 ha with altitudes ranging
between 500 and 650 m. This estate is a large forest area where coniferous
stands are the major forest type (66%). Spruce stands (Picea abies (L.) H. Karst.)
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are predominant (64.7%), and most of them are more than 50 years old. The
silviculture of spruce in this area is widely based on high-density plantations
(2000–3000 ha-1) establishing even-aged stands [109] with successive thinning
steps from 25 years. These stands are now involved in a process of transformation
to an uneven-aged structure. The objective of such uneven-aged transformation
is to promote a silviculture close-to-nature, more favourable to multifunctionality
and shift to the concept of continuous cover forestry. The area covered during
UAS surveys represents approximately 800 ha of the estate.

Figure 4.1: Study site localization and illustration of one plot. The plot is spread
along a systematic 200 × 200 m grid. The study site is a large forest area where

coniferous stands are the major forest type with predominant spruce stands

4.2.2 Field Data Inventory

A forest inventory was carried out in order to compare trees detected with UAS
data with a field reference and to assess forest attributes (data are summarized
in Table 4.1). The forest inventory is based on variable-area circular plots (n =
72) installed on a systematic 200 m × 200 m grid. The plot radius was adapted
to ensure a minimum number of 15 trees per plot. The maximum plot radius
was fixed at 18 m (0.1 ha) in the case of low-density stands. The plot centre
was positioned by GPS (SX Blue II with a nominal horizontal accuracy < 60 cm
with DGPS, see more details in the technical reference manual [51]. Each tree
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in the plot was measured (diameter at breast height, dbh) and localized, based
on distance and azimuth from the plot centre. The basal area and volume were
computed based on the dbh of each tree and scaled per hectare, using species-
specific allometric equations for the wood volume [32]. Heights were measured
only for a subset of trees (about three per plot) to compute the top height, which
was defined as the mean height of the 100 largest trees for an area of 1 ha [88].

A social status was assigned to each tree, based on dbhi/dbhDom, the ratio
between its dbh and the dominant dbh (computed for each plot as the mean dbh
of the 100 largest trees for an area of 1 ha). Three classes were defined: dominant
(dbhi/dbhDom > 0.9), co-dominant (0.75 < dbhi/dbhDom < 0.9), and dominated
tree (dbhi/dbhDom <= 0.75).

Checking of plot and tree positions was done with ortho-images and a Canopy
Height Model (CHM) to improve the matching between field data and aerial data,
followed by a second field visit for ambiguous cases. To carefully consider the
trees bordering plot, we also considered trees within a 2-m buffer around the plot
(extended plot).

Table 4.1: Dendrometric characteristics of 72 plots. Initially based on
high-density plantations of established even-aged stands, this area is now

involved in a process of transformation to uneven-aged structure.

Minimum Mean Maximum SD
Plot radius (m) 8 14.4 18 2.5

Number of trees (ha-1) 147 300 945 164
Top height (m) 16.7 24.7 27.9 3.8

Basal area (m2ha-1) 21.3 35.1 59.2 8.6
Volume (m3ha-1) 183.9 438.8 844.4 136.4

4.2.3 Aerial Data Acquisition and Processing

UAS Surveys

The Gatewing X100 small UAS is a professional fixed wing drone dedicated
to rapid mapping (technical characteristics detailed in Table 4.2). The Gatewing
X100 flies with a small positive pitch angle, which causes a low-oblique vantage
acquisition. The flight plans were prepared with the software QuickfieldR� [49]
on a rugged tablet computer prior to the aerial survey. The software allows the
preparation of several adjacent flights with overlap when the surface of the site
implies more than one survey. Flights are fully automatic from take-off to landing
and complete stop. The sensors were two similar RGB compact camera from
Ricoh (GR3 and GR4 still camera, 10 megapixel Charged Coupled Device, 6 mm
focal length or 28 mm in 35 mm equivalent focal length).
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Table 4.2: Characteristics of small fixed wing UAS Gatewing X100

Wingspan 100 cm
Weight 2.2 kg

Cruise speed 80 km h-1

Flight height 100–750 m
Maximum flight duration 40 min

Launch Catapult
Landing Belly landing

Surveys were performed in the autumn of 2014 at a flight altitude of 200 m
above ground level. Flight plans were ordered from north to south, and acqui-
sitions were carried out by a duo of professional remote pilots. Eight flights (in
4 days) were required in order to capture the entire forest estate of Hattlich: the
first flight on 1 October 2014, three successive flights on 2 October 2014, the
southern part of the forest estate on 28 October (two flights) and 20 November(the
last two flights).

The four first flights were performed with the Ricoh GR4 camera. Then, a
contact failure affecting the triggering cable obliged the pilots to change both
triggering cable and the camera. The last four flights thus used the Ricoh GR3
camera.

An images side and forward overlap of 80% was set up. The weather was
cloudy and without direct sunlight. The camera was used in manual mode, and
exposure settings (ISO and shutter speed) were set before each take-off according
to the light conditions. Because of late season, the duo of remote pilots made a
great effort to operate close to the solar noon, large shadows cast by the trees were
visible during most of the survey.

The surveys resulted in a total of 3341 individual low oblique aerial images,
covering an area of 930 ha. The average ground sample distance of these images
was 6.76 cm pixel-1, and the swath width on the ground was about 250 m.

Photogrammetric Workflow and Outputs

The photogrammetric open source toolbox MICMAC [113] was used to generate
a 3D canopy surface model and output images suited for mapping purposes,
starting with the raw image block. The workflow is synthesized in Figure 4.2 .

All the images were first handled as a unique image block for the computa-
tion of image orientation by aerotriangulation. First, potential image pairs are
determined based on the GPS data (Oriconvert tool of MICMAC), for the extraction
of the tie points (Tapioca tool of MICMAC). Even though the compact cameras used
in this study were precalibrated in the laboratory, the internal parameters are
still refined during the bundle block adjustment (self-calibrating bundle block
adjustment [112]). We used embedded GPS information to achieve constrained
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bundle block adjustment which supports both tie point and embedded GPS ob-
servations (Campari tool of MICMAC), in order to remove non-linear distortions that
may otherwise taint the photogrammetric models [163].

Figure 4.2: Synthesis of the photogrammetric workflow

Image orientation succeeded for 3321 images but failed for 20 images. This
failure occurred for images showing very large regular spruce stands. Indeed,
the repetitive texture of even-aged stands hindered the process of determining tie
points between two images. Moreover, these images were located in an area with
important variation in the relief, involving less overlap between images.

Then, georeferencing was achieved by using ground control points (GCP) (co-
ordinate system: Belgian Lambert 72, EPSG 31370). Nine GCP (road crossing,
curb, road markings) were identified, in parallel, on the UAS images and on a
reference regional orthophotos coverage (non-UAS, 2012, 0.25 m GSD) to deter-
mine their planimetric coordinates. The altimetric positions were extracted from
a LiDAR-DSM.

Then, image dense matching was operated in image geometry for each over-
lapping image pair. Automated dense matching algorithms use image similarity
measures (here, the normalized cross-correlation score) to establish a correspon-
dence between homologous windows (matching windows) through the image pair
and to compute a stereomodel. We used the per image matching tools from the
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MICMAC suite in order to generate the DSM for each individual forest plot. The dense
point cloud is generated at a resolution of 1:4 of the raw images. For example, if
the flight height above the canopy level is 180 m, the image ground sample dis-
tance is 6 cm pixel-1 and a photogrammetric DSM of 24 cm pixel-1 is computed. In
addition to the photogrammetric DSM, a map of the normalized cross-correlation
score, expressing the similarity of the images at each pixel of the 3D model, was
produced. For further details on the photogrammetric procedure used in this
study, we refer the reader to "The Grand-Leez dataset" of the MICMAC user guide
[111].

In parallel to the photogrammetric DSM generation, we produced images for
each plot to proceed the tree detection approach. True ortho-rectification is
promoted by the remote-sensing community (see e.g. [67]), which consists of
removing object relief displacements by utilizing a fine DSM during the ortho-
rectification process, but true ortho-rectification applied on UAS images causes
many artefacts in forested areas. In consequence, we decided to implement image
rectification on single images. To complete our study, we decided to include also
orthorectification on single image to test three different levels of photogrammetric
treatment and to analyse the quality of the tree detection regarding the type of
output: individual rectified image, individual ortho-image and ortho-mosaic.

The image rectification process involves the projection of the image to a refer-
ence horizontal plane. Although assimilation of the canopy surface to a horizontal
plane is an extreme simplification impacting the geometric quality of the georefer-
enced image, the rectified image has fewer artefacts and appears more natural to
the human eye than a true ortho-rectified image (Figure 4.3). During the image
rectification process, radial displacement due to lens distortion is corrected by
using the camera calibration. The process of image rectification is sufficient to
remove scale and perspective distortions [160]. Rectified images are thus suit-
able for mapping, as displacement due to relief occurs mainly on the images edge
which present a larger incident angle. For each plot, several rectified images were
available, thanks to the high rate of overlap during the flights. Selection of these
images was conducted in two steps. First, we kept images with their centre closest
to the plot centre. Second, a visual selection was done amongst the remaining im-
ages by an operator to keep only a single image that shows the lowest deformation
of trees and is as sharp as possible.

In parallel to the rectification process, ortho-rectification was applied to the
manually selected images (used for rectification) to produce single individual
ortho-images per plot. Besides, ortho-image mosaics were produced for each
plot from the multiple overlapping images, which are stitched together based on
the lowest angle of view of each image. The orthorectification and the mosaicking
were performed separately for each forest plot at a resolution of 1:2 full resolution.
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Finally, a CHM was computed for each plot as the difference between a LiDAR
DTM and the UAS photogrammetric DSM at the DSM resolution. This DTM was
produced with a spatial resolution of 1 m from ALS data with a density of 1 ground
classified point per m2 on the whole Southern Belgium territory. Alignment of
DSM and DTM was performed by a co-registration process using ground controls
points.

As the flight altitude was constant, change in terrain elevation impacted the
distance between the UAS and forest canopy. Therefore, the overlap decreases if
the terrain elevation increases, and the GSD worsened. Thus, because of the steep
relief, changes in elevation impacted the individual image resolution, which varied
from 4.4 to 8.5 cm pixel-1. The resulting CHM of 1:4 full resolution thus ranged
from 18 to 35 cm pixel-1. Table 4.3 summarizes the flight heights and resulting
resolutions of the different photogrammetric products. Figure 4.3 shows an ex-
ample of these photogrammetric products for one plot, and the corresponding 3D
point cloud.

Table 4.3: Flight heights and resulting resolutions of different photogrammetric
products. The steep relief involves variations of elevation which impact the

individual image resolution and the resulting CHM resolution (ranged from 18 to
35 cm).

Minimum Mean Maximum

Flight height (m) 129 179 250
Mean raw resolution (cm) 4.4 6.1 8.5

CHM resolution (cm) 18.0 25.5 35.0
Rectified image resolution (cm) 9.2 12.7 18.2

Ortho-image resolution (cm) 9.0 12.8 17.5
Ortho-mosaic resolution (cm) 9.0 12.8 17.5

4.3 Methodology

4.3.1 Tree Detection

We implemented a comprehensive tree top detection algorithm, which takes
the best advantage of the different photogrammetric products. This tree top detec-
tion algorithm followed a multi-source strategy, based on a local maxima detection
approach (Figure 4.4). The identification of the tree tops is based on the detection
of local maxima from a CHM and UAS imagery. Local maxima detection is simple,
versatile and easy to implement on a large number of data types and in an opera-
tional context. We chose to work on a small moving window, not only promoting
the detection of the greatest number of trees but also involving detection of a large
number of false positives. To eliminate these false positives, a classification step
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is supervised by the implementation of random forest. The objective is to deter-
mine whether a local maximum is actually a tree or whether it is a false positive,
based on spectral, 3D, or neighbourhood variables.

Figure 4.3: Three different photogrammetric products are computed and
compared for the local maxima detection: rectified image (a); individual

ortho-image (b) and ortho-photo mosaic. The illustrated area shows a variety of
stand types within the study site. White lines on c represent the boundaries
between the different ortho-photo making up the mosaic and the blue line
corresponds to the part of the individual ortho-photo image (b) used in the

mosaic. d, e and f are a selection within each image product. The rectification
and true-orthorectification differ mainly on the image border but not on the

nadir part (centre of the image). Trees looked more natural to human eyes in
rectified images. As we worked with a high overlap rate and we cropped the data
at the plot scale, corresponding to only a small part of each image, close to the

nadir, discrepancies between the three images are less important.

Local Maxima Detection

Before the local maxima detection, a Gaussian filter was applied to both CHM
and image products. The Gaussian filter is a low-pass filter, preserving bound-
aries and edges, reducing high-frequency components. The aim was to remove
micro-peaks of the CHM (coming from the DSM), specific to the photogrammetric
process and bringing noise during local maxima detection [104, 145]. The Gaus-
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sian filter was implemented using the Focal Function (fun = mean) using a weight
matrix computed by the Focalweight function (type = Gauss, sigma = 1.5). The
filter consisted in an average weighted mean of the neighbour pixels. The weight
is defined by a Gaussian window whose size is variable, depending on the CHM
resolution.

Figure 4.4: Synthesis of the methodology workflow: the comprehensive tree top
detection process take the best advantage of the different photogrammetric

products (images, DSM, and correlation map) to extract tree tops that will be
used with the CHM to assess forest attributes.

The local maxima detection consisted of identification of the tree tops within
each plot based on the local maxima detection within a fixed radius (1.5 m) moving
window from UAS images and CHM. The whole analysis was implemented in the R
software [124] plot by plot. The local maxima detection result gave the coordinates
(xi, yi ) and height (hi ) of each estimated tree top location within a plot.

In an attempt to compare the contributions of the different photogrammetric
products, we analysed the local maxima obtained from the CHM, rectified images,
individual ortho-rectified images, ortho-image mosaic, and the combination of the
CHM with each of the tree image products. Dominated tree tops are not considered
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local maxima on the CHM because of the smoothing of the canopy relief inherent in
photogrammetric DSM [87]. The tree detection with the UAS images was supposed
to be complementary to CHM (which mainly detects dominant trees) and improve
the detection of co-dominant and dominated. When merging local maxima from
CHM and local maxima from image, duplicates (defined as a tree top detected by
both CHM and the images, within a distance of 1.5 m) were removed, considering
the local maxima from CHM as the primary.

We focused on the omission and true-positive rates as indicators of the de-
tection quality (omission has to be minimized and true positives maximized). For
this purpose, the local maxima were categorized as true positives or false positives
by comparing with trees mapped in the field. False positives were also taken into
account but not considered a decisive factor as we implemented a filtering process
in our workflow.

Local Maxima Filtering

After the local maxima detection, our aim was to classify local maxima as true
or false positives using a supervised classification by random forest. For each
local maxima, variables were computed from several data in order to prepare for
the detection of false positives. Table 4.4 presents the tested variables. These
variables are either extracted from the tree top positions or computed within a 1.5
m window (considered the central part of the crown) and based on 3D information,
spectral information, and distances to neighbours. Among the 3D information,
statistics from the surface model are included, as well as information from the
normalized cross-correlation score.

Random forests [80] are a very efficient algorithm for classification. The Out-
Of-Bag error (OOB) is used to analyse the prediction performance and to assess
the importance of each variable (VarImp) which allows sorting of predictors. Cal-
culation of the OOB is based on a bootstrap sample of the data. The VSURF
package [53] allows the selection of variables based on variable importance rank-
ing. The objective is to remove irrelevant variables and select important variables
(1) for interpretation purposes and (2) for identification of a sufficient parsimo-
nious set of variables for prediction purposes. This set of identified prediction
variables will be used to construct the random forests. The strategy of VSURF
is based on a recursive elimination of variables. Three parameters are especially
important when using VSURF: nfor is the number of random forests constructed
during the process, ntree is the number of trees in each forest, and nmj (number
of mean jumps) allows the discrimination by relevant or noise variables. In this
study, nfor was set to 20, ntree to 1000, and nmj to 4. The other parameters were
set to default values.
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Table 4.4: Several variables are used for false-positive filtering by a random
forest process (supervised classification). These variables are computed from the
CHM, image, and correlation map. The values are extracted either from the local

maxima position or a statistic is computed within a 1.5 m window around the
local maxima. Information about the neighbor local maxima are also taken into

account for the false-positive diagnosis.

Variable name Description

TypeLM Local maximum type, corresponding to source (CHM, image type)

CHM

hLM Height of local maximum extracted from CHM
hmean Mean height within 1.5 m window around local maximum
hmax Maximum height within 1.5 m window around local maximum
hSD Standard deviation of height within 1.5 m window around local maximum

Image

rLM Normalized red reflectance value of local maximum extracted from image
RR/(RR+RG+RB)

rmean Mean normalized red reflectance value within 1.5 m window around local maximum
gLM Normalized green reflectance value of local maximum extracted from image

RG/(RR+RG+RB)
gmean Mean normalized green reflectance value within 1.5 m window around local maximum
bLM Normalized blue reflectance value of local maximum extracted from image RB/(RR+RG+RB)

RB/(RR+RG+RB)
bmean Mean normalized blue reflectance value within 1.5 m window around local maximum
GRLM Green and red reflectance values ratio RG/RR of local maximum extracted from image

GRmean Mean green and red reflectance values ratio RG/RR

within 1.5 m window around local maximum
GBLM Green and blue reflectance values ratio RG/RB of local maximum extracted from image

GBmean Mean Green and blue reflectance values ratio RG/RB

within 1.5 m window around local maximum
RBLM Red and blue reflectance values ratio RR/RB of local maximum extracted from image

RBmean Mean red and blue reflectance values ratio RR/RB

within 1.5 m window around local maximum
BrightLM Brightness value of local maximum extracted from image (RR+RG+RB)/3

Brightmean Mean brightness within 1.5 m window around local maximum
NRBVILM Normalized Red Blue Vegetation Index of local maximum(RR-RB)/(RR+RB)

NRBVImean Mean NRBVI within 1.5 m window around local maximum
NGBVILM Normalized Green Blue Vegetation Index of local maximum(RG-RB)/(RG+RB)

NGBVImean Mean NGBVI within 1.5 m window around local maximum
NGRVILM Normalized Green Red Vegetation Index of local maximum (RG-RR)/(RG+RR)

NGRVImean Mean NGRVI within 1.5 m window around local maximum

Correlation map

cmean Mean correlation value within 1.5 m window around local maximum
cSD Standard deviation of correlation value within 1.5 m window around local maximum

Neighbourhood

Only the two nearest neighbour(Nx with x = 1 or 2) of the current local maximum are considered
dNx Distance between current local maximum and neighbour

TypeNx Local maximum type, corresponding to source (CHM, image type)
hmaxNx Maximum height within 1.5 m window around neighbour
hmeanNx Mean height within 1.5 m window around neighbour
hrelNx Relative height (ratio between neighbour height and current local maximum height)

rmeanNx Mean red reflectance value within 1.5 m window around neighbour
gmeanNx Mean green reflectance value within 1.5 m window around neighbour
bmeanNx Mean blue reflectance value within 1.5 m window around neighbour
cmeanNx Mean correlation value within 1.5 m window around neighbour

104



Chapter 4. Forest Attributes Assessment of Coniferous Stands with UAV Data

Half of the plots (36) were randomly selected for variable selection and clas-
sification training. Each local maximum within the training plots was identified
as a true positive or false positive by comparison with field trees by an operator.
Then, a validation of the filtering procedure was performed with all the trees in
the other 36 plots. The latter were used for construction and validation of forest
attribute models.

4.3.2 Forest Attribute Assessment

Two alternative approaches are usually used to assess forest inventory at-
tributes with remote-sensing data: (1) Area-Based approach relies on the ex-
traction of variables at plot-scale from point clouds or CHM while (2) individual
tree detection approach is obviously based on the detection if not delineation of
trees/crowns. These approaches, although traditionally opposed, are in fact com-
plementary. In order to take advantage of their respective strengths, we choose
to combine them.

Linear regression with a parsimonious selection of variables extracted from
the detected trees and CHM was considered to assess forest inventory attributes
(individual tree height, number of trees per hectare, top height, and volume and
basal area per hectare). A deliberately limited number of predictors were used
to rationalize the variables selection for the forest attributes assessment. Model
selection was based on the best subset regression analysis (regsubsets in the
R package “leaps” [90]) and with the bayesian information criterion (BIC). Field
inventory data were used as reference : the 36 plots not used previously for local
maxima filtering for top height, number of trees, basal area and volume and the
trees with individual height measure within these plots (n = 102). The quality
of the regression models was assessed using the R2 and the Root Mean Square
Error (RMSE) values. A cross validation was also implemented with the package
bootstrap in R [138]. The data are split into five groups to analyse the quality of
the results.

Individual tree height estimation was based on variables calculated at tree-
level: hLM, hmean, hmax and hSD (see Table 4.4). For the stand level attributes, we
adopted a mixed approach combining area-based and tree-based variables. We
identified a limited number of variables to reduce the process of predictor selection
among numerous variables, to limit over-fitting, and consider the low number of
plots [65]. Table 4.5 presents the variables computed at the plot level and from
the local maxima to construct the forest stand attribute models.

The 12 selected variables represent the horizontal and vertical structure and
were tested for the fitting of forest attribute models. The number of trees (NTrees) is
the number of local maxima classified as true positives and normalized by the area
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of the plot. The maximum height (hmax) and the coefficient of variation of height
(hcv) are computed from the local maxima within the plot. The aggregation index
of Clark & Evans (Aggreguas, Equation 4.1) describes the location diversity of the
trees, based on the average distance between trees (d̄Trees) and ranges between 0
and 2.1419. The 95th percentile of the CHM within the plot (CHMp95), the canopy
cover (CCp; canopy is identified by a height threshold of 5 m on the CHM), and the
volume below the canopy top, normalized by the plot area (VolCHM-X), are computed
at the plot level from the CHM. V XNTrees and V X_NTrees are mixed variables, defined
respectively as the product and ratio of VolCHM-X and NTrees. CHMp95, hmax, and
hcv are directly related to the height of trees and the variability. NTrees and CCp

describe the density of the plot (in particular, CCp is related to the proportion of
gaps within a plot). VolCHM-5 and V X_NTrees are considered to be a proxy for the
amount of biomass.

Aggreguas =
d̄Trees

( 1

2∗
√

NTrees
AreaPlot

)
(4.1)

Area Assumptions for the linear regression (homoscedasticity, independence of
errors, normality of error distribution, absence of bias) were checked (with several
tests using the car and lmtest packages [46, 167]) to ensure model validity. The
multicollinearity was also tested with the variance inflation factor (VIF). A VIF
value of less than 2 was considered the threshold for no collinearity.

Table 4.5: Twelve variables are selected for construction of forest attribute
models. These variables are from the local maxima detection, or are computed at

plot-level (ABA), or are a combination of local maxima detection and ABA.

Variable Name Description Type

NTrees Number of trees (classified as true positives local maxima) Tree
within the plot

hmax Local maximum with maximum height within the plot Tree
hcv Coefficient of variation of local maxima height within the plot Tree

Aggreguas Clark & Evans aggregation index computed from local maxima Tree
CHMp95 95th percentile of CHM within the plot Plot

CCp Canopy cover is the percentage of plot area covered by canopy Plot
(canopy is identified by a height threshold of 5 m on the CHM)

VolCHM-5 Volume between canopy (defined by CHM) and 5-m-height Plot
threshold, normalized by plot area

VolCHM-16 Volume between canopy (defined by the CHM) and 16-m-height Plot
threshold, normalized by plot area

V 5NTrees Product of VolCHM-5 and NTrees Mixed
V 16NTrees Product of VolCHM-16 and NTrees Mixed
V 5_NTrees Ratio of VolCHM-5 and NTrees Mixed
V 16_NTrees Ratio of VolCHM-16 and NTrees Mixed
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4.4 Results

4.4.1 Tree Detection

Local Maxima Detection

Results of the local maxima detection are illustrated in Figures 4.5 and 4.6.
The lowest false-positive rate is obtained with CHM only, but with poor results
regarding omission. Worse results are obtained with rectified images. Individual
ortho-rectified images and ortho-image mosaic combined with CHM give similar
results. The best true positives and omission rates are obtained with a combina-
tion of CHM and imagery. For this reason, we decided to further investigate only
these three methods for the false-positive filtering. The effect of the variation of
the resolution between the plots is analysed in Figure 4.7. The detection perfor-
mances of each plot regarding the resolution are presented in terms of percentages
of omissions, true and false positives (before filtering) for CHM and mosaic.

Figure 4.5: Example of local maxima detection results for the seven tested data
sources. In this plot, eight trees are not detected with the CHM (d). Amongst the

missing trees, four are identified with the rectified images (a) and individual
ortho-rectified images (b) and five with the ortho-image mosaic (c), showing the

benefit of the imagery in the tree top detection process (e,f,g).
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Figure 4.6: Detection performance of local maxima for the 72 plots by
comparing results for the different data sources considered regarding omissions
rate (a), true positives rate (b), and false positives (c). These results precede the
false positives filtering. CHM gave lowest false-positive results, but with higher
omission, showing the benefit of combining CHM and imagery. Rectified images

alone gave the worst results.
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Filtering of Local Maxima

Trees from the training plots were used for the variable selection and the clas-
sification process. Several variables, either from CHM or imagery, were selected by
VSURF for the three combinations of data (Table 4.6). These variables were then
used for training the random forests. The resulting random forests were applied
to the local maxima of the validation plots. The quality of the random forests (OOB
errors) and the corrected rates of omission, true positives, and false positives are
also presented in Table 4.6. Both CHM and spectral information contribute to the
detection of false positives. The false-positive rate is dramatically reduced after
the filtering and the results are overall good even if intermediate false positives
results are poor.

Figure 4.7: Detection performance of local maxima for the 72 plots by
comparing results for the different resolutions for mosaic and CHM regarding
omissions (a, b), true positives (c, d) and false positives (e, f) rates before the

false-positive filtering.

Figure 4.8 shows an example of the resulting local maxima after the filtering
process. Considering the detection performance after filtering (omission, true
positives, OOB), the combination of mosaic and CHM is the best for extracting
local maxima. Further analysis will only take into account the local maxima
derived from CHM and mosaic.
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Table 4.6: Comparison of detection performance for the three combinations of
CHM and imagery. Omission (Om), true positives (TP) and false positives (FP)
rates are computed compared to the number of trees in the field. The sum of
true positives and omission rate gives 100%. Before filtering results are raw

results with the false positives identifications. The variables used in the random
forest are listed in descending order of importance. After filtering, results refer to
the removal of false positives from the validation plot using the selected random
forest variables. A decrease in the true positives rate is observed after filtering,

as some true positives are misclassified as false positives during the
classification process.

CHM + Rect. image CHM + Ortho CHM + Mosaic

Before filtering

Om. rate (%) 4.8 3.5 3.4
TP rate (%) 95.2 96.5 96.6
FP rate (%) 114.5 75.3 81.9

Var. selection

Variables hSD, cmean, hrelN1 , hLM, hSD, Brightmean, cmean, NGRVImean, NGBVImean,
hmean, Brightmean, dN2 , dN1 , hLM, hrelN1 , Brightmean, hSD, dN2 ,

TypeN1 , hmeanN1 , hmeanN2 hmaxN1 GRmean, hrelN1

OOB error (%) 8.5 5.5 5.5

After filtering

Om. rate (%) 9.2 13.9 10.8
TP rate (%) 85.9 86.1 89.2
FP rate (%) 14.1 2.6 7.8

Figure 4.8: Example of intermediate and final results for one plot: local maxima
produced from CHM and Image (a) merged local maxima with duplicates

removing (b) final results after removing local maxima outside the plot and false
positives filtering (c). Several trees missed by the CHM are identified by imagery

and wrong detection is corrected during the filtering process.
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The detection performance was analysed in terms of social status for the com-
bination mosaic and CHM (see Table 4.7). A percentage 48.2 of the missed trees
were dominated trees, 28.7% co-dominant, and 23.1% were dominant. The omis-
sion rate was 17.7% but it was partially balanced by false positives. Of the dom-
inant trees, 89.8% were detected, 85.9% for the co-dominant as well as 64.6%
of the dominated ones. Amongst the detected trees, 81.2% were dominant or
co-dominant and only 18.8% were dominated.

Table 4.7: Detection performance in terms of social status after false-positive
filtering. The first row is the distribution of the trees amongst the social status.
The second row is the percentage of detected trees for each social status. The

third is the distribution of the detected trees by social status. The fourth row is
the distribution of the omitted trees by social status. The fifth and sixth rows are

the detecting and omitting rate by social status.

Social status

% Dominant Co-dominant Dominated

Distribution of number of trees 40.1 35.9 24.0
Detecting rate for each social status 89.8 85.9 64.6

Distribution of the detected trees 43.8 37.4 18.8
Distribution of the omitted trees 23.1 28.7 48.2

Detected trees by total number of trees 36.1 30.8 15.5
Omitted trees by total number of trees 4.1 5.1 8.5

4.4.2 Forest Attribute Assessment

In this study, we focused on the prediction of four stand-level forest attributes
(number of stems, top height, basal area, and volume) and one tree-level attribute
(individual tree height). At the stand-scale, four models with only a single variable
and four models with maximum of three variables were fitted and compared to
assess the contribution of variables in reducing noise and improving model per-
formance. One model was constructed for individual tree height. The variables
for the single models were those most closely related to the considered attributes
(e.g. NTrees for the number of stems). Table 4.8 and Figure 4.9 present the selected
variables and the performance of the models in terms of the R2 and RMSE during
the model fitting and the cross-validation.

The R2 results during cross validation are very close for the number of trees,
basal area and volume (71%, 70% and 69%) and better for top height (83%).
Regarding % RMSE, the performance was more contrasted: top height gave also
the best result, followed by basal area (16.2%), volume (20.1%), and number of
trees (28.3%)). According the different tests, the required assumptions of linear
regression are all met. The use of several variables improves the quality of the
fours models, especially for the assessment of the tree number.
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Table 4.8: Performance and variables selected for each forest attribute model. A
parsimonious predictor selection was done among a limited number of variables.
Cross-validation results are less optimistic than fitting, but are still quite good.

Contribution of each selected predictor is significant.

Attributes Variables Intercept Coefficients R2 (%)/ RMSE/ % RMSE/
R2 CV (%) RMSE CV % RMSE CV

Top height hmax 9.28 0.666 78/75 1.8/1.9 6.5/6.8
(m) hmax, NTrees,Aggreguas 6.04 0.568; -0.012; 5.802 86/83 1.4/1.6 5.0/5.7

Number of NTrees -48.25 1.729 71/62 84/98 28/32.7
trees (ha-1) NTrees, VolCHM-5 67.93 2.51; -6.44×10-6 81/71 71/85 23.7/28.3
Basal area V16NTrees 24.51 1.499×10-6 70/70 5.8/5.7 16.5/16.2

(m2 ha-1) V16NTrees, CCp 3.177 1.412×10-6; 0.234 76/70 5.1/5.7 14.5/16.2
Volume V16NTrees 274.4 2.306×10-5 72/68 84/89 19.1/20.3

(m3 ha-1) V16NTrees, CCp 89.13 2.221×10-5; 2.042 73/69 81/88 18.5/20.1

Ind. height hmax-LM 8.764 0.73 71/70 1.9/2 6.9/7.2
(m)

Figure 4.9: Comparison of fitted values with reference values (field data) for the
four stand models (a, d: top height; b, e: number of stems; c, f: basal area; g, h:

volume; n = 36) and individual tree height model (i; n = 102).
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Six predictors appear to be highly significant for the models: hmax, NTrees

& Aggreguas (tree-level variables), V 5NTrees & CCp (ABA variables), and V 16NTrees

(mixed variable).

4.5 Discussion

Our study provides additional support for promoting the relevance of UAS data
in the framework of forest resource assessment. Below, we highlight several key
points from UAS data acquisition to forest attributes estimation.

4.5.1 UAS data acquisition

Relief variation

Significant variations in relief at the study site caused lack of overlap between
images and variation in resolution of the photogrammetric products. However,
our results were not affected by the between-plots variation of resolution. Our
methodology, based on simple techniques, has proved to be robust and versatile
and the procedure also managed the changes of cameras (Ricoh GR3 and GR4).
Besides, the pixel size variations were very tenuous and the resolution remains
excellent and seems sufficient in relation to the application.

Light conditions

Imagery is strongly impacted by variation in illumination due to season, weather
and shadows. These latter reduce the spectral quality of images and can hinder
classification or 3D reconstruction [12, 159, 152, 102]. [123] faced with difficult
weather conditions due to snow patches alternating with dark forest involving
saturation and high contrast. [87] concluded that shadows conduct to overesti-
mation of the CHM (as occlusion and smoothing), while in [152], the predicted
canopy cover is lower with Structure-from-motion than with ALS. Several ideas
emerge to solve the shadow issue. For example, [86] keep only sunlit part of
crowns for species discrimination. In their study, [102] tested a method to de-
tect and remove shadowed pixels in UAS images with Maximum Likelihood and
Support Vector Machine classifiers.

In this research, the geometry of mosaics is suitable for mapping, but they suf-
fer from heterogeneity in the image exposures because of illumination differences
during the flights. We suspected that this variation in illumination would negate
the local maxima detection. This is the reason why we tested the local maxima
detection on individual ortho and rectified images, in order to get rid of the vari-
ation in illumination present amongst the image block. However, as shown by
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the comparison of individual ortho-image and mosaic, the variation of illumina-
tion of our images block didn’t impact the local maxima detection. Our choice of
implementing apex detection instead of crown delineation minimizes probably the
impact of shadows. Moreover, the spectral heterogeneity could have an effect on
the classification of false positives but their identification was effective. The use
of spectral indices and normalized spectral bands helped to manage this problem.

Recommendations

In our experience, major improvements rely on the standardization and opti-
mization of UAS acquisition in order to create the finest conditions and to mitigate
negative effects on the accuracy. We thus recommend a standardization of the
spatial resolution, use of a unique camera, choice of the flight date/hours to
minimize the shadows, and reduction of the number of flight days (thanks to the
evolution of the drone platform or batteries).

In our opinion, we consider that the diffuse light conditions are the most suit-
able for a manual adjustment of the exposure and the low dynamics of the compact
sensors. A constant cloudy cover is therefore suitable for obtaining radiometri-
cally equalized images, and these conditions are largely preferable to full sun at
noon solar. The management of shadows is challenging for the optimization of
flight planning and can be a shortcoming for the flexibility of UAS by reducing the
acquisition window.

We argue on the importance of a reflection on the implementation of data
acquisition protocols and data processing adapted to forest areas could allow the
good production of maps of canopy relief from drone imagery [35].

4.5.2 Field Data Collection

Regarding the field data collection, a point of discussion is the variation of plot
radius which is relatively common in traditional forest inventory. Larger and fixed
plot radius would have been more relevant, especially to decrease the edge effect
and the instability of the tree detection results. Positioning of plots and trees
remains also a delicate issue under the canopy, especially for the pairing of local
maxima and field trees. Although we used dGPS, we took the necessary time to
carefully validate the tree centre position by photo-interpretation and in the field
if necessary.
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4.5.3 Detection of Local Maxima

The accuracy of tree detection is known to be sensitive to the settings of algo-
rithms and can vary depending on the forest type and structure. Therefore, we
decided to use a simple but widely used algorithm: the local maxima detection
with a fixed size window on both CHM and imagery. The small size of the window
(1.5 m) ensures to extract as many trees as possible thus, we considered that all
visible trees in images and CHM were identified. Hidden trees or other deficiencies
in image or CHM production may lead to no or wrong detection. A consequence
of the small window size was a high rate of false positives, which were removed
by a cleaning step. The false-positive filtering is based on supervised classifi-
cation with random forest that can easily handle many variables. The variables
highlighted came from CHM and imagery.

Omissions result from either no visibility of a tree (e.g. dominated trees, de-
ficiency of the data) or a classification error. The omission rate is low but it
increases after the false-positive filtering, due to the classification error. The de-
tection rate of dominant trees was promising whereas forest management focuses
on dominant trees: 48.1% of the omitted trees were dominated while only 23.1%
were dominant; 35.1% of the dominated were omitted against 10.2% of the domi-
nant, which is encouraging in a forest management perspective, where dominant
trees are the more important.

Comparison of the detection results for the different combinations of data
showed that the best performance was achieved with the combination of CHM
and mosaic (89.2% true positives, 10.8% omission, and 7.8% false positives). Re-
garding the results and given that the use of individual rectified and ortho-rectified
images requires manual selection of the sharpest images from the many available
for a plot, this image type may not be suited for local maxima detection. In or-
der to overcome the constraints of the manual handling of selection of individual
images, the local maxima detection could be applied to all individual images (rec-
tified or ortho-rectified) related to a plot. The groups of local maxima of each
individual images would then merged and post-processed to remove duplicates
before false-positive filtering.

Wrong detection (omission or false positives) can be explained partially by the
smoothing of the CHM or by the imbrication of neighbour crowns. Crowns are
generally wider and less individualized in photogrammetric CHM, and tree tops
are better represented in an ALS CHM [87]. The smoothing involved in the pho-
togrammetric process influences the local maxima detection and the computation
of metrics such ccp and volume variables. Compared to ALS data, photogram-
metric data tend to smooth the rendering of 3D structure, namely the gaps and
spaces between trees [158].
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4.5.4 Forest Attributes Assessment

Area-based approaches to assess forest attributes are marked by the use of
many inter-correlated metrics affecting the variable selection and undermining the
model fitting process [28, 23]. This trend is often observed with ALS data, which
are intrinsically very rich. Thus, we chose to construct parsimonious models,
considering the low number of plots (half of the plots were used for the training
of supervised classification) and to avoid over-fitting. Nevertheless, we decided to
keep four variables from each of the three types (tree, plot, and mixed) to test the
potential and relevance of our data. The variables were generated to be closely
linked to the four major forest stand attributes (top height, number of stems,
basal area, and volume, scaled per hectare).

The quality of the different forest attribute models is rather promising in terms
of the fitting and cross-validation results. Our results are in line (or better) with
previous studies carried out with traditional aerial images [18, 62, 135, 143, 116,
156] or with UAS data [87, 123, 140]. Table 4.9 summarizes the results of these
studies in terms of %RMSE, working scale and overlap, for purposes of compar-
ison. The contribution of "tree" or "mixed" variables made it possible to improve
the models of dendrometric parameters. In our view, the good performance of our
results emphasize the relevance of our approach.

Table 4.9: Summary of results (%RMSE) of previous studies on forest attributes
assessment with aerial or UAS data.

Forward/side Scale Top Stem Basal Volume
overlap (%) height (%) number (%) area (%) (%)

This study 80/80 plot 5.7 28.3 16.2 20.1
[18] 60/30 stand 8.8 - 14.9 13.1
[62] 70/30 plot 18.2 - 36.2 40.4
[87] 75/75 plot 8.4 - - -
[135] 65/30 plot - - 35.29 37.9
[143] 70/30 plot - - 23.62 24.5
[116] 30/30 plot 10.8 - 28.1 26.8
[123] 95/80 plot 3.5 39.2 15.4 14.5
[140] 80/80 plot - - 23.87 26.12
[156] 60/20 plot 14 - 37.7 36.9

The three types of variables (tree, plot and mixed) appear to be determinants for
construction of the models, showing the relevance of combining area-based and
individual tree approaches. The horizontal structure is described by Aggreguas and
CCp, while hmax is related to the canopy top as a variable highly correlated with the
site index. The amount of biomass is highlighted through VolCHM-5 and V 16NTrees.
This latter metric gives more emphasis to the crown volume. Most of the variables
are correlated with the attributes (positive coefficients) except NTrees and VolCHM-5,
which have negative coefficients for top height and number of stems, respectively.
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The involvement of Aggreguas is particularly relevant in the framework of uneven-
aged transformation. A high value of Aggreguas corresponds to a random spatial
arrangement of trees, differing from the regular pattern found in plantations.

4.5.5 Computation Time

The present article has not investigated the issue of computing time. But in
comparison with previous studies, our methodology being technically straightfor-
ward allows an easy implementation for a low computational time. Regarding the
various photogrammetric products, the use of rectification instead of true ortho-
rectification should more reduce the computation time. However, overall results
were not in favour of rectification. As already outlined above, the step of manual
selection of the sharpest image was a drawback for efficiency. In our methodol-
ogy, the identification of false positives, although largely automatically performed
by different criteria of distance and positioning, required the intervention of an
operator to ensure the quality of the learning data set for the supervised classi-
fication. In a general perspective, the time for data processing is an important
topic, especially with a view to promote the operational use of UAS data. The pho-
togrammetric workflow could be time-consuming and requires high-performance
equipment. The use of tools as MICMAC is complex due to the possibilities of fine
tunings and requires the involvement of reference persons with significant techni-
cal expertise and/or the development of softwares dedicated to end users. To our
best knowledge, [42] create the first open-source GIS application based on MICMAC,
bringing data generation (point clouds, orthophotographs, DSM) to a wider user
community, mainly thanks to the direct integration in a GIS software). The con-
stant evolution of the algorithms, especially in open source softwares, makes it
difficult to estimate the impact on computation time. The degree of automation is
not really an impediment in a research framework but will become a key issue at
the time of a more operational/commercial deployment of the methods.

4.5.6 General Reflections

Despite a suboptimal data acquisition, our simple and flexible method has
yielded good results and shows great potential for a large panel of applications.

We believe that our methodology could be adapted for other types of data,
involving the production of adapted metrics for false-positive filtering and forest
attributes assessment. For example, the principle of false-positive filtering could
be transposed to variables extracted from ALS data, benefiting from the finer 3D
information in the point cloud. However, the fine resolution of UAS data appears
to us as determinant for improving dominated tree detection, where lower image
resolution would probably be a weakness. Future work should test this approach
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on other forest types and conditions. Also other modalities need to be explored
using a variable size window or fixed-radius window depending on previous iden-
tification of the stand type (e.g. by species, structure, or age). [137] studied
the performance of high altitude photogrammetric CHM in detecting individual
trees and the inconsistency of detection between different forest types (mature
stands, managed forest with varying species). They used watershed segmentation
on smoothed CHM produced from high-altitude aerial images to delineate crowns,
which were the basis for the reconstruction of height distribution. In this latter
study, the effect of CHM preprocessing was also tested by implementing several
smoothing filter and regarding the stand type.

In this article, we chose to implement local maxima detection as a robust and
versatile method. Another branch of single-tree detection methods focuses on
tree crown delineation. Similarly to our study, this kind of approaches brings
additional information at tree-level, e.g. related to crown shape or size, which can
be aggregated at plot level, as new variables for assessment of forest attributes.
For instance, in [6], the integration of variables coming from crown segmentation
improved the performance of forest attributes models, especially for volume and
basal area. Tree detection from ALS data directly from the point cloud seems a
promising alternative method. [146] present a multi-scale dynamic point cloud
segmentation dedicated to forest tree extraction from LiDAR data. Raw elevation
data are used in place of height normalized data to preserve the crown geometry
and apex identification is maximized with the use of absolute maxima instead of
the local maxima approach. At the end of the process, each tree is normalized
using the elevation of the highest point of the crown as unique ground reference.
In their study, [89] implemented a bottom-up method based on both spatial ar-
rangement of points and the intensity. Tree trunks are first extracted based on
the intensity and topological relationships between points. The allocation of the
other points relied then on a complex procedure involving several thresholds on
2D and 3D distance between points. Unlike [146], this study is characterized by
a classical height normalization and a high level of parametrization.

4.6 Conclusions

In this study, we investigated a novel methodology using UAS image-based
products to detect individual trees, applied to a large forest area. Our research
highlighted the potential use of several photogrammetric products (ortho- or rec-
tified images, DSM, correlation maps) for forest characterization. The core of our
work was the use of three types of UAS images to apply an individual tree detec-
tion approach combined with a random forest supervised classification to remove
false positives. Despite a suboptimal data acquisition, our simple and flexible
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method has yielded good results and shows great potential for application.
Our findings demonstrated that UAS images and CHM can be used efficiently

to identify individual trees in forest inventory plots (forest attribute assessment
up to 83%, true-positive detection of 89%, omission rate of 11%), in the particular
context of coniferous stands in transformation from even-aged to uneven-aged
stands. These findings add to a growing body of literature on the promising
use of UAS data in forestry. We investigated combining the individual tree ap-
proach (without crown delineation) and area-based approach for forest attribute
assessment with UAS data. Considering the particular silvicultural context of
the present study area, multi-temporal data acquisition would be relevant for
monitoring the uneven-aged transformation.

Some questions remain regarding the adequate processing of drone imagery for
utilization in forestry. Some standard of traditional photogrammetry still needs
to be revisited in order to better fit both characteristics of low-altitude and low-
quality imagery and the specificity of the forest structure. Indeed, the forest
canopy surface is a complex layer that is difficult to model by means of a digital
surface model or orthophotomosaic. Obviously, before accurate measurements
can be made based on aerial images, raw images have to be corrected of their dis-
tortions [126]. Relief-based and lens-based distortion removal is performed by all
modern photogrammetric software, but changes in the settings of the processing
chain can produce considerably different results.

Further challenges arise regarding the potential and advantages of UAS data.
As drones permit us to control acquisition costs and to acquire very high resolu-
tion images at the moment chosen by the user, they could potentially be used for
interesting applications such as species discrimination, determination of stand
types, identification of areas with tree regeneration, or monitoring silvicultural
transformation process, thus improving forest inventory. In the era of Big Data,
the real challenge lies perhaps more in the exploitation of the data to identify the
gain to be derived from the drones for the managers of natural resources than in
the pure technical issues.
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Chapter 5

Discussion & Conclusion

"Toute science crée une nouvelle

ignorance."

Henri Michaux

5.1 In a nutshell

The main purpose of this thesis was the implementation of different types of
3D remote sensing data at contrasted working scales and to determine how it
could support forest management in Wallonia. ALS and UAS data are both assets
to characterize forest resources. In practical terms, chapter 2 analyzed the po-
tential of RFI data to construct allometric equations and how ALS data could be
used in combination with RFI data to assess forest attributes. Chapter 3 focused
on the potential of ALS to map forest canopy gaps in uneven-aged broadleaved
stands. Chapter 4 examined the performance of UAS data to assess dendromet-
ric attributes in coniferous stands, using individual tree detection and compar-
ing several photogrammetric outputs. This final chapter summarizes the main
achievements of the chapters 2 to 4. Figure 5.1 synthesizes the main strengths
and weaknesses of these three chapters and Table 5.1 presents the data used in
the thesis. General considerations are discussed and research perspectives are
also highlighted.
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Figure 5.1: Synthesis of the main strengths and weaknesses of the data and
methods used in the studies presented in chapters 2 to 4, in relation to the scale

of work and the type of data

Table 5.1: Summary of the remote sensing data implemented in this thesis and
their main characteristics and use.

Chapter 2 Chapter 3 Chapter 4

Type ALS low density ALS high density UAV images & CHM
Resolution 1 m 50 cm 9 - 35 cm

Extent 17000 km2 180 km2 30 km2

Date Dec. 2012 - Apr. 2013 Mar. & Jul. 2011 Oct. 2014
Owner SPW SPW Gembloux Agro-Bio Tech

Use Tree detection Mapping Tree detection
& modelling & modelling
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5.1.1 How to combine ALS and RFI data to assess forest at-

tributes of coniferous stands at regional-scale?

This question was dealt by the implementation of a H-C allometry based on
RFI data and its combination with low density ALS data for the monitoring of
coniferous stands. We particularly aimed to test other uses of the data available
in Forestimator plug-in to enhance this tool with new applications. The goal was
to take advantage of an existing tool and methodology that was originally only
dedicated to the top height assessment.

The first step of our approach was the construction of a H-C allometry based
on regional data and enhanced with environmental and structural variables. The
purpose of this allometry was to be used with local maxima detected on an ALS
CHM, to compute attributes at tree-level. Six types of models were tested. They
were species-specific or not. The allometries are characterized by a %RMSE rang-
ing from 10.7% to 14.5%, with a variable degree of complexity (Tables 2.6, 2.7
& 2.8). The integration of variables characterizing the plot (slope, altitude, stand
density or development stage) had improved the quality of the results. Especially,
the introduction of the stand age in the allometries allowed to improve the quality
of the models. This data has the advantage of being easy to obtain, particularly
in the case of coniferous stands with a known planting date.

Then forest attributes models at plot-scale were implemented. They were func-
tions of a limited number of predictor to avoid model over-fitting. We compared
two approaches of forest attributes assessment: ABA only and ABA combined
with ITD. Both models were fitted with variables computed from the CHM only for
ABA and for CHM and local maxima extracted from CHM for ITD. The H-C allom-
etry was also applied on the detected trees to enrich the set of variables for ITD.
The models provided R2 ranging from 33% to 73% for ABA-based models and for
39% to 84% ABA/ITD-based models. The weakest model is the one predicting the
number of stem that particularly provide poor predictions of dense stands. The
best model is the one predicting the quadratic mean of circumference (R2 = 84%
and %RMSE = 9.8%). The integration of variables coming from ITD and allometric
model allowed to improve the quality of fitting for the four forest attributes.

In this study, we decided to develop allometries to assess tree girth from height
information coming from remote sensing data (instead of field data). Trying to
build a synergy between RFI and ALS data has further strengthened our confi-
dence that an iterative and stratified approach is necessary for a reliable assess-
ment of forest attributes. Especially, a reflexion about the methodology of the field
data collection should be undertook to adapt the in-situ data to remote sensing
considerations.
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5.1.2 How reliable is a canopy gap mapping in broadleaved

uneven-aged stands using ALS data?

To address this question, chapter 3 has investigated canopy gap mapping
through a comparison of four types of methods (simple thresholding, multiple
thresholding, per-pixel supervised classification and per-object supervised clas-
sification) applied to leaf-off and leaf-on high density ALS datasets taking into
account the mapping accuracy in terms of both gap detection accuracy and a de-
tailed geometric accuracy assessment in the field which was missing in previous
studies, especially in broad-leaved forest.

It first appeared that the definition a gap was ultimately a key issue to consider.
We began to construct a clear and simple definition to identify gaps in the field.
Throughout the study, we defined gaps as openings in the canopy with a minimum
area of 50 m2, a minimum width of 2 m and a maximum vegetation height of 3
m. The vegetation level value of 3 m is considered to indicate well-established
regeneration [81] and is a critical height for the survival of regeneration, especially
against ungulate predation.

Three methods were identified as producing the best detection results: per-
pixel supervised classification of leaf-on data, a multiple thresholding of leaf-on
data (Combination1) and a simple thresholding of leaf-off data (CPI-60%). The
highest global accuracy achieved was 82%. In general, better results were ob-
tained from most methods in leaf-off conditions (with the exception of multiple
thresholding and per-object classification) regarding gap detection and geometry.
The high point densities of the ALS datasets used in this study allowed good char-
acterization of tree crowns, even in leaf-off conditions, and the absence of leaves
decreases occlusions and improves representation of the ground. In deciduous
forest, leaf-off data may therefore be generally preferable to leaf-on data unless
point density is low.

Despite its relative technical simplicity, thresholding is not clearly surpassed
by supervised classification. But the results of this study showed that the very
common CHM thresholding was outperformed by other methods (see Table 3.3).
However, the creation of a CHM has other advantages for a forest manager, as it
allows other applications also shown in this thesis.

Our results suggested the importance of identifying an optimum mapping
method regarding the stand type. It is likely that neither the field mapping or
the ALS-derived gaps fully represent the true gap geometry. Whilst gaps have
been field surveyed with a good degree of accuracy, subtle details of gap bound-
aries may be better represented by ALS, resulting in more complex shapes.
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5.1.3 What is the potential of UAV imagery to characterize

coniferous stands at local-scale?

To answer this question, Chapter 4 investigated a methodology using UAS
image-based products to identify trees. The use and relevance of several pho-
togrammetric products (ortho- or rectified images, DSM, correlation maps) was
tested to detect individual trees as a basis for forest characterization. We investi-
gated combining the ITD approach and ABA for forest attributes assessment. The
geometry of mosaics suffered from heterogeneity in the image exposures because
of illumination differences during the flights. Also, significant variations in relief
at the study site caused lack of overlap between images and a variable resolution
of the photogrammetric products.

The local maxima detection method was implemented with a small size of the
window (1.5 m) to ensure extracting as many trees as possible. Hidden trees
or other deficiencies in image or CHM production may lead to missing or wrong
detection. A consequence of the small window size was a high rate of false posi-
tives, which were removed by a supervised classification with random forest. The
best performance of tree detection was achieved with the combination of CHM
and mosaic (89.2% true positives, 10.8% omission, and 7.8% false positives). The
detection rate of dominant trees was promising: 48,1% of the omitted trees were
dominated while only 23.1% were dominant; 35,1% of the dominated were omit-
ted against 10.2% of the dominant, which is encouraging in a forest management
perspective, where dominant trees are often the most important ones. Omissions
resulted from either no visibility of a tree or a classification error.

About forest attributes, three types of variables (tree, plot, and mixed) were
generated to be closely linked to the four major forest attributes (top height, num-
ber of stem, basal area & volume). Considering the low number of plots, we chose
to construct parsimonious models and we decided to keep only four variables of
each type. The three types of variables appear to be determinants for model fitting,
showing the relevance of combining area-based and individual tree approaches.
The contribution of "tree" or mixed "tree" & "plot" variables made it possible to
improve the models of dendrometric parameters.

Our good results demonstrated that UAS data can be used efficiently to iden-
tify trees, in the particular context of coniferous stands in transformation from
even-aged to uneven-aged stands and despite a sub-optimal acquisition. The vari-
ation of illumination of our images did not impact the tree detection. Our choice
of implementing apex detection instead of crown delineation minimizes probably
the impact of shadows. Besides, our methodology being technically straightfor-
ward allows an easy implementation with a low computational time, which is an
important issue to promote the operational use of UAS data.
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5.2 3D Remote Sensing for Supporting Forestry in

Wallonia

Wallonia is a medium-sized region whose forest resource, representing one
third of the territory, is characterized by a large fragmentation, an anthropized
structure, a great diversity of forest species and different management styles. Its
extent facilitates the acquisition or availability of complete coverage in a short
time, which is an opportunity to promote the development of remote sensing. The
appropriation of remote sensing tools by foresters in an operational context must
begin with simple but reliable approaches. Accuracy and reliability are the best
guarantors of the relevance of integrating remote sensing into the forest manager’s
toolbox. However, remote sensing is not the panacea for characterization of the
resource. Each data has its limitations, depending on its specific characteristics
(Figure 5.2). For a given objective, it is necessary to think about the appropriate
data and methods.

The forest, its resources and the various stakeholders are increasingly so-
licited. Taking advantage of all available tools to describe the forest resource is
essential to better provide guidance for data collection and various actions in the
field. The underlying goal is not to contemplate the forest only through images.
But the noble purpose should be to take advantage of the remote sensing to go
further, save time and improve forest monitoring efficiency. Given the diversity
of available data and in particular 3D data, look at the construction of a typology
seems relevant and necessary. Two ways of thinking are possible: either in terms
of the availability of initial information, the forest and its limits, or in terms of
users’ needs. From the users’ point of view, considerations of silviculture and
regeneration concern a local scale, requiring a fairly fine level of detail, along with
very high spatial resolution and regular updates for monitoring. At the scale of
a forest estate, the needs are in the context of forest management, whereas the
evaluation of the forest resource and its evolution at the regional level is intended
to guide forest policies. These different spatial scales go together with different
time scales.

Remote sensing researches must therefore focus on developing methods of
producing information with added value. These methods must be robust, repeat-
able, adapted to different scales and, as far as possible, based on open access
or low cost data. Then, integration of different approaches will meet different
needs. That was the guiding principle behind the three working scales of this the-
sis, considered and conceived as complementary. Chapters 2 and 4 implement
relatively similar approaches, albeit with their own data specificities (Table 5.2).
Some methods are adaptable from one work scale to another.
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Table 5.2: Comparison of the study area, data and model used in chapters 2
and 4. These two chapters develop similar approaches for estimating forest

attributes but from different data and scales. The top height model performance
values come from [38]; NS is for Norway spruce and DF for Douglas-fir.

Chapter 2 Chapter 4

Extent 17000 km2 30 km2

Plot number 179 72
Resolution 1 m 9 - 35 cm
Data range

Top height (m) 0 - 28.3 16.7 - 27.9
Tree number (/ha) 89 - 2222 147 - 945
Basal area (m2/ha) 14.1 - 73.3 21.3 - 59.2

Volume (m3/ha) 158.2 - 1109.2 183.9 - 844.4
R2

Top height 95 %/97 % (NS/DF) 86 %
Tree number (/ha) 58 % 81 %
Basal area (m2/ha) 43 % 76 %

Volume (m3/ha) 61 % 73 %
RMSE

Top height (m) 1.04/0.93 (NS/DF) 1.39
Tree number (/ha) 207 71.2
Basal area (m2/ha) 7.1 5.13

Volume (m3/ha) 93.2 81.4

As seen in chapter 2, a quantitative approach is possible at regional level.
Quantify the forest resource must be considered by stand type but it is important
to be aware that the precision obtained will be lower than with higher resolution
data at local scale. The RFI is a very complete tool to draw up a diagnosis of the
Walloon forest over a ten years horizon. This type of regional or national inventory
is worth enhancing with remote sensing approaches, as seen in the Scandinavian
countries or in North America. The richness and diversity of the RFI data makes
it a very valuable source of reference data for the development of methods for esti-
mating forest resources by remote sensing. But the particular case of concentric
plots is sometimes difficult to handle when looking at the detection of individual
trees because it complicates synchronization with remote sensing data. Besides,
a detection error on a small area will cause great differences once scaled par
hectare. However, it is important to realize that we move towards more hybrid
methods where remote sensing is a source of data for the characterization of the
resource as well as the RFI. Just as the height becomes as easy to measure by
remote sensing as the circumference are in the field. We are witnessing a more
general paradigm shift where remote sensing is a source of information for the
RFI and vice versa.
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Figure 5.2: Relevance, scale, availability of the data.

In line with the close-to-nature forestry, the transformation of even-aged to
uneven-aged stands is growing, especially in the Walloon coniferous forests. This
trend will logically give more emphasis to individual tree and require a new kind
of data which are relevant at tree-level. In this context of precision forestry,
the advent of civil drones has opened a new era but their use is not obvious.
Their apparent ease of use goes together with constraints of data processing. In
addition, the data acquisition phase can be tricky and flight conditions are difficult
to optimize and adding the issues related to the legislation.

In this thesis, we have always worked with a priori information on the delim-
itation of forest areas. It is important to evaluate the quality of this delimitation
because it is often tainted with error and inaccuracy. Having reliable cartographic
information identifying forest areas or stand types would make it possible to target
the tools used according to a forest stratification. It could be the starting point
for regional and integrated approach. Indeed, it seems reasonable to think that
the production of a regional forest map is an essential prerequisite, regardless of
the type of owner. The advent of Sentinel-2 data in particular and the availability
of regional datasets acquired by the public administration must be the basis of
such kind of work. Different methodological choices can be envisaged, ranging
from per-pixel to per-object classification, combining the spectral information of
Sentinel-2 images with 3D information from CHM ALS or photogrammetric data
produced from regional aerial images. The Sentinel-2 images have a resolution of
10 to 20 m while the regional aerial data are of the order of one meter and there-
fore offer a higher level of accuracy. The notion of hierarchy or stratification of
applications and data implemented is therefore important. Regional aerial images
have the disadvantage of having a high radiometric heterogeneity, which compli-
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cates their use and pleads in favor of satellite images. On the other hand, the
3D and multi-temporal information could make it possible to create a forest map
with a follow-up of harvests and recruitments. The identification of the different
forest types within the forest matrix, in particular by the species or structures
discrimination, is the natural progression in the characterization of the resource.
This second phase of the resource description process would make it possible to
deploy specific approaches related to certain types of stands or stages of develop-
ment (Figure 5.3). Then, a reflection of the needs related to the specificities of the
stands to which one is interested must be led.

Figure 5.3: Towards an integrated monitoring

As a complement to mapping approach, the generalization of the estimation of
forest attributes at larger scales can be addressed. In this study, forest attributes
were assessed at the plot scale (about 10 ares). The next methodological step
could be wall-to-wall estimation of forest attributes, according to a grid whose
pixel size is of the same order of magnitude as inventory plots.

5.3 Perspectives

5.3.1 General trends

Remote sensing is an evolving discipline and new trends are emerging reg-
ularly. The democratization of the very high resolution and high density data,
will allow to gradually eliminate the inherent limitations of the Earth observation
data. Regional aerial image coverage remains dependent on strong constraints
that slow down data access and the spatial resolution of satellite images (10-20
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m for Sentinel-2 images) is too low for some analyzes; even if Sentinel-2 images
are of great interest to support species discrimination and wall-to-wall forest map
production to complete quantitative approaches.

Thanks to technical developments, high density or very high resolution data
will progressively become the norm. For example, high density ALS datasets like
those in chapter 3 should be available at regional-scale. In this context, we can
therefore question the relevance of drone data, considering, for example, the small
size of covered areas. This question is reinforced by the rise of the microlights
which represent a real opportunity for sub-regional acquisitions, covering areas
up to several thousands of hectares. Until now, drones do not have sufficient
autonomy to cover such surfaces. The minimum altitude of microlights flight
being higher than for a drone, for the same sensor, the resolution will be slightly
lower but similar. This relative decrease in the resolution is compensated by a
much greater autonomy of flight and a much larger covered surface as well as by
a significant reduction of the weight constraints making it possible to load several
sensors simultaneously.

Acquisition flexibility remains one of the main assets of drones (apart from the
legal constraints that are important). The mobilization of microlight or the order
of aerial data (images or ALS) require a huge logistic and planning. From our
point of view, the use of drones keeps its meaning in local applications in order to
answer very specific issues requiring the acquisition of data very quickly at very
high resolution and when the combination of spectral data and 3D are necessary.

5.3.2 The challenge of data fusion

The principle of data fusion is to combine multiple sources of data to improve
the performance and acquire an enhanced dataset for new applications [168].
This concept can correspond to several realities, such as the combination of lower
resolution multispectral data with higher resolution but panchromatic data. Be-
yond combining different spatial resolutions, the objective is increasingly to take
advantage of complementary spectral or temporal characteristics. With the rapid
development of new sensors and platforms, data fusion is a growing discipline,
especially in the era of big data.

Due to the lack of ground elevation information (e.g. a DTM), photogrammetric
3D data needs to be supplemented with another data to allow the computation of
height. For example, a photogrammetric DSM has been combined with an ALS
DTM in [87] to estimate heights of forest plots with UAS images or in [100] for
the characterization of riparian forest on a regional scale through a wall-to-wall
monitoring with regional aerial data. In most cases, and this is especially true in
forest, the ground topography is considered constant over time. The advantage
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of this type of approach lies in the regular availability of aerial image datasets
or in the relative ease of acquisition of UAS or microlight data. For example in
Wallonia, regular acquisitions of aerial images by the regional administration are
a great opportunity since this type of images can be used in many ways by several
departments, allowing a reduction of acquisition costs.

The relevance of LiDAR data for quantification and characterization of the
forest resource is well established, especially considering the numerous stud-
ies conducted on the use of small footprint ALS. However, forest ecosystems are
complex, and ALS data also has to be enhanced with other types of data such as
multispectral, hyperspectral or RaDAR data. For example, [74], the combination
of Worldview-2 multispectral images and high density LiDAR data to distinguish
two species of Pinus was tested and compared with the two individual datasets.
Improved classification results were obtained by integrating the variables of crown
height and structure from LiDAR and vegetation and texture indices from satellite
imagery. In [34], tree crowns were delineated with ALS point cloud and species
were identified based on hyperspectral data in Italian forest. Also, [8] showed
promising results in terms of detailed characterization of complex ecosystems,
such as the species composition in Amazonian rain forests. In addition, the com-
bination of RaDAR and optical data has more and more sense and is going to
expand with the availability of Sentinel-1 and Sentinel-2 data. The tools and
applications developed in the context of the Copernicus program, coupled with
revisit time, resolution and free access to data are all factors of success for the de-
velopment of such data and their integration in many Earth observation projects.

Another way to combine data is to implement multi-temporal approaches, ei-
ther to identify changes or to take advantage of the seasonality for example. In
their study, [125] used diachronic photogrammetric CHM to quantify top height
and volume changes after storms in broadleaved forests. Similarly, pre- and post-
fire LiDAR datasets were used by [17] to estimate the proportion of fallen trees
due to root damages. The study was based on the used of statistical metrics
showing a strong relationship with structural variables. To analyze the advantage
of having seasonal spectral variations, [19] investigated the classification poten-
tial of Sentinel-2 for forest lands mapping. Two cloud-free S2 scenes (August
2015 and May 2016) were used and a series of spectral indices were computed.
First a forest/non-forest map of the Belgian Ardenne ecoregion was produced.
Secondly, tree species discrimination was tested. These first investigations on
species discrimination were encouraging with an OA of 88.9%, even with the sim-
plified per-pixel approach.

These studies, among many others, highlight the importance of building bridges
between applications and different types of data, while technical limitations are
becoming less of a problem. The difficulty is to avoid being overwhelmed by the
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multitude of data available or the relative ease of collecting remote sensing data,
but first of all to think about the relevance of their use. Especially, more emphasis
need to be given to the effect of different forest types and conditions.

In the same vein, data fusion can refer to the use of other types of geograph-
ical data (not necessarily derived from remote sensing): altitude, slope, aspect,
forest stands delineation, soil, moisture or diverse environmental factors... These
data combined with information from the “Fichier Écologique des Essences” [29]
and forest attributes derived from remote sensing data suggest future consid-
erations about integrated decision support tools. In the light of the above, the
main developments mentioned only make sense if a joint reflection between the
researchers and the forest administration and even the forest industry is built
concretely. Beyond the funding of research projects, a real commitment is needed
to modernizing IT and mapping architecture that are still lagging behind.

5.3.3 Examples of specific research perspectives

Characterization & dynamics of regeneration inside a gap

While the third chapter of this thesis focused on canopy gap mapping with
ALS, studying regeneration in canopy gaps with remote sensing data is still a
challenge. The ability of ALS is largely unexplored in seedling stands; further
work is needed about the assessment of regeneration potential in canopy gaps,
especially the development of indicators of the presence/abundance of regenera-
tion. The combination of 3D and very high resolution spectral data could offer the
opportunity to focus on two major themes: modeling the availability of light and
the characterization & dynamics of regeneration.

Chapter 3 has demonstrated the ability of ALS data to describe the shape
and size of gaps with several attributes such as area, gap shape complexity index,
main direction,... In addition, ALS offers the possibility of obtaining a good quality
DTM. Having such data enable the quantification, at the gap level, of biotic factors
that may affect regeneration process (elevation, slope, aspect,...). The use of other
topographic index to quantify the relief variation could be considered.

A first methodological approach would be to evaluate the potential of a gap
to accommodate regeneration by evaluating a set of indicators related to the in-
stallation of regeneration in and around the gap. Starting from a gap mapping, a
descriptive phase based on remote sensing data should be set up to evaluate light,
nutrient and moisture conditions. The description of the gap’s attributes could be
done for each gap, or by considering a spatial division of each gap (according to a
grid), enabling the spatialization of variables whose values could changes accord-
ing to the position in the gap. The vegetation can be described at several levels by
using the CHM to extract the height of vegetation or detect individual trees: cover

134



Chapter 5. Discussion & Conclusion

and height of vegetation present inside the gap, description of isolated trees within
the gap (height, position of the tree relative to the borders, crown cover, size,...),
characterization of the stand around the gap (height variation, distribution, pres-
ence of large or tall tree, species). A tricky challenge would be the discrimination
of herbaceous vegetation from woody or semi-woody vegetation in order to assess
the regeneration already in place.

The study of light availability is particularly relevant when considering re-
generation issues. Having 3D data, such as ALS point clouds, offers interesting
perspectives for analyzing the porosity of the canopy, understanding the forest
structure and studying the pulse trajectories. The density of the point cloud
would be a particularly important parameter to take into account. The integra-
tion of the terrestrial LiDAR could mitigate the use of the only aerial data, but this
seems not very feasible on very large areas.

Construction of an objective typology of the forest structure with TLS & ALS

As ALS, Terrestrial Laser Scanning (TLS) consists in 3D point clouds but ac-
quired from the ground in a static way. TLS provides detailed and complex data to
finely visualize trees and crowns and the overall forest structure. TLS is intended
for acquisition of data at local-scale and is particularly used for research and de-
velopment as a new tool for forest inventory [110, 142, 36]. By their differences
(point density, area of acquisition, data management) and their similarities (ability
to describe the 3D structure of the forest ), ALS and TLS are very complementary.
From a research perspective, TLS can be considered as a good substitute to clas-
sical forest inventory to collect field data.

TLS data offers the possibility to extract tree maps and individual tree mea-
sures but also many other variables computed from the 3D point clouds, outper-
forming the classical field data method. Thanks to its richness of information,
TLS allows us to capture the forest structure and to rethink it through a typology
based on objective and quantitative indicators. A typology is a conceptual frame-
work useful to synthesize a very complex information about forest structure. Its
quantitative description has became an important element of modern sustainable
forest management. Silvicultural practices can modify structure as well as an
existing structure can guide silvicultural practices.

Attributes related to the structure can be computed in two ways from TLS
data. First, in an idea close to the use of classical field data, variables can be
computed from the tree map. These variables are spatial or non-spatial indicators.
This quantification approach of forest structure are explained in more details in
[117, 119, 118, 151]. Secondly, proxies of the structure can be extracted from
the point cloud. These latter are remote sensing metrics (raster or point clouds)
to be linked to a strong forest or environmental meaning. As example, several
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proxies [117, 119, 118] aiming to quantify the structure could be the basis for
the construction of an innovative typology by the use of data mining methods:
indices of spatial heterogeneity based on tree position (agregation, mean of angles,
mingling,...), indices based on tree attributes variation (Gini, parameters of height
and DBH distributions, dominance,...), point cloud variables (computed from the
3D distribution of the points), raster variables (CHM, rumple, HSCOI, landscape
metrics).

5.4 Conclusion

The constant evolution of remote sensing data is an opportunity for natural
resources managers and especially for foresters. The Walloon forest has high
economic, ecological and social importance to the Region. The specificity of the
owners, the diversity of the stand types and the imbrication of the forest in the
landscape, make its characterization and quantification important for a sustain-
able and long-term management.

Considering the interest of 3D data and the challenge of a regional charac-
terization, we took into account the use of this type of data at the regional scale
in interaction with the wealth of the RFI. The integration of 3D from low-density
ALS has shown its potential for the quantification of forest attributes thanks to a
regional allometry built on the basis of the RFI. Close-to-nature forestry, favoring
natural regeneration, is a topic of major concern for foresters. The presence of
canopy gaps is therefore an essential information. In consequence, we focused
on a robust mapping of gaps in broadleaved forests from high-density ALS data.
Data acquired by drone has shown their effectiveness for a fine tree detection
(dominant, co-dominated, dominated) in coniferous stands stands, as a basis for
the quantification of forest attributes.

The main purpose of this thesis was the implementation of different types and
resolution of remote sensing data considering contrasted working scales and to
determine how it could support forest management in Wallonia. However, caution
must be taken because not all data are suitable for all uses and the prospects are
numerous. It is necessary to identify the needs or challenges to be addressed and
the methodological constraints which are related to. This is where the work and
expertise of the forester makes more sense than ever. The meaning of this thesis
was not to replace field work. It was rather to test tools to enlighten it by useful
methods allowing to free up time so that the forester’s expertise can be expressed
where it is most useful. As a conclusion, we argue the importance of a strong
synergy between the different sources of data to enable remote sensing to deploy
its everyday potential as an indispensable support to forest managers.
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