TRANSITIONING FROM CONVENTIONAL BATCH TO MICROFLUIDIC PROCESSES FOR
THE EFFICIENT SINGLET OXYGEN PHOTOOXYGENATION OF METHIONINE
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Introduction

Development of photochemistry in macroscopic batch reaction vessels is hampered due to inherent limitations: superficial light

penetration and poor heat exchange result in inhomogeneous irradiation. The recent implementation of photochemical processes

in microreactors under continuous-flow conditions has emerged as an alternative to batch processing in 10, photooxygenations
through photosensitization of RB to obtain high-value added organic molecules.

Methionine sulfoxide (MetO) can be used in several applications such as organic synthesis, pharmaceutical sciences, biochemistry

and material sciences. Intrinsic reaction kinetics were studied as a function of RB concentration, light intensity and O, flow.

Apparent first-order kinetic constants, initial rates and space-time yields were calculated. Then, optimized reaction parameters

were transposed to a microfluidic reactor for the photosensitized oxygenation of Met under continuous-conditions.
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Fig. 4. 1H NMR Spectra of the outlet vs. time in batch experiments
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Photooxygenation of methionine in batch reactor
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Fig. 7. Pseudo-first order relationship —In([Met]/[Met],) = Kapp't

as a function of irradiance

Fig. 8. Pseudo-first order relationship —In([Met]/[Met],) = Kapp't

as a function of O, flow

Comparison of photoreactors
Parameters Batch Microreactor
Depth of light penetration (cm) 8 0.08
Irradiated area (cm?) 63 40
Irradiated volume (cm?3) 700 1

Irradiated area/volume ratio (cm?-cm3)  0.09 40
Photon flux density (einstein-m=:s1)  0.0247 17.3
Koo (10° 571) 24.6 305.2

ry (10° mol-L*-s) 2.4 29.3

STY (105 mol MetO-L-s1) 76.6 239
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Fig. 9. Irradiance of the halogen lamp as a function of the distance

Conclusions

These results confirm the limitations of batch technologies in terms of light penetration and mass transfer when

working with '0,-photosensitized oxygenations.

X RB concentration, light intensity and O, flow have been evaluated in batch reactor.

X Pseudo-first order kinetics and space-time yields have been also calculated in both technologies obtaining an

enhancement of 12 and 3 fold for r, and STY, respectively when using when using continuous-flow microreactor.
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