
Table S1. Extended Udden-Wentworth grain-size scale for sedimentary particles, after Blair and McPherson (1999).

(Source : Terry and Goff, 2014).

PARTICLE LENG	GTH (dI)	GRADE	CLASS		CTION
1075				Unlithified	Lithified
538	-29	very coarse			
269	-23	coarse	B. de a martinta		
134	-20	medium	Megalith		
67.2		fine			
	-26	very fine			
33.6		very coarse			
16.8	-24	coarse]		
4.2	-23	medium	Monolith		Mega- Conglomerate
		fine		Megagravel	
2.1		very fine	1		congiomerate
1.0		very coarse			
0.5 - 524.3 -	19	coarse			
0.26 262.1	-18	medium	Slab		
— 131.1 —	-17	fine	1		
65.5	-16	very coarse			
32.8	-15	coarse			
16.4	-14	medium	Block		
8.2	13	fine			
	4096	very coarse			
2.02	2048	coarse			
1.0;	1024 -10	medium	Boulder		
	512 -9	fine	1		
	256 -8	coarse			
	128 7	fine	Cobble	Gravel	Conglomerate
	64	very coarse			
	32	coarse	1		
	16 -4	medium	Pebble		
	8	fine	1		
· · · · · · · · · · · · · · · · · · ·	4	inic	Granule		
	21	very coarse	Grandie		
	1 0	coarse	1		
	0.50 1	medium	Sand	Sand	Sandstone
· · · · · · · · · · · · · · · · · · ·	0.25 2	fine	Jana	Jana	Sundstone
	0.125 3	very fine	-		
	0.063 4	coarse			
	0.031 5	medium			
	0.015 6	fine	Silt		
	0.008 7	very fine	1		
	0.004 8	verynne	-		Mudstone
	0.002 9		-	Mud	or Shale
	0.001 10		Class		Of Shale
	0.0005 11		Clay		
	0.0002 12		-		
	0.0001 13		-		

Figure S1. (a) Scenarios for landslide genesis: back analysis (the triggering and evolution up to the actual situation). (b) Landslide stability analysis to simulate possible future evolution. GWT stands for groundwater table, G0 (elastic run made to track the amplification of peak ground acceleration, PGA, and Arias Intensity, Ia, in different parts of the profile), G1 (dry and non-seismic scenarios), G2 (non-seismic and completely or partially saturated scenarios), G3 (dry-seismic scenarios) and G4 (seismic and completely or partially saturated scenarios).

	Model dimensions	Morphodynamics	Flow rheology	Available observations
Present study	2D	No	Turbulent flow	None
Fan et al. (2012)	1D for river flow, 2D for overland flow	No	Turbulent flow	Peak discharge, peak arrival time
Yang et al. (2013)	Sobek-1D and -2D	No	Turbulent flow	Flooding occurrences
Shrestha and Nakagawa (2016)	1D for river flow	Yes	Granular, hyper- concentrated and turbulent flow	Observed flood discharge
Li et al. (2011)	1D for river flow, 2D sediment transport	Yes	Empirical equations for Mohr-Coulomb, viscous and turbulent shear stresses	Downstream hydrograph, observed sediment depths
Mergili et al. (2012a)	2D, considering bottom curvature and steep slope effects	Deposition of granular material represented explicitly	Granular flow (Savage-Hutter type model)	Focused on avalanche flows, not flooding due to dam breaching
Mergili et al. (2012b)	2D	Sediment detachment by runoff and routing of debris flow	Semi-deterministic two-parameter friction model	Debris flow travel distance, shape of deposits

Table S2. Some recent studies of flooding induced by the breaching of landslide dams, and of debris flow routing.

The base flow was estimated using Manning equation:

$$Q = \frac{1}{n} A R^{2/3} S^{1/2}$$
(S1)

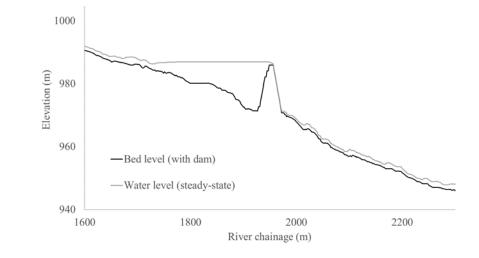
with *n* the Manning roughness coefficient, *A* the river cross section (m^2), *R* the hydraulic radius (m) and *S* the water surface slope (m m⁻¹). The Manning equation was largely used to estimate the flow discharge in case of lack of direct measurements data (Herschy 2009; Jacobs et al., 2016; Lumbroso and Gaume 2012; Moody and Martin 2001).

The flow was estimated during the rainy season measurements at a 6 m wide cross section downstream the landslide at 20 m in upstream side of the cross section 3 of Fig. 3, with an average water depth of 40 cm. It should be noted that the 6m do not correspond to the full width of the river. The bottom of the river is not flat and the base flow usually follows one or two branches corresponding to the lower part of the minor bed (Fig. 2d). With a local hydraulic slope of 0.01 m m⁻¹ and a Manning roughness *n* of 0.041 m^{-1/3}s, Eq. (B1) gives an approximate flow of 2.92 m³ s⁻¹. A value of 3 m³ s⁻¹ was used for base flow in the computation scenarios. Manning roughness coefficient was estimated based on channel descriptions given by Barnes (1967).

The steady 20-year and 50-year flows used in the different scenarios were calculated using the rational formula:

$$Q_j = \sum_{k=1}^j C_{m,k} i_k A_m \tag{S2}$$

with i_k the rainfall intensity (mm h⁻¹), $C_{m,k}$ the runoff coefficient and A_m each of the contributing surfaces (ha); *m* is defined as equal to j-k+1. The constant intensity was derived from the Intensity-Frequency-Duration law of Bujumbura provided by the Geographic Institute of Burundi (IGEBU). Huff (1967) method based was used to approximate the intensity distribution during the project rainfall event. It was developed based on 291 storms analysis and is applicable for catchments up to 1036 km² large. The method provides 4 distributions according to the quartile in which the rainfall is heaviest. For the case of Bujumbura, calculations based on the 2nd quartile distribution were judged to approximate better the intensity variation, given that the peak intensity usually occurs in the first 3rd of rainfall duration. Based on Kohler (1951)'s equation on soil saturation index and on the recent work by Mathlouthi and Lebdi (2010) on the Rain-Runoff relationship, there is no doubt that soil saturation during storms can be strongly influenced by other previous rainfall events. In a context of rainy season base flow, the use of variable runoff offers little interest. Hence, a constant runoff coefficient was used. We obtained initial peak flows of 61.6 m³ s⁻¹ and 123.4 m³ s⁻¹ for a 20-year and a 50-year flows respectively. Being aware that the use of peak flow corresponds to the extreme scenario, we used 3 m³ s⁻¹, 60 m³ s⁻¹ and 120 m³ s⁻¹ for the base flow, 20-year and 50-year initial discharge. This small decrease can be compensated by the lateral infiltrations as we progress downstream.


To analyse the sensitivity of the results to the downstream boundary condition, we considered the 20 scenarios described in Table S2. We mainly tested two pairs of L and w values:

- in a first configuration (scenarios 1 to 9), the water level at the downstream end of the computational domain depends substantially on the flow rate (L = 35 m, W = 0.185 m);
- in another set of model runs (scenarios 10 to 18), the downstream water level is only weakly influenced by the flow rate ($L = 350 \div 3500$ m, W = 0.185 m).

For each of the two types of downstream boundary conditions, we analysed three different roughness heights and considered three different discharges. Finally, we also tested one configuration in which the downstream water level remains independent of the pre-failure discharge in the river; but still varies under transient flow conditions (scenarios 19 and 20). This was tested only for the intermediate bottom roughness. For the 20 scenarios, three values of discharge were considered: base flow, 20-year flood and 50-year flood. In all the tested scenarios, the influence of the downstream boundary conditions did not extend over a distance exceeding about 300 meters from the downstream end of the computational domain.

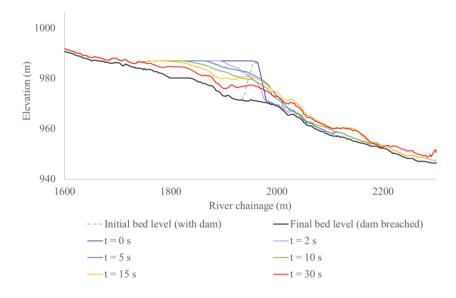
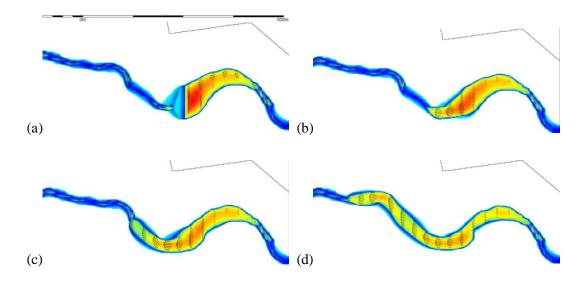
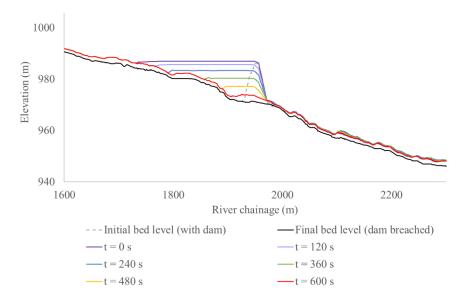

		Scenario ID	Roughness (m)	Flow (m ³ s ⁻¹)	<i>L</i> (m)	W (m)
	Relatively smooth bottom	1, 2, 3	0.1	3, 60, 120	35	0.1850
Flow-dependent downstream water level	Intermediate roughness	4, 5, 6	0.2	3, 60, 120	35	0.1850
	Relatively rough bottom	7, 8, 9	0.3	3, 60, 120	35	0.1850
	Relatively smooth bottom	10, 11, 12	0.1	3, 60, 120	350 ÷ 3500	0.2754
Weakly flow-dependent downstream water level	Intermediate roughness	13, 14, 15	0.2	3, 60, 120	350 ÷ 3500	0.2754
	Relatively rough bottom	ugh 16, 17, 18 0.3	0.3	3, 60, 120	350 ÷ 3500	0.2754
Flow-independent	Intermediate	19	0.2	3	35	1.4088
downstream level, except for transients	roughness	20	0.2	60	35	0.695

 Table S3. Considered scenarios for the pre-failure flow conditions.



Examples of results of Step 1 and Step 2 of the flow modelling procedure are displayed in Fig. S2 and Figs S3 to S6, respectively.


Figure S2. Longitudinal profile (in the dam area) of the bed and water levels for a steady discharge of 120 m³/s, as computed in Step 1 of the hydraulic modelling procedure ($k_s = 0.3$ m).

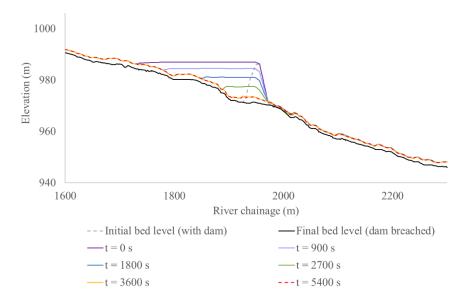

Figure S3. Longitudinal profiles of water levels computed in Step 2 of the hydraulic modelling procedure, assuming an instantaneous breaching of the dam (extreme case) and a flow rate of 120 m³/s in the river prior to dam breaching ($k_s = 0.3$ m).

Figure S4. Water depth distribution and velocity profiles before the breaching (a) as well as after 5 s (b), 10 s (c) and 20 s (d), as computed in Step 2 of the hydraulic modelling procedure. This computation assumes an instantaneous breaching of the dam (extreme case) and a flow rate of 120 m³/s in the river prior to dam breaching ($k_s = 0.3$ m).

Figure S5. Longitudinal profiles of water levels computed in Step 2 of the hydraulic modelling procedure, assuming a breaching duration of 600 s and a flow rate of 120 m³/s in the river prior to dam breaching ($k_s = 0.3$ m).

Figure S6. Longitudinal profiles of water levels computed in Step 2 of the hydraulic modelling procedure, assuming a breaching duration of 3600 s and a flow rate of 120 m³/s in the river prior to dam breaching ($k_s = 0.3$ m).

Table S4. Peak discharge changes (%) at the different cross sections for base flow, 20-year flow and 50-year flow, based on a breaching time of 60 min.

		Changes (%)		
	50-year		20-year	Base flow
Section1		1.25	1.58	4.08
Section2		1.05	1.76	4.18
Section3		0.89	2.05	7.48
Section4		1.09	1.78	5.32

		Count	Area in m ²	Indicator	Average indicator
			$k_s = 0.1 \text{ m}$		
	I\F	12274	49096		
low	F\I	15244	60976	0.82	
Base flow	I∩F 1226	122610	490440	0.82	
$\mathbf{B}_{\mathbf{a}}$	IUF	150128	600512		
20-year- flow	I\F	10408	41632		
ar- f	F∖I	14637	58548	0.05	
-yea	I∩F	137162	548648	0.85	
20	IUF	162207	648828		
50-year- flow	I\F	17529	70116		
ar- f	F\I	23916	95664	0.77	
-yea	I∩F	141801	567204	0.77	
50	IUF	183246	732984		
			$k_s = 0.3 \text{ m}$		0.83
	I\F	13361	53444		
мо	F/I	11899	47596		
Base flow	I∩F	127064	508256	0.83	
Bas	IUF	152324	609296		
>					
20-year- flow	I\F	14583	58332		
ar-	F\I	10899	43596	0.85	
)-ye	I∩F	144646	578584	0.05	
2(IUF	170128	680512		
50-year- flow	I\F	21693	86772		
ar- f	F\I	9146	36584	0.86	
-ye	I∩F	184539	738156		
50	IUF	215378	861512		

Table S5. Details of the sensibility indicator of floodplain to the topographic data. «I » and «F »stand for « Initial topography » (10 m-resampled) and "Field topography" (corrected by field-measurements); \cap : Intersection, U: Union, \: minus. The breaching duration is 60 minutes.