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Comparative cancer cell proteome analysis is a strategy to study the implication of ceramides in the
transmission of stress signals. To better understand the mechanisms by which ceramide regulate some
physiological or pathological events and the response to the pharmacological treatment of cancer, we
performed a differential analysis of the proteome of HCT-116 (human colon carcinoma) cells in response
to these substances. We first established the first 2-dimensional map of the HCT-116 proteome. Then,
HCT116 cell proteome treated or not with C6-ceramide have been compared using two-dimensional
electrophoresis, matrix-assisted laser desorption/ionization-mass spectrometry and bioinformatic
(genomic databases). 2-DE gel analysis revealed more than fourty proteins that were differentially
expressed in control cells and cells treated with ceramide. Among them, we confirmed the differential
expression of proteins involved in apoptosis and cell adhesion.

Keywords: 2-D gel ¢« MALDI-TOF—MS e« cancer cells « ceramide

Introduction

For many years, sphingolipids have been regarded as struc-
tural inert components of cell membranes. The relevance of
sphingolipids as intracellular modulators emerged with the
observation made by Okazaki and co-workers that sphingo-
myelin hydrolysis and ceramide generation could be triggered
by diverse stimuli in a wide variety of cell types.! Since then,
many studies have demonstrated the crucial role played by
ceramide in the development of human diseases, including
ischaemia/reperfusion injury, insulin resistance and diabetes,
atherogenesis, septic shock, and ovarian failure. Furthermore,
ceramide signaling mediates the therapeutic effects of chemo-
therapy and radiotherapy in some cells.? An understanding of
the mechanisms by which ceramide regulates physiological and
pathological events in specific cells may provide new targets
for pharmacological intervention.

The sphingomyelin pathway is an ubiquitous signaling
system that links specific cell-surface receptors and physical
stress to the nucleus. Recent data demonstrate that ceramide
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play an important role in one or several stages of apoptosis.
Indeed, several cytokines and environment stress known to
initiate apoptosis, including Tumor Necrosis Factor-a (TNF-
o), CD95/Fas/APO-1, chemotherapeutic drugs, ionizing and
ultraviolet radiation, heat shock and oxidative stress appear to
induce a rapid rise of intracellular ceramide concentration.3~”
The clarification of the role of ceramide may provide further
insights into the treatment of several human diseases such as
cancer.

Several studies showed that exogenous cell-permeable ce-
ramide analogues reproduced many of the biological effects
of these agents, suggesting a role for the generated ceramide
in mediating and regulating cell responses.?? To gain additional
insights into the mechanisms governing cell stress mediated
by ceramide, we used a systematic approach to study the
pattern of proteins whose expression varies upon ceramide
treatment of HCT-116 cancer cells (human colon carcinoma).
One commonly used is two-dimensional electrophoresis (2-
DE), which is a highly resolving technique for arraying proteins
by isoelectric point and molecular mass. When immobilized
pH gradients (IPGs) are used for isoelectric focusing in the first
dimension, excellent reproducibility and high protein load
capacity can be achieved.!® Using Coomassie bleue staining,
protein spots on the gel can be visualized and differences in
protein levels determined using appropriate 2-D analysis
software. Digested proteins of interest can then be identified
by MALDI-TOF mass spectrometry. This combination of tech-
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niques makes possible to study a profile of changes in protein
levels.

Studies can be facilitated by comparing the gels obtained
with 2-DE reference gels representing the typical pattern of the
cells studied under normal conditions. To the best of our
knowledge, detailed 2-DE reference map of HCT116 cells is not
currently available to the scientific community. This is why we
first started with the HCT116 cells reference map and then
compared it with gels made of HCT116 cells treated with C6-
ceramide.

The association of two-dimensional electrophoresis with
matrix-assisted laser desorption/ionization time-of-flight mass
spectrometry and database interrogations allowed us to identify
43 proteins differentially expressed in HCT116 cells after C6-
ceramide treatment. Beside cytoskeletal proteins such as actin,
tubulin and tropomyosin, we identified various proteins more
especially implicated in regulation of apoptosis, protein syn-
thesis, metabolic activity, growth, cell mobility and also com-
ponents of RNA-processing pathways confirming the crucial
role of ceramide in cellular homeostasis. This approach pro-
vided new insights into the proteins involved in response to
the stress signals mediated by ceramide.

Materials and Methods

Cell Culture and Biological Reagents. The HCT116 cell line
is derived from a human colorectal carcinoma and has been
used as a model for colon cancer. HCT-116 human colon
carcinoma cells (ATCC CCL 247) were cultured in McCoy’s 5A
modified medium (Life Technologies, Inc.) supplemented with
10% fetal bovine serum, 1% L-glutamine (200 mM), 100 units/
ml penicillin and 100 ug/mL streptomycin. The cells were
maintained at 37 °C in a 5% CO, atmosphere.

C6-ceramide was obtained from Sanver Tech (Boechout,
Belgium) and was solubilized in ethanol.

Protein Extraction. HCT116 cells were washed three times
with ice-cold PBS. Cells were lysed with a buffer containing 50
mM Tris pH 7.5, 100 mM NaCl, 5 mM EDTA, 0.1% (v/v) Triton
x100, 7M urea, 4% (v/v) CHAPS, 65 mM DTT, protease-
inhibitors (Complete kit, Roche Diagnostics, Germany) during
30 min at —20 °C. Cellular debris were removed by centrifuga-
tion for 15 min at 20 000 x g and at 4 °C. Total proteins were
precipitated with ethanol and solubilized in a sample solution
containing 7 M urea, 2 M thiourea, 4% CHAPS, 0.04 M Tris
base, 65 mM DTT.

Proteins samples were stored at —20 °C until the protein
amounts was quantified using the commercial kit from Am-
ersham Biosciences PlusOne 2-D Quant Kit (Uppsala, Sweden).
In some cases, HCT116 cells were treated with 50 uM C6-
ceramide during 6 h.

Two-Dimensional Gel Electrophoresis. Proteins samples
(400 ug of total proteins) were mixed with 225 uL of loading
buffer for IPG strips (Genomic Solutions) and 225 uL of urea
solubilization/rehydratation buffer for IPG strips (Genomic
Solutions) to obtain a final volume of 450 xL. The mixture was
applied in gel for reswelling with a dry immobilized pH gradient
(IPG) 180 mm, pH 3—10 linear gradient (Immobiline DryStrip,
Amersham Pharmacia Biotech) on a Ettan IPGphor system
(Amersham Pharmacia). Complete sample uptake into the
strips was achieved after 9 h at 20 °C with a voltage of 50 V.
Focusing was performed at 200 V for 1 h at 1000 V for 1 h, and
at 8000 V for 13 h. Current was limited to 50 uA per strip, and
temperature maintained at 20 °C for all IEF steps. For SDS-
PAGE, the IPG strips were incubated in equilibration buffer
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containing 37.5 mM Tris-HCL (pH 8.8), 6 M urea, 2% (w/vol)
SDS, 30% (vol/vol) glycerol, and 2% (w/vol) DTT for 15 min,
and then incubated for 15 min in equilibration buffer supple-
mented with 2.5% (w/vol) iodoacetamide. The equilibrated IPG
strips were transferred for the second dimension (SDS-PAGE)
onto 10% Duracryl (Genomic solutions, Steinheim, Germany)
gels (255 x 205 x 1.5 mm). Electrophoresis was carried out at
20 °C using a Ettan Daltsix system (Amersham Pharmacia) with
25 mM Tris as the running buffer, 192 mM glycine containing
0.1% w/vol SDS, at 15 mA per gel for 16 h, until the bromophe-
nol blue had reached the bottom of the gel.

Data are means of three independent experiments. For the
differentiel analysis, statistical significance was estimated with
Student’s t-test. A p value of < 0.05 was considered significant.

Staining of 2-DE Gels. Coomassie Bleue staining was
performed according to Neuhoff et al.l! Gels were fixed
overnight in 50% vol/vol ethanol containing 2% w/vol ortho-
phosphoric acid. Gels were then incubated for 1 h in 34% vol/
vol methanol containing 17% ammonium sulfate, 2% w/vol
orthophosphoric acid and 1 g of Coomassie Blue G-250 and
then stained with the same solution for 3 days.

2-D Image Analysis. Stained-2D gels were digitalized at 200
dpi resolution using an Imagescanner scanner (Amersham
Pharmacia Biotech). A calibration filter using different shades
of gray was applied to transform pixel intensities into optical
density units. The scans were exported in TIF format and
imported into Progenesis V2003—01 2-DE gel image analysis
software (Nonlinear Dynamics) for analysis. Briefly, after
automatic spot detection, the background was removed from
each gel and the images were edited manually, e.g., adding,
splitting, and removing spots. One gel was chosen as the master
gel, and used for the automatic matching of spots in the other
2-DE gels.

In-Gel Trypsin Digestion. To identify the protein spots,
preparative 2-DE gels were excised, cut into 1—2 mm? gel pieces
and destained at room temperature in 50 mM NH,HCO; buffer
pH 8.8 containing 50% acetonitrile (ACN) for 1 to 2 h. After
washing with 50 4L ACN, the gel pieces were dehydrated and
dried thoroughly in a vacuum centrifuge (Concentrator 5301,
Eppendorf, Hamburg, Germany) for a few minutes. The dried
gel pieces were rehydrated with 20 uL of 50 mM NH,HCO3 pH
8 containing 20 ug/mL trypsin (Promega, Madison, WI) allow-
ing protein digestion at 37 °C overnight. The samples were then
dried in a vacuum centrifuge, and resuspended in 10 xL of
water before MALDI-MS analysis.

MALDI-TOF—MS and Database Search. For acquisition of
the mass spectrometric peptide maps of the proteins, 1 uL of
the generated cleavage products was mixed with 1 4L of DHB
matrix solution (10 mg dihydrobenzoic acid in 50% methanol/
50% water) on the MALDI target. The mixture was air-dried at
room temperature prior to the acquisition of the mass spectra.
MALDI-TOF—MS was performed using a Voyager DE STR
mass spectrometer (PerSeptive Biosystems, Framingham, MA)
equipped with a 337.1 nm nitrogen laser and with the delayed
extraction facility. All spectra were acquired in a positive ion
reflector mode. Typically, 200 laser shots were recorded per
sample, and the spectra were internally calibrated (using the
DataExplorerTM software, PerSeptive Biosystems, Framingham,
MA) using three peptides arising from trypsin autoproteolysis
(IM+H]* 842,5100; [M+H]* 1045.5642; [M+H]* 2211.1046).
Tryptic monoisotopic peptide masses were searched for in the
NCBI, using Mascot software (http://www.matrixscience.com)
with a mass tolerance setting of 50 ppm, with one missed
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cleavage site as fixed parameters, and with carbamidomethy-
lation and methionine oxidation as variable modifications.

Western Blot Analysis. Total protein extracts were prepared
as previously described.!? Protein amounts were quantified with
the micro BCA Protein Assay Reagent kit (Pierce, Rockford).

Analysis of caspase 10 cleavage was assessed by Western Blot
analysis. Briefly, 20 ug of protein extracts were run on 10% SDS-
PAGE gels, transferred, and incubated with an anti-caspase 10
specific polyclonal antibody (Calbiochem) (1:500), followed by
a goat anti-rabbit-specific antibody (1:10000) (Amersham) and
developed using enhanced chemiluminescent detection meth-
ods (ECL Kit, Amersham Pharmacia Biotech, UK). Analysis of
Annexin V was performed with an anti-annexin V polyclonal
antibody (1/500) (Santa Cruz). Vascular cell adhesion molecule
(VCAM) protein detection was performed with an anti-VCAM
polyclonal antibody (1/500) (Santa Cruz). Analysis of PCNA was
performed with an anti-PCNA polyclonal antibody (1/200)
(Santa Cruz). Finally, caspase 8 protein detection was realized
with an anti-caspase 8 polyclonal antibody (1/1000) (BD
Pharmigen, CA).

Fluorescent Microscopy. The percentage of apoptotic or
necrotic cells was determined by fluorescent microscopy. Cells
were fixed with paraformaldehyde, incubated for 15 min. with
propidium iodide and DAPI (4', 6-diamidine-2’'-phenylindole
dihydrochloride), and then visualized under fluorescent mi-
croscopy. The percent of blue cells nuclei (DAPI stained DNA)
with apoptotic morphology (nuclear and cytoplasmic conden-
sation, nuclear fragmentation, membrane blebbing, and apo-
ptotic body formation) was determined by examining more
than 400 cells per dish. Necrotic cells were characterized by
their cytoplasmic staining (propidium iodide stained RNA).

Results

2-DE Pattern of HCT-116 Cells. We first studied the pattern
of protein expression in HCT116 cells. A 2-DE map of this cell
type was constructed to establish of a 2-DE protein map as a
prerequisite for subsequent comparative proteomic studies of
ceramide treated cells. For this purpose, total cell extracts were
prepared (with a buffer made of urea, CHAPS and DTT) and
loaded on 2-DE gels. In the initial isoelectric focusing, samples
were applied to IPG strips by incubating the proteins dissolved
in rehydratation solution with the strips (active rehydratation).
The 2-DE gel system employed was IEF on 180 mm IPG strips
(pH 3—10) in the first dimension and 10% SDS-PAGE in the
second dimension. After electrophoresis, the gels were stained
with Coomassie Blue, and the most visible spots were excised
and processed for mass spectrometric analysis. The corre-
sponding proteins were identified by peptide mass fingerprint-
ing and computer analysis (Table 1). Figure 1 represents a
comprehensive view of the major proteins expressed in this
colon cancer cell. Overall, protein spots were well-resolved, but
some vertical streaks persisted even with ethanol precipitation
of the protein samples.

More than 1000 spots were detected on the map using the
Progenesis software and 120 of them have been identified
(Figure 1, Table 1). The results of protein identification are
summarized in Table 1, in which we mention the main known/
postulated function of the identified proteins.

At least three spots were identified as proteins from the
cytoskeleton and/or highly implicated in cell mobility and
cellular morphological changes related to angiogenesis (e.g.,
actin, tubulin and tropomyosin, which typically constitute the
framework of the cytoskeletal machinery). The multifunctional
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proteins Rho GDP dissociation inhibitor, heat shock protein
27, high mobility group protein 2 (HMG 2) and annexin V are
ubiquitous and highly regulated proteins which tightly cooper-
ate in actin/tubulin dynamics and/or membrane trafficking !>~

The typical metabolic capabilities of HCT-116 cells were
illustrated by the identification of several enzymes, i.e., glu-
tathione-S-transferase P (pGST), thioredoxin peroxidase, pro-
tein disulfide isomerases (PDI), inorganic pyrophosphatase,
hypoxanthine-guanine phosphorobosyltransferase, glyceralde-
hyde 3-phosphate dehydrogenase, malate dehydrogenase, phos-
phoglycerate mutase 1, L-lactate dehydrogenase and nucleoside
diphosphate kinase A.

Further studies will be necessary to complete the proteomic
analysis of this cellular model by the use of narrow range IPG
strips that could increase the number of identified proteins.
The 2-DE pattern obtained is characterized by a typical high
acidic protein content, and share some similarities with other
patterns from various eukaryotic cellular models such as, for
example, colorectal epithelial cells or colorectal adenocarcinoma
cell line (pL-1) (http://www.expasy.org/ch2d/2d-index.html).

Differential Proteome Analysis of HCT-116 Treated or Not
with C6-Ceramide. The next step was the identification of
proteins whose expression varied with the stimulation of HCT-
116 cells by addition of an exogenous ceramide (C6-ceramide
at 50 uM during 6h). In a previous paper,'? we have shown that
the cell viability decreased in a dose- and time-dependent
manner after C6-ceramide treatment. In HCT116, a treatment
with 50 uM of C6-ceramide during 24h led to fifty percent
mortality. In our proteomic study, we decided to choose
HCT116 with C6-ceramide at the same concentration (50 uM)
during 6h in order to study the target proteins dependent on
ceramide stress signal.

As shown in red in Figure 1 and in bold in Table 1, 43
proteins were found to be differentially expressed For three of
them a close-up image is presented (Figure 1C—E, correspond-
ing respectively to spot 22: stress induced phosphoprotein, spot
119: proteasome subunit o type 1 and spot 26: caspase 10).

In this study, we found a lower expression of 14—3—3 sigma
protein in ceramide treated cells. This protein belongs to a
family of highly conserved and abundant proteins. They exist
in multiple isoforms and have been implicated as key regulators
of various cellular processes such as signal transduction, cell
cycle control, apoptosis, stress response and malignant trans-
formation.!"!8

Moreover, proteins implied in RNA processing were found
to be regulated by ceramide treatment. For example, proteins
involved in transcription (SET protein, nuclear autoantigen Sp-
100), in pre-mRNA splicing (heterogeneous nuclear ribonucle-
oproteins A2/B1), in nuclear export (heterogeneous nuclear
ribonucleoproteins Al), in translation (eukaryotic translation
initiation factor 4H, eukaryotic translation initiation factor 6,
translationally controlled tumor protein) and in ribosomal
activity (heterogeneous nuclear ribonucleoproteins C1/C2, 60S
acidic ribosomal protein P0, nucleophosmin) were found to
be modulated by ceramide treatment. These data suggest that
ceramide could play a role in mRNA maturation and export.

Several proteins involved in glycolytic pathway seem to be
regulated by C6-ceramide. Some of them are down-regulated
(phosphoserine aminotransferase, inorganic pyrophosphatase),
others are upregulated (L-lactate dehydrogenase A chain,
aspartate aminotransferase).

Three heat shock proteins such as HSP 27, HSP 904, and
HSP 70/HSP 90-organizing protein were all down-regulated in
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response to ceramide. Among them, HSP 903 is known to
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Figure 1. Representative Coomassie blue-stained 2-DE gels loaded with untreated (A) and treated with ceramide (B) HCT116 cell extracts.
First dimension: IPG 3—10, 180 mm; second dimension: Duracryl 10% (255 x 205 x 1.5 mm). Among 1000 separated spots, 120 annotated
spots were identified by MALDI-TOF—MS; among them 43 (annotated in red) were found to be differentially expressed Figure 1 C, D
and E represented respectively close-up image of spot 22 (stress induced phosphoprotein), spot 119 (proteasome subunit o type 1)
and spot 26 (caspase 10) in untreated cell extract (Ct) and in ceramide treated cell extract (C6).

receptors expressed and their concentration, suggesting the
existence of multiple downstream targets activated through
distinct intracellular pathways.

In this report, we applied 2-DE gel electrophoresis and the
identification of proteins by mass spectrometry to the analysis
of the proteome of human colon carcinoma cells (HCT116
cells). In our knowledge, this is the first 2-DE protein map of
HCT116 cells. This map provide a valid basis for identifying
possible differences in protein profiles of those cells in response
to C6-ceramide or other stimulations. By this technique, we
identified 43 proteins whose expression varied with ceramide
treatment.

Stimulation of the HCT116 cells with C6-ceramide results
in the induction of some proteins involved in mRNA processing,
translation, replication, mobility and apoptosis. Regulation of
several of these proteins was confirmed by several experimental
approaches, including 2-DE gel electrophoresis, Western blot-
ting and fluorescence microscopy, and allowed us to propose
new concepts regarding ceramide pathway.

878 Journal of Proteome Research « Vol. 4, No. 3, 2005

On the basis of our results, it appeared that HCT116 cells
have multiple defense systems against those reactive oxygen
species (ROS) such as peroxiredoxin, antioxidant protein 2 (1-
Cys peroxiredoxin), glutathione synthetase and coproporphy-
rinogen I1I oxidase which are associated with various biological
processes, such as the detoxification of oxidants, cell prolifera-
tion, cell differentiation and gene expression.?? Interestingly, a
redox protein, peroxiredoxin I, was found to be up-regulated
upon C6-ceramide treatment. It has been previously shown that
peroxiredoxin I possesses a peroxidase activity and relies on
thioredoxin as a source of reducing equivalents for the reduc-
tion of the oxidant such as hydrogen peroxide.? Peroxiredoxins
(Prxs) are important players in peroxide detoxification of the
cells. Recently, a range of other cellular roles have also been
attributed to mammalian peroxiredoxin family members, in-
cluding the modulation of cytokine-induced hydrogen peroxide
levels, which have been shown to mediate signaling cascades
leading to cell proliferation, differentiation and apoptosis. This
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Figure 2. Validation of the 2-D gel electrophoresis data by
Western blot with HCT116 treated or not with C6-ceramide during
6h. HCT116 cells were untreated (Ct), or treated for 6 h with C6-
ceramide (50 uM) (C6). 20 ug of total cell lysates were separated
on SDS—PAGE gel, and immunoblotting was performed with an
anti-VCAM-1 (A), anti-caspase-8 and 10 (B), anti-AnnexinV (C) and
anti-PCNA (D) antibodies.

diversity is reflected in slight evolutionary modifications in
sequence and structure, built around a common peroxidatic
active site.

When overexpressed (this is the case here), Prx enzymes
reduced the intracellular level of H,O, produced in stressed
cells. After ceramide stimulation, cells are stressed and pro-
duced H,0,. Then, we believe that Prxs are overexpressed in
order to detoxify the cytoplasm (cf spot 105 and 117).

RNA-interacting proteins were found to be one of the major
class of proteins regulated during ceramide stimulation. This
suggest that post-transcriptional control of gene expression
might play a central role in ceramide pathway.

Our proteomic approach revealed an other group of proteins,
namely Rho GDI 1, actin, tropomyosin and HSP 27, which are
modulated by C6-ceramide and are involved in smooth muscle
contraction. Rho regulates the cyskeletal system, particularly
actin-dependent functions, such as cell mobility, formation of
stress fibers and focal adhesions, and smooth muscle contrac-
tion. Wang and Bitar have shown that Rho plays an important
role in the signal transduction modulating rabbit colon smooth
muscle contractions, on stimulation by agonists such as
endothelin-1 and C2-ceramide.?® In an other study, they also
propose a model in which HSP27 is involved in sustained
smooth muscle contraction and modulates the interaction of
actin, myosin, tropomyosin and caldesmon.?” Another paper
from Hanna et al. showed that C2-ceramide stimulate cytosk-
eletal changes through Ras and PI 3-K and induces stress fiber
formation in Rat2 fibroblasts.??

PCNA is the ¢ subunit of DNA polymerase and is synthesized
in early G1 phase and maximally expressed during S phase.

research articles

A)

(B)

Figure 3. Cells morphology changes after ceramide treatment,
HCT116 cells were untreated (A) or treated for 16 h with
C6-ceramide (50 «M)(B), then doubly stained with DAPI and
propidium iodide and finally observed by fluorescent microscopy.

Suppression of the expression of PCNA was shown to cause
cell cycle arrest at the G1/S phase boundary. Our 2-DE and
WB results demonstrated that the PCNA expression was down-
regulated in HCT116 cells after exposure to C6-ceramide. This
result is supported by a previous study in HCT116 cells which
showned a double block in G1 and G2, thus emptying the S
phase after C6-ceramide stimulation. These findings are also
consistent with another report showing that the expression of
PCNA in ovarian cultured granulosa cells was downregulated
by C6-ceramide.?®

We also confirmed by 2-DE that ceramides, besides inhibit-
ing proliferation, are able to induce apoptosis in HCT116 cells.
We examined the effects of C6-ceramide on apoptotic cell death
by means of differential 2-DE, but also by WB and by
morphological evaluation. The increase of caspase-8 and -10
was observed by 2-DE and confirmed by WB after 6h of C6-
ceramide treatment. In addition, drastic morphological and
biochemical changes were accompanied by the cell death. A
double staining with DAPI and propidium iodide showed
nuclear condensation and fragmentation. All these results are
consistent well with a previous study where we showed that
apoptosis was associated with the induction of NF-«B DNA-
binding, caspase-3 activation and poly (ADP-ribose) polymerase
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(PARP) degradation, indicating that apoptosis occurs through
the caspase cascade.!?

Moreover, heat shock proteins (HSP27, HSP90, and HSP70/
HSP90 organizing protein) appeared to be down-regulated by
C6-ceramide. Garrido et al. described that the overexpression
of heat shock 27 kDa protein in REG cells was associated with
an increased tumorigenecity and with a substantial decrease
of in vivo tumor cell apoptosis.?* In our experiments, the
exogeneous C6-ceramide is responsible for a decrease of heat
shock proteins in HCT116 cells and is also correlated with an
increase in apoptosis.

Conclusions

In the present study, 2-DE coupled with MALDI-TOF—MS
allowed the reliable separation and identification of 120
proteins of HCT-116 cell line. Bioinformatic analysis revealed
differential expression of cytoskeleton components, molecular
chaperons, regulators of protein folding and stability, and
components of RNA-processing pathways.

Taken together, our results indicated also that several
proteins implied in apoptosis and growth arrest are modulated
in response to ceramide. Our proteomic approach will con-
tribute to elucidate complex characteristics of protein networks
related to ceramide pathways covering various cell functions,
thus may be providing new drug targets.
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