Numerical modelling of multiphysics couplings and the strain localization

Collin F., P. Kotronis, B. Pardoen

P. Bésuelle, D. Caillerie, R. Chambon
Failure in soils and rocks is almost always associated with fractures and/or shear bands developing in the geomaterial.

Shear banding occurs frequently (at many scales) and is the source of many soil and rock engineering problems:

natural or human-made slopes or excavations, unstable rock masses, embankments or dams, tunnels and mine galleries, boreholes driven for oil production, repositories for nuclear waste disposal
In situ observations of shear banding and/or faulting are made frequently at many scales.

Large scale: railway tracks after an earthquake in Turkey
Human-made slope along E42 exit road

Bierset (Belgium) 1998 – Courtesy C. Schroeder
Fractures observed during the construction of the connecting gallery at the URL in Mol. Vertical cross section through the gallery showing the fracturation pattern around it, as deduced from the observations (from Alheid et al. 2005)
Experimental observations: biaxial test

Experimental set-up & a typical test
Outline:

- Introduction
- Theoretical tools
- Numerical models
- Numerical application
- Conclusions
Experimental evidence:

- Initial state
- Homogeneous strain field
- Localized strain field
Theoretical background

Following the previous works by (Hadamard, 1903), (Hill, 1958) and (Mandel, 1966), Rice and co-workers (Rice, 1976, Rudnicki et al., 1975) have proposed the so-called Rice criterion.
Theoretical concepts

Static condition: \(n \left(\dot{\sigma}^1 - \dot{\sigma}^0 \right) = 0 \)

Kinematic condition: \(L^1 = L^0 + \Delta L \)

Constitutive law: \(\dot{\sigma} = C : L \)

\[
n \left(C^1 : (L^0 + g \otimes n) - C^0 : L^0 \right) = 0
\]

When it is assumed that \(C^1 = C^0 = C \), no trivial solution if and only if:

\[
det(nCn) \leq 0
\]
The Rice criterion provides us the information on when and how localization may appear. Do we have any problem to model such phenomenon with classical finite element method?

Let’s consider the modelling of a biaxial test with a defect triggering the localization, first without any hydromechanical effect.

Smooth and rigid boundary

Bottom-left defect
Theoretical concepts

Introduction

Theory

Models

Application

Conclusions
Theoretical concepts

The post peak behaviour depends on the mesh size!
Example n°2

Let’s consider now a coupled modelling:

Cylindrical cavity without retaining structure

Anisotropic initial state of stress

Geometrical dimensions: *Internal radius 3 m*

 Mesh length 60 m

Choice:

Symmetry of the problem is assumed

894 elements – 2647 nodes – 7941 dof
Example of EDZ around a cavity

\[\begin{align*}
\sigma_{xx} &= \sigma_{zz} = -7.74 \text{MPa} \\
\sigma_{yy} &= -11.64 \text{MPa} \\
p_w &= 4.7 \text{MPa}
\end{align*} \]

\[\begin{cases}
\sigma_{xx} = -11.5 \text{MPa} \\
\sigma_{yy} = -15.4 \text{MPa} \\
p_w = 4.7 \text{MPa}
\end{cases} \]

\[0 \leq t \leq T \\
\sigma_{xx} = \sigma_{xx} - bS_{rw} p_w = -11.5 \left(1 - \frac{t}{T}\right) \text{MPa} \\
\sigma_{yy} = \sigma_{yy} - bS_{rw} p_w = -15.4 \left(1 - \frac{t}{T}\right) \text{MPa} \\
p_w = 4.7 \left(1 - \frac{t}{T}\right) \text{MPa} \\
t > T \\
\sigma_{xx} = \sigma_{yy} = p_w = 0
\]

\[T = 1.5 \text{ Ms (17 days)} \]
\[t_{\text{total}} = 300 \text{ Ms (9.5 years)} \]
Coupled modelling – Comparison Coarse mesh / Refined mesh

Deviatoric strains
• Localization study : Acoustic tensor determinant
• Mesh dependency of the results for classical FE
• Non-uniqueness of the results in both cases

The numerical modelling of strain localization with classical FE is not adequate.

We need another numerical model to fix this mesh dependency problem!
Outline:

- Introduction
- Theoretical tools
- Numerical models
- Numerical application
- Conclusions
Numerical models

- Classical FE formulation: mesh dependency
- Different regularization methods

Gradient plasticity

Non-local approach

Microstructure continuum
- *Cosserat model*
- *Second gradient local model*

Enrichment of the law
Enrichment of the kinematics

Mainly for monophasic materials!
In second gradient model, the continuum is enriched with microstructure effects. The kinematics include therefore the classical one but also microkinematics (See Germain 1973, Toupin 1962, Mindlin 1964).

Let us define first the classical kinematics:

- u_i is the (macro) displacement field
- F_{ij} is the macro displacement gradient which means:
 \[F_{ij} = \frac{\partial u_i}{\partial x_j} \]
- D_{ij} is the macro strain:
 \[D_{ij} = \frac{1}{2}(F_{ij} + F_{ji}) \]
- R_{ij} is the macro rotation:
 \[R_{ij} = \frac{1}{2}(F_{ij} - F_{ji}) \]
Enrichment of the kinematics:

The continuum is enriched with microstructure effects.

Macro-kinematics + micro-kinematics

Macro Ω:

\[F_{ij} = \frac{\partial u_i}{\partial x_j} = D_{ij} + R_{ij} \]

Micro Ω^m:

\[f_{ij} = \frac{\partial u_i^m}{\partial x_j} = d_{ij}^m + r_{ij}^m \]
Here is the enrichment:

- f_{ij} is the microkinematic gradient.
- d_{ij} is the microstrain:
 \[d_{ij} = \frac{1}{2}(f_{ij} + f_{ji}) \]
- r_{ij} is the microrotation:
 \[r_{ij} = \frac{1}{2}(f_{ij} - f_{ji}) \]
- h_{ijk} is the (micro) second gradient:
 \[h_{ijk} = \frac{\partial f_{ij}}{\partial x_k} \]
Numerical models

- The internal virtual work (Germain, 1973)

\[
W^{*i} = \int_{\Omega} w^* \, dv = \int_{\Omega} \left(\sigma_{ij} D_{ij}^* + \tau_{ij}(f_i^* - F_i^*) + \chi_{ijk} h_{ijk}^* \right) \, dv
\]

- The external virtual work (simplified)

\[
W^{*e} = \int_{\Omega} G_i u_i^* \, dv + \int_{\partial\Omega} (t_i u_i^* + T_{ij} f_{ij}^*) \, ds
\]

- The virtual work equations can be extended to large strain problems
Local second gradient models: we add the kinematical constraint (Chambon et al., 1998; Matsushima et al., 2002)

\[f_{ij} = F_{ij} \]

this implies:

\[f_{ij} = \frac{\partial u_i}{\partial x_j} \]

the virtual work equation reads

\[
\int_{\Omega} \left(\sigma_{ij} D_{ij}^* + \chi_{ijk} \frac{\partial^2 u_i^*}{\partial x_j \partial x_k} \right) dv = \int_{\Omega} G_i u_i^* dv + \int_{\partial \Omega} (p_i u_i^* + P_i D u_i^*) ds
\]
Numerical models

Finite element formulation of a second grade model

• **Local second gradient model**: additional assumption \(v_{ij} = F_{ij} \)

\[
\int_{\Omega} \left(\sigma_{ij} \frac{\partial u_{i}^*}{\partial x_j} + \sum_{ijk} \frac{\partial^2 u_{i}^*}{\partial x_j \partial x_k} \right) d\Omega = W_{ext}^*
\]

Local quantities

Introduction of Lagrange multiplier field:

\[
\int_{\Omega} \left(\sigma_{ij} \frac{\partial u_{i}^*}{\partial x_j} + \sum_{ijk} \frac{\partial v_{ij}^*}{\partial x_k} \right) d\Omega - \int_{\Omega} \lambda_{ij} \left(\frac{\partial u_{i}^*}{\partial x_j} - v_{ij}^* \right) d\Omega = W_{ext}^*
\]

\[
\int_{\Omega} \lambda_{ij}^* \left(\frac{\partial u_{i}}{\partial x_j} - v_{ij} \right) d\Omega = 0
\]
Local Second gradient Finite element

\[u_i \]
\[v_{ij} \]
\[\lambda_{ij} \]

(a)

(b)
Example n°1 (again)

- *Biaxial compression test*

\[\text{Strain rate: } 0.18\% / \text{hour} \]

No lateral confinement

Globally drained (upper and lower drainage)
• First gradient law:

Linear elasticity: \(E_0 \) and \(\nu_0 \)

Drucker Prager criterion:
\[
F = \sqrt{\frac{3}{2}} I^\sigma_{\dot{\varepsilon}} + m \left(I^\sigma_\sigma - \frac{3c}{\tan \phi} \right) = 0
\]

\[
m = \frac{2 \sin \phi}{3 - \sin \phi}
\]

\[
c = c_0 f(\gamma^p)
\]

Associated softening plasticity (decrease of cohesion):

\[
f(\gamma^p) = \left(1 - (1 - \alpha) \frac{\gamma^p}{\gamma^p_R} \right)^2 \text{ si } 0 < \gamma^p < \gamma^p_R
\]

\[
= \alpha^2 \text{ si } \gamma^p \geq \gamma^p_R
\]

\[
E = 5800 \text{ MPa} \quad \phi = 25^\circ \quad c_0 = 1 \text{ MPa}
\]

\[
\nu = 0.3 \quad \Psi = 25^\circ \quad \alpha = 0.01
\]

\[
\gamma_R = 0.015
\]
• Second gradient law: Linear relationship deduced from Mindlin

\[
\begin{bmatrix}
\tilde{\Sigma}_{111} \\
\tilde{\Sigma}_{112} \\
\tilde{\Sigma}_{121} \\
\tilde{\Sigma}_{122} \\
\tilde{\Sigma}_{211} \\
\tilde{\Sigma}_{212} \\
\tilde{\Sigma}_{221} \\
\tilde{\Sigma}_{222}
\end{bmatrix}
=
\begin{bmatrix}
D & 0 & 0 & 0 & 0 & \frac{D}{2} & \frac{D}{2} & 0 \\
0 & \frac{D}{2} & \frac{D}{2} & 0 & -\frac{D}{2} & 0 & 0 & \frac{D}{2} \\
0 & \frac{D}{2} & \frac{D}{2} & 0 & -\frac{D}{2} & 0 & 0 & \frac{D}{2} \\
0 & 0 & 0 & D & 0 & -\frac{D}{2} & -\frac{D}{2} & 0 \\
0 & -\frac{D}{2} & -\frac{D}{2} & 0 & D & 0 & 0 & 0 \\
0 & 0 & 0 & -\frac{D}{2} & 0 & D & \frac{D}{2} & 0 \\
0 & 0 & 0 & -\frac{D}{2} & 0 & \frac{D}{2} & D & 0 \\
0 & \frac{D}{2} & \frac{D}{2} & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \psi_{11}}{\partial x_1} \\
\frac{\partial \psi_{11}}{\partial x_2} \\
\frac{\partial \psi_{12}}{\partial x_1} \\
\frac{\partial \psi_{12}}{\partial x_2} \\
\frac{\partial \psi_{21}}{\partial x_1} \\
\frac{\partial \psi_{21}}{\partial x_2} \\
\frac{\partial \psi_{22}}{\partial x_1} \\
\frac{\partial \psi_{22}}{\partial x_2}
\end{bmatrix}
\]

\(D = 20 \text{ kN} \)
First modelling: no HM coupling (no overpressure)

Plastic loading point

Before
After

(Regularization: Second gradient)
First modelling: no HM coupling (no overpressure)

Velocity field

Before

After

(Regularization: Second gradient)
Initiation of localization (Directional research – Chambon et al., 2001)
Initiation of localization (Directional research)

(Regularization : Second gradient)

Non uniqueness of the solution
Initiation of localization (Directional research)

Non uniqueness of the solution (Regularization: Second gradient)
Localization mode switching (Bésuelle et al., 2006)

Non uniqueness of the solution
Initiation of localization (Directional research)

(Regularization : Second gradient)

Non uniqueness of the solution

Sieffert et al., 2009
Our goal is to extend the second gradient formulation for multiphysics conditions. In the following, we focus on the hydromechanical model but the same procedure can be applied for TM, THM or THMC problems.

- **Main assumptions**
 - Quasi static motion
 - Fully saturated
 - Incompressible solid grains

- **Aims**
 - Equations written in the spatial configuration
 - Full Newton Raphson method
• **Coupled local second gradient model**

- Second gradient effects are assumed only for solid phase
- For the mixture, there are stresses which obey the Terzaghi postulate and double stresses which are only the one of the solid phase
- Boundary conditions for the mixture are enriched
Numerical models

- Coupled local second gradient model

\[
\int_{\Omega} \left(\sigma_{ij} \frac{\partial u_i^*}{\partial x_j} + \sum_{ijk} \frac{\partial^2 u_i^*}{\partial x_j \partial x_k} \right) d\Omega = \int_{\Omega} \rho_{mix} g_i u_i^* d\Omega + \int_{\Gamma} \bar{t}_i u_i^* + \bar{T}_i Du_i^* d\Gamma
\]

\[
\int_{\Omega} \dot{M} p^* - m_i \frac{\partial p^*}{\partial x_i} d\Omega = \int_{\Omega} Q p^* d\Omega + \int_{\Gamma} \bar{q} p^* d\Gamma
\]
Numerical models

- **Coupled local second gradient model**

\[
\int \left(\sigma_{ij} \frac{\partial u_i^*}{\partial x_j} + \Sigma_{ijk} \frac{\partial v_{ij}^*}{\partial x_k} \right) d\Omega - \int \lambda_{ij} \left(\frac{\partial u_i^*}{\partial x_j} - v_{ij}^* \right) d\Omega =
\]

\[
\int \rho_{mix} g_i u_i^* d\Omega + \int t_i u_i^* + T_i Du_i^* d\Gamma
\]

\[
\int \dot{M} p^* - m_i \frac{\partial p^*}{\partial x_i} d\Omega = \int Q p^* d\Omega + \int \bar{q} p^* d\Gamma
\]

\[
\int \lambda_{ij}^* \left(\frac{\partial u_i}{\partial x_j} - v_{ij} \right) d\Omega = 0
\]
Isoparametric Finite Element:

8 nodes for macro-displacement and pressure field
4 nodes for microkinetic gradient field
1 node for Lagrange multipliers field
Example n°1 (last time)

- *Biaxial compression test*

 - **Smooth and rigid boundary**
 - **Bottom-left defect**
 - **Strain rate**: 0.18% / hour
 - **No lateral confinement**
 - **Globally drained (upper and lower drainage)**
Numerical models

- **Second gradient law**: Linear relationship deduced from Mindlin

\[
\begin{bmatrix}
\tilde{\Sigma}_{111} \\
\tilde{\Sigma}_{112} \\
\tilde{\Sigma}_{121} \\
\tilde{\Sigma}_{122} \\
\tilde{\Sigma}_{211} \\
\tilde{\Sigma}_{212} \\
\tilde{\Sigma}_{221} \\
\tilde{\Sigma}_{222}
\end{bmatrix} =
\begin{bmatrix}
D & 0 & 0 & 0 & 0 & \frac{D}{2} & \frac{D}{2} & 0 \\
0 & \frac{D}{2} & \frac{D}{2} & 0 & \frac{-D}{2} & 0 & 0 & \frac{D}{2} \\
0 & \frac{D}{2} & \frac{D}{2} & 0 & \frac{-D}{2} & 0 & 0 & \frac{D}{2} \\
0 & 0 & 0 & D & 0 & \frac{-D}{2} & \frac{D}{2} & 0 \\
0 & \frac{-D}{2} & \frac{-D}{2} & 0 & D & 0 & 0 & 0 \\
\frac{D}{2} & 0 & 0 & \frac{-D}{2} & 0 & \frac{D}{2} & \frac{D}{2} & 0 \\
\frac{D}{2} & 0 & 0 & \frac{-D}{2} & 0 & \frac{D}{2} & \frac{D}{2} & 0 \\
0 & \frac{D}{2} & \frac{D}{2} & 0 & 0 & 0 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
\frac{\partial \psi_{11}}{\partial x_1} \\
\frac{\partial \psi_{11}}{\partial x_2} \\
\frac{\partial \psi_{12}}{\partial x_1} \\
\frac{\partial \psi_{12}}{\partial x_2} \\
\frac{\partial \psi_{21}}{\partial x_1} \\
\frac{\partial \psi_{21}}{\partial x_2} \\
\frac{\partial \psi_{22}}{\partial x_1} \\
\frac{\partial \psi_{22}}{\partial x_2}
\end{bmatrix}
\]

\[D = 20 \text{ kN}\]

- **Flow model parameters**

\[
\begin{align*}
k &= 10^{-19} / 10^{-12} \text{ m}^2 \\
\rho_w &= 1000 \text{ kg/m}^3 \\
\phi &= 0.15 \\
k_w &= 5 \times 10^{-10} \text{ Pa}^{-1} \\
\mu_w &= 0.001 \text{ Pa.s}
\end{align*}
\]
Second modelling: HM coupling

- Equivalent strain after 0.2 % of axial strain ($\kappa = 10^{-12} \text{ m}^2$)

![Graphs showing strain distribution for different mesh sizes: (20 x 10), (30 x 15), (40 x 20).]
• *Fluid flow after 0.2 % of axial strain (κ = 10^{-12} m^2)*
• *Load-displacement curve* ($\kappa = 10^{-12} \text{ m}^2$)
Second modelling: HM coupling

- Load-displacement curve ($\kappa = 10^{-19} \ m^2$)

'Undrained' behaviour
For $\kappa = 10^{-19} \, m^2$, the behaviour is undrained, we recover the experimental observation showing that for dilatant material, no localization is possible before cavitation.
Random initialization (coupled problem)

Deviatoric strain increment

Decrease of $q = \text{disappearance of a shear band}$
Coupled modelling – Comparison Coarse mesh - Refined mesh

Coupled second gradient FE formulation

Deviatoric strains
Outline:

- Introduction
- Theoretical tools
- Numerical models
- Numerical application
- Conclusions
Example of EDZ around a cavity

Long-term management of radioactive wastes

Intermediate (long-lived) & high activity wastes

Deep geological disposal

Repository in deep geological media with good confining properties

(Low permeability $K<10^{-12} \text{ m/s}$)

Underground structures

= network of galleries

Disposal facility of Cigéo project in France

(Labalette et al., 2013)
Example of EDZ around a cavity

- Fracturing

Anisotropies: - stress : $\sigma_H > \sigma_h \sim \sigma_v$
- material : HM cross-anisotropy.

Issues:
Prediction of the fracturing.
Effect of anisotropies ?
Permeability evolution & relation to fractures ?

(Armand et al., 2014)
Constitutive models for COx

- Mechanical law - 1st gradient model

Isotropic elasto-plastic internal friction model
Non-associated plasticity, Van Eekelen yield surface:

\[F \equiv II_{\sigma} - m \left(I_{\sigma'} + \frac{3c}{\tan \varphi_C} \right) = 0 \]

\(\varphi \) hardening / c softening
\[c = c_0 + \left(c_f - c_0 \right) \hat{\varepsilon}_e^p \]

\[\frac{B_c + \hat{\varepsilon}_e^p}{\hat{\varepsilon}_e^p} \]

\[\rightarrow \text{Strain localisation} \]

- Hydraulic law

Fluid mass flow (advection, Darcy):
\[f_{w,i} = -\rho_w \frac{k_{w,ij}}{\mu_w} \left(\frac{\partial p_w}{\partial x_j} + \rho_w g_j \right) \]

Water retention and permeability curves (Mualem - Van Genuchten's model)
Example of EDZ around a cavity

Gallery excavation modelling

- **Numerical model**
 HM modelling in 2D plane strain state
 Gallery radius = 2.3 m

- **Gallery in COx // σ_h**

Effect of stress anisotropy

Anisotropic stress state

\[
\begin{align*}
\sigma_{x,0} &= \sigma_H = 1.3 \sigma_v = 15.6 \text{ [MPa]} \\
\sigma_{y,0} &= \sigma_v = 12 \text{ [MPa]} \\
\sigma_{z,0} &= \sigma_h = 12 \text{ [MPa]}
\end{align*}
\]

- **Excavation**

Graph

- σx
- σy
- σw

Legend

- Drained boundary
- Impervious boundary
- Constant total stress
- Constrained displacement
- Constrained normal derivative of the radial displacement

Introduction

- **Theory**
- **Models**
- **Application**
- **Conclusions**
Example of EDZ around a cavity

- **Localisation zone**

Incompressible solid grains, $b=1$

Total deviatoric strain

Plasticity

$\varepsilon_{eq} = \sqrt{\frac{2}{3} \varepsilon_{ij} \varepsilon_{ij}}$

$\sigma_r/\sigma_{r,0} = 0.4$

$\sigma_r/\sigma_{r,0} = 0.2$

$\sigma_r/\sigma_{r,0} = 0.0$

$\sigma/\sigma_0 = 0.00$

$\sigma/\sigma_0 = 0.00$

1000 days

End of excavation

→ For an isotropic mechanical behaviour, the appearance and shape of the strain localisation are mainly due to mechanical effects linked to the anisotropic stress state.
Outline:

- Introduction
- Theoretical tools
- Numerical models
- Numerical application
- Conclusions
Strain localization in shear band mode can be observed in most laboratory tests leading to rupture in geomaterials.

Complex localization patterns may be the result of specific geometrical or loading conditions.

The numerical modelling of strain localization with classical FE is not adequate. Enhanced models are needed for a robust modelling of the post peak behaviour.