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INTRODUCTION 

Shear banding occurs frequently (at many scales) and is the source of 

many soil and rock engineering problems: 

natural or human-made slopes or excavations, unstable rock masses, 

embankments or dams, tunnels and mine galleries, boreholes driven for 

oil production, repositories for nuclear waste disposal 

 

Failure in soils and rocks is almost always associated with fractures and/or 
shear bands developing in the geomaterial. 
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INTRODUCTION 

In situ observation of shear banding 

In situ observations of shear banding and/or faulting are made frequently 

at many scales 

Large scale: railway tracks after an earthquake in Turkey 
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In situ observation of shear banding 

Bierset (Belgium) 1998 – Courtesy C. Schroeder  

Human-made slope along E42 exit road  
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In situ observation of shear banding 

Fractures observed during the construction of the connecting gallery at the URL in Mol. 
Vertical cross section through the gallery showing the fracturation pattern around it, as 
deduced from the observations (from Alheid et al. 2005)  

Nuclear waste disposal 
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Experimental observations: biaxial test 

Experimental 

 set-up  

&  

a typical test 
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Theoretical concepts 

Experimental evidence: 

Initial state Homogeneous strain field Localized strain field 
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Theoretical concepts 

Theoretical background 

Following the previous works by (Hadamard, 1903), (Hill, 1958) and 
(Mandel, 1966), Rice and co-workers (Rice, 1976, Rudnicki et al., 1975) 
have proposed the so-called Rice criterion. 
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Theoretical concepts 
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Theoretical concepts 

The Rice criterion provides us the information on when and how 
localization may appear.  
Do we have any problem to model such phenomenon with classical 
finite element method ? 
 
Let’s consider the modelling of a biaxial test with a defect triggering the 
localization, first without any hydromechanical effect. 

Bottom-left defect 

Smooth and rigid boundary 
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Theoretical concepts 
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Theoretical concepts 

50 elements 200 elements 300 elements 

The post peak behaviour depends on the mesh size ! 
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Example of EDZ around a cavity 

Cylindrical cavity without retaining structure 

Anisotropic initial state of stress 

Geometrical dimensions :  Internal radius 3 m 

Mesh length  60 m 

Choice : 

Symmetry of the problem is assumed  

894 elements – 2647 nodes – 7941 dof  

Let’s consider now a coupled modelling: 
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Example of EDZ around a cavity 
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Example of EDZ around a cavity 

Coupled modelling – Comparison Coarse mesh / Refined mesh 

Deviatoric strains  
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Output  

• Localization study : Acoustic tensor determinent 
 

• Mesh dependency of the results for classical FE 
 

• Non-uniqueness of the results in both cases 

The numerical modelling of strain localization with classical FE is not adequate. 
 
We need another numerical model to fix this mesh dependency problem !  
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Numerical models 

• Classical FE formulation: mesh dependency  

• Different regularization methods 

Gradient plasticity 
 
Non-local approach  
 
Microstructure continuum 
 Cosserat model 
 Second gradient local model  

Mainly for monophasic materials ! 

Enrichment of the law 

Enrichment of the kinematics 
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Numerical models 

In second gradient model, the continuum is enriched with microstructure 
effects. The kinematics include therefore the classical one but also 
microkinematics (See Germain 1973, Toupin 1962, Mindlin 1964). 

 

Let us define first the classical kinematics: 
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Numerical models 

Enrichment of the kinematics : 

 

  The continuum is enriched with microstructure effects. 

 

  Macro-kinematics   +   micro-kinematics 

Micro Ωm: 
 
  

 
 
 
 
 
 
  

 

Macro Ω: 
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Numerical models 

Here is the enrichment: 
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Numerical models 

• The internal virtual work (Germain, 1973) 

 

 

 

 

• The external virtual work (simplified) 

 

 

 

 

• The virtual work equations can be extended to large strain 
problems 
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• Local second gradient models: we add the kinematical 
constraint (Chambon et al., 1998;Matsushima et al., 2002) 

  

 

 

 this implies: 

 

  

the virtual work equation reads  

Numerical models 
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Numerical models 

• Local second gradient model : additional assumption  
* *
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Local quantities 

Finite element formulation of a second grade model 

Introduction Theory Models Application Conclusions 25 



Numerical models 

Local Second gradient Finite element  

Introduction Theory Models Application Conclusions 26 



Numerical models 

• Biaxial compression test 

Strain rate : 0.18% / hour 

No lateral confinement 

Globally drained (upper and lower drainage)  

Bottom-left defect 

Smooth and rigid boundary 
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Numerical models 

• First gradient law : 

E = 5800 MPa  
n = 0,3  

f = 25°  
Y = 25°  

Linear elasticity : E0 and n0  

Associated softening plasticity (decrease of cohesion) :  

Drucker Prager criterion :  0
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c0 = 1 MPa  
= 0,01 
gR = 0,015  
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Numerical models 

• Second gradient law : Linear relationship deduced from Mindlin   

D = 20 kN  
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Numerical models 

Before  After   

Plastic loading point  

First modelling: no HM coupling (no overpressure)  

(Regularization : Second gradient) 
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Numerical models 

First modelling: no HM coupling (no overpressure)  

Before  After   

Velocity field   (Regularization : Second gradient) 

Introduction Theory Models Application Conclusions 31 



Numerical models 

Initiation of localization (Directional research – Chambon et al., 2001)  

Introduction Theory Models Application Conclusions 32 



Numerical models 

Non uniqueness of the solution 

Initiation of localization (Directional research)  

(Regularization : Second gradient) 
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Numerical models 

Non uniqueness of the solution 

Initiation of localization (Directional research)  

(Regularization : Second gradient) 
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Numerical models 

Non uniqueness of the solution 

Localization mode switching (Bésuelle et al.,2006)  
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Numerical models 

Non uniqueness of the solution 

Initiation of localization (Directional research)  

(Regularization : Second gradient) 

Sieffert et al., 2009 
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Numerical models 

• Main assumptions 

– Quasi static motion 

– Fully saturated 

– Incompressible solid grains 

 

• Aims 

– Equations written in the spatial configuration 

– Full Newton Raphson method 

 

Our goal is to extend the second gradient formulation for multiphysics 
conditions. In the following, we focus on the hydromechanical model but 
the same procedure can be applied for TM, THM or THMC problems. 
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Numerical models 

• Coupled local second gradient model  

 Second gradient effects are assumed only for solid phase 

 

 For the mixture, there are stresses which obey the Terzaghi 
postulate and double stresses which are only the one of the 
solid phase 

 

 Boundary conditions for the mixture are enriched 
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Numerical models 

• Coupled local second gradient model  
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Numerical models 

• Coupled local second gradient model  
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Numerical models 

Isoparametric Finite Element : 

8 nodes for macro-displacement and pressure field  
4 nodes for microkinetic gradient field 
1 node for Lagrange multipliers field  
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Numerical models 

• Biaxial compression test 

Strain rate : 0.18% / hour 

No lateral confinement 

Globally drained (upper and lower drainage)  

Bottom-left defect 

Smooth and rigid boundary 
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Example n°1 (last time) 



Numerical models 

• Second gradient law : Linear relationship deduced from Mindlin   

• Flow model parameters 

D = 20 kN  

k = 10-19 / 10-12 m2 

w= 1000 kg/m³ 
f = 0.15 

kw = 510-10 Pa-1 

mw = 0.001 Pa.s  

Introduction Theory Models Application Conclusions 43 



Numerical models 

(20 x 10) (30 x 15) (40 x 20) 

•Equivalent strain after 0.2 % of axial strain (k = 10-12 m²)  

Second modelling: HM coupling  
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Numerical models 

•Fluid flow after 0.2 % of axial strain (k = 10-12 m²)   
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Numerical models 

•Load-displacement curve (k = 10-12 m²)   
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Numerical models 

•Load-displacement curve (k = 10-19 m²)   

‘Undrained’ behaviour 

Second modelling: HM coupling  
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Numerical models 

For k = 10 -19 m², the behaviour is undrained, we recover the 

experimental observation showing that for dilatant material, no 
localization is possible before cavitation. 
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Numerical models 

Random initialization (coupled problem) 
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Example of EDZ around a cavity 

Coupled modelling – Comparison Coarse mesh - Refined mesh 

Deviatoric strains  

Coupled second gradient  FE formulation 
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Example of EDZ around a cavity 

Long-term management of radioactive wastes 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  Underground structures 
  
  = network of galleries 

Deep geological 

disposal 

 

Repository in deep 

geological media with 

good confining properties 
 

(Low permeability  

K<10-12 m/s) 

Disposal facility of Cigéo project in France 

(Labalette et al., 2013) 

Intermediate 

(long-lived) 

&  

high activity 

wastes 
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Example of EDZ around a cavity 

Introduction Experiment Theory Numerical Conclusions 53 

- Fracturing 
 
Anisotropies: - stress : σH > σh ~ σv 
 

- material : HM cross-anisotropy. 
    Galery // to σh 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

    Galery // to σH 
 
 
 
 
 
 
 
 
 
 
 
 
 
Issues : Prediction of the fracturing. 

  Effect of anisotropies ? 

  Permeability evolution & relation to fractures ? 
 

 
 
 
    

(Armand et al., 2014) 



Example of EDZ around a cavity 

Constitutive models for COx 
 
 
 
- Mechanical law - 1st gradient model 
 
 
Isotropic elasto-plastic internal friction model 
 
Non-associated plasticity,  Van Eeckelen yield surface : 
 

 
 
 
 
 
 
φ hardening  /  c softening 
 
 
 
 
 
 
 
 
 
- Hydraulic law 
 
 
Fluid mass flow (advection, Darcy) : 
 
 
 
Water retention and permeability curves (Mualem - Van Genuchten’s model)  
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Example of EDZ around a cavity 

Gallery excavation modelling 
 
 
 
- Numerical model 
 
HM modelling in 2D 
plane strain state 
 
Gallery radius = 2.3 m 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
- Gallery in COx // σh 
 
Effect of stress anisotropy 
 

Anisotropic stress state 

     pw,0 = 4.5 [MPa] 

     σx,0 = σH = 1.3 σv = 15.6 [MPa] 

     σy,0 = σv = 12 [MPa] 

     σz,0 = σh = 12 [MPa] 

 
 

- Excavation 
 
 

σH 

σv 
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Example of EDZ around a cavity 

- Localisation zone  
  
 
 

Incompressible solid grains, b=1 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 For an isotropic mechanical behaviour, the appearance and shape of the strain localisation are  
 

mainly due to mechanical effects linked to the anisotropic stress state. 
 

3 days 

σr/σr,0 = 0.4 

 4 days 

σr/σr,0 = 0.2 

  5 days 

σr/σr,0 = 0.0   

    100 days 

σ/σ0 = 0.00 

     1000 days 

σ/σ0 = 0.00 

Total deviatoric strain Plasticity 

0 0.06 

4.6 m 

0.5 m 

2
ˆ ˆ ˆ

3
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End of 
 

excavation 
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Conclusions 

Strain localization in shear band mode can be observed in most laboratory 
tests leading to rupture in geomaterials. 

 

 Complex localization patterns may be the result of specific geometrical or 
loading conditions. 

 

The numerical modelling of strain localization with classical FE is not 
adequate. Enhanced models are needed for a robust modelling of the 
post peak behaviour. 
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