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Abstract 
This paper discusses procedures for nonlinearity detection, localisation and identification in structures from 
time domain vibration measurements. The detection and the localisation techniques use pattern recognition 
tools and are based on a dissimilarity measure between the signals coming from a linear structure and the 
corresponding nonlinear one. The detection procedure distinguishes between linear structures and structures 
with a nonlinearity employing nearest neighbour techniques. The localisation procedure combines 
substructuring with a nonlinearity detection procedure. This technique is useful for cases of local 
nonlinearity, when its localisation can be of value for the consequent understanding and modelling of the 
structure. The identification procedure makes use of the Karhunen-Loeve transform, known also as Proper 
Orthogonal Decomposition (POD). It is a powerful tool for solving inverse problems in nonlinear structural 
dynamics. The identification procedure works on the basis of the minimisation of a difference function 
between the experimental and the simulated proper orthogonal modes (POM). The proposed techniques are 
demonstrated on a beam test case with a local damping type nonlinearity. 
 
 

1. Introduction 

For the purpose of dynamic analysis and design, 
most structures are usually approximated by a linear 
model. Modal testing and analysis are the most 
widely used linear techniques for modelling, 
prediction and control of the system dynamic 
behaviour, as well as for solving updating or 
damage detection problems. However, a lot of real 
structures exhibit nonlinear behaviour which can be 
caused by a number of different reasons. Nonlinear 
behaviour is observed even in rather simple 
structures like plates and beams, as a result of 
buckling or large deformation related effects. The 
nonlinear behaviour of a structure may also be due 
to a local (friction, joint and link flexibility, 
backlash and clearance, nonlinear contact) or a 
global nonlinearity (geometric nonlinearities, 
nonlinear material behaviour). The presence of 
nonlinearity in a system changes its behaviour, thus 
making the use of the linear model improper and in 
a lot of cases even impossible. The basic principles 
that apply for a linear system and which form the 
basis for modal analysis are not valid anymore for 

nonlinear systems. The superposition and the 
homogeneity as well as the Maxwell reciprocity 
principles do not apply for a nonlinear system. A 
nonlinear mechanical system shows a tendency to 
redistribute the energy of the input spectrum. This 
results in modulation, super- and sub-harmonics, 
broadband spectra in some areas. The generation of 
harmonics depends on the excitation. The frequency 
response functions are also excitation dependent, 
which makes impossible their further application 
for modal analysis.  Modal models are quite inapt to 
predict the behaviour of nonlinear systems. 
Accordingly, new tools for the detection, 
quantification and modelling of nonlinearities in 
dynamical systems are necessary.  A lot of effort 
was spent into developing methods for detecting the 
presence of nonlinearities in a system [10,11,15]. 
Some procedures rely on characteristic features for 
nonlinear systems, like the distortion of the FRF 
plots. Others suggest testing the validity of basic 
linear principles. Most procedures work on the basis 
of the comparison of the responses of the linear 
system and the system under test. In this study we 
suggest an approach that uses a dissimilarity 
measure between the system responses in the time 



domain. It is combined with the paradigm of pattern 
recognition and the nearest neighbour (NN) 
approach. Once the detection of the nonlinearity is 
performed, its quantification becomes an important 
problem. For the case of local nonlinearities, it is 
rather convenient to be able to localise the 
nonlinearity first for the purposes of its further 
characterisation. In this paper we introduce a 
nonlinearity localisation method that works on the 
principle of the introduced detection procedure after 
substructuring. During the last years a lot of work 
was done on modelling the nonlinear behaviour of 
dynamic systems. Different tools are suggested in 
this direction . The use of Volterra series as a way 
to describe nonlinear systems is one of the most 
widely accepted one. Identification procedures for 
nonlinear dynamic systems employ different tools. 
Some authors suggest the use of higher order FRF’s 
[12]. Other techniques include spectral analysis and 
different NARMAX models [11]. In this paper we 
suggest the application of the Karhunen-Loeve 
transform or Proper Orthogonal Decomposition 
(POD) for the identification of nonlinear multi-
degree-of –freedom systems. 

2. Test case definition 

To illustrate the methods, let us consider an 
experimental application on an aluminium beam. 
The beam is mounted horizontally with a clamped 
end and a free end as shown in Figure 1. A 
nonlinear damping with Coulomb friction was 
added at the free end. The accelerations were 
measured using six accelerometers regularly spaced 
along the beam. An impulse force was applied by a 
hammer just between the two last sensors. 
 
 

Hammer

 
Figure 1 : Experimental beam 

 

3. Nonlinearity detection 
procedure 

3.1 Theory of the nonlinearity detection 
procedure 

In a lot of cases it is necessary to first detect the 
presence of nonlinearity. A lot of effort was spent in 
this direction and a number of procedures are 
suggested. It is our suggestion here to define the 
problem as a classification one and use the nearest 
neighbour approach to solve it. Clearly a 
nonlinearity detection problem is a classification 
one, since the task is to distinguish between a linear 
and a nonlinear structure. The distinction has to be 
done on the basis of the response of the system. We 
suggest the use of the time domain acceleration 
measurements. Normally the vibration 
measurements for a structural system consist of the 
acceleration measurements for a number of DOF’s. 
The ingredients for a nearest neighbour 
classification rule are: 1) a labelled sample database 
(standard samples corresponding to different 
classes), 2) a dissimilarity measure by which the 
measurements for a newly tested structure can be 
compared with each of the members of the labelled 
database. For our case of classification of a 
vibrating structure the database should consist of 
one or more time series determined by the number 
of measured DOF’s. For the case of two classes, 
only the standard sample corresponding to one of 
the classes can be used. As a dissimilarity measure 
we suggest the use of the Kullback-Leibler (K-L) 
dissimilarity measure between time series [16, 18].   
A new structure is characterised by the acceleration 
measurements D � �W��� L ���«�Q� where Q is the 
number of measured DOF’s.. Since discrete 
measurements are taken they form the vectors  
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where N corresponds to the number of time 
measurements. The labelled database consists of the 
corresponding acceleration measurements for the 

linear system (its model), i.e. /LD , where L stands 
for labelled. Thus the decision should be made on 
the basis of the K-L dissimilarities between D �  and 
/LD .  

 
The symmetrized K-L dissimilarity measure 
between two time series D�W� and D� �W� is defined as: 
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For the case of Q acceleration measurements one 
will have Q K-L numbers  

QLDD,, /LLL ,...,2,1    ),,( == , 
corresponding to the Q DOF’ s where measurements 
are taken. 
 
The classification rule based on the n-nearest 
neighbour principle for the structure S characterised 

by the acceleration signals )(WD6L is given in the 
form [17]: 
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where  
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' �  is a certain threshold (which is determined as a 
result of a pattern recognition procedure [18]) and 
&� �and &�   denote the class of linear structures and 
the class of nonlinear structures, respectively. Thus 
a new structure is considered linear, or not 
containing nonlinearities, if its dissimilarity 
measure ' � , which is the maximum of all the 
dissimilarity measures between its acceleration 
signals and those of the corresponding linear 
structure, does not exceed a certain threshold value 
' � . Accordingly a structure should be regarded as 
nonlinear if its dissimilarity measure exceeds the 
threshold value ' � .  
 
Another possible dissimilarity measure which can 
be used in order to compare the acceleration signals 
coming from the linear structure and the one under 
test is the symmetrized Itakura spectral distance 
between two signals which is defined as 

ωωω

ωωω

ω

ω

ω

ω

GII

GIIDD-

/

//

)(/)(.                

.)(/)(),(

1

0

1

0

∫

∫=

                 (4) 

where I�  and I�  are the spectra of the signals D and 
D� , respectively. The classification rule is the same 
as the one introduced earlier with the K-L number 
(2), only for this case ' �  is substituted by 

)](),([maxmax ωω /LLL
6LL6 II--- ==         (5) 

and another threshold value - �  is introduced. The 
Itakura spectral distance was introduced just as 
another alternative for a dissimilarity measure, for 
the purpose of comparison.  
 
This method, like most nonlinearity detection 
procedures, works on the basis of dissimilarity 
measures between the response of the linear 
structure and the structure under test. However in a 
lot of cases this dissimilarity can be a result of 
noise. All the procedures mentioned above cannot 
distinguish between noise and nonlinearity 
presence. In order to check whether the dissimilarity 
is due to noise effects, or to the presence of any 
kind of a nonlinearity in the structure, a hypothesis 
testing with surrogate data series can be applied 
[13,14]. 
• First the residuals series that comprise the 

difference between the linear and the measured 
time series are found 

      /LLL DDU −=  

• On the second step the mean residual series PU  
is found. 

• Surrogate series are created to preserve only the 
linear properties of PU  [14]. 

• The null hypothesis stating that PU  is linearly 
correlated noise is tested, using some nonlinear 
time series invariants and applying statistical 
hypothesis testing [13]. 

• The null hypothesis is either rejected or 
confirmed. When it is confirmed, the 
conclusion is that the dissimilarity is due to 
noise, and thus the structure should be 
considered linear.  

• For the case when the null hypothesis is 
rejected, one should conclude that the residual 
series represents a nonlinear dynamic process. 
Hence it is derived that the structure is 
nonlinear. 

In a number of cases, like the considered test case, it 
is not necessary to go through the above procedure, 
since there are clear indications that the 
dissimilarity is caused by the presence of a 
nonlinearity and not by noise.  



3.2 Application to the test case 

First the time and the frequency representations of 
the acceleration signals coming from the FE model 
of the linear structure and the tested structure are 
observed. Neither the differences between the 
corresponding signals from the linear structure and 
the one under test, neither the signals coming from 
the examined structure look random-like. In the 
frequency domain for the tested structure one can 
observe a shift in some of the frequency peaks, as 
well as the presence of a couple of new peaks 
(Fig.2). Accordingly we reject the hypothesis for 
the presence of noise in the tested structure.  
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig.2 Fourier spectra of part of a linear signal (up) 

and the corresponding nonlinear one (down) 
 
The procedure presented in the previous paragraph 
was applied to the introduced beam test case      
(Fig. 1) with both dissimilarity measures. The 
threshold values were obtained as a result of a n- 
nearest neighbour pattern recognition procedure for 
2 classes [17,18]. The measurement points are as 
shown on Fig. 1. They are numbered starting from 
the free end of the beam. The following Figure 3 
presents the results from the detection procedure.  
 

 
 
 
 
 
 
 
 
 

Figure 3. Detection and localisation  procedure with 
K-L number. (The measurement points and the 

substructures are numbered beginning from the free 
end) 

 
It is observed from Fig. 3 that all the K-L numbers, 
corresponding to the 6 measurement points are 
rather close to the threshold value DT . However, 
the maximum K-L number , �  corresponding to the 
first measurement point (starting from the free end) 
is higher than the threshold. Thus according to (2) 
the structure should be considered nonlinear. 
 
A similar situation can be observed with the 
symmetrized Itakura distance (SID). Figure 4 shows 
the results from the detection procedure with the 
SID.  
 

 
 
 
 
 
 
 

 
 

Figure 4. Detection and localisation procedure with 
SID. (The measurement points and the substructures 

are numbered beginning from the free end.) 
 

It can be observed that the SID values for the first 
two measurement points are above the threshold 
value. The values corresponding to the rest of the 
measurement points are either on or below the 
threshold. Again according to the introduced 
classification rule (2) with -� �and - �  substituted for 
' �  and ' � , the structure should be considered as 
containing a nonlinearity.  
 
Thus both procedures give correct results for the 
considered test case.  

4. Localisation procedure 

4.1 Theory of the localisation procedure 

In a number of cases it is helpful for the consequent 
identification procedure to localise the nonlinearity 
in the structure under test. In order to do that we 
suggest in this paper an approach, which is based 
very much on the already introduced detection 
procedure. Only for the purposes of localisation it is 
combined with substructuring.  
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First the structure is divided into N substructures SI, 
I=1,2,…,N.  Then the presented detection procedure 
is applied to each substructure. For this purpose 
only the acceleration signals measured in DOF’ s 
from the corresponding substructure are taken into 
account. Any of the dissimilarity measures 
presented in section 2 can be applied. Then the 
same classification rule is employed 
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Qq  is the number of DOF’ s corresponding to the 
substructure 6q . The classification rule (6) means 
that the substructure 6q  is considered linear if the 
maximum dissimilarity between the signals 'q  is 
less than the threshold value ' r . If on the other 
hand 'q  exceeds ' r , then 6q  should be considered 
nonlinear. 

4.2 Application to the test case 

For the purposes of the localisation procedure the 
cantilever beam is divided into six substructures Si , 
i=1,2,…,6, which are obtained dividing the beam 
into 6 parts 6q �with equal lengths (Fig.1).  
 
Now the question to answer is which of the 
substructure(s) contain(s) a nonlinearity, that is 
which of the substructures can be considered 
nonlinear.  This procedure is relevant and is 
expected to give meaningful results only for the 
case of a local nonlinearity (nonlinearities). If the 
nonlinearity is global, e.g. nonlinear material, or a 
geometric nonlinearity, then the procedure is 
expected to end up with indication that all the 
substructures are nonlinear.  
 
The figures (Fig.3 and Fig.4) presented for the 
detection procedure, for this case contain the results 
for the localisation procedure as well. The 
accelerometers are positioned at the end of each 
substructure. Thus each substructure contains only 
one measurement point. Thus the dissimilarity 
measures for the measurement points give the 
dissimilarity  measures for the substructures as well. 

From Fig. 3 one can conclude that substructure 1, 
6 s , is nonlinear. Substructure 2, 6 t , can be also 
suspected as nonlinear, since it’ s K-L number is 
very close to the threshold. All the rest of the 
substructures should be considered linear. Thus the 
K-L dissimilarity number correctly identifies the 
nonlinear substructures for the considered test case.  
 
From Fig.4 one should derive that subsctructures 1 
and 2, 6 s  and 6 t , contain anonlinearity. 
Substructures 3 and 4 are on the boundary between 
the two classes, and can be considered suspicious. 
The rest two substructures do not contain 
nonlinearities. Obviously the SID gives worse 
results when applied for the localisation procedure 
for the considered test case. It is not able to identify 
the nonlinear substructures properly and precisely 
enough. 

5. Parameter Identification 

5.1  The Proper Orthogonal 
Decomposition 

The Proper Orthogonal Decomposition (POD) 
allows to identify a useful set of basis functions and 
the dimension of the subspace necessary to achieve 
a satisfactory approximation of the system. The 
POD also facilitates the resolution of the partial 
differential equations through their projection into a 
reduced-order model [2]. The definitions and 
formulation presented here follow closely the ones 
used in [4]. 
Let ),( W[X  be a random field on some GRPDLQ� ��
Since the POD requires to deal with zero-mean 
signals, it is necessary to define ),( W[Y  by 
subtracting the mean )([8  from ),( W[X : 
 ),()(),( W[Y[8W[X +=  (8) 
These fields are sampled at finite number of time 
points. Then, at a fixed time uW , the system displays 

a snapshot )([Y v , which is a continuous function 
RQ� �� 7KH� DLP� RI� WKH� 32'� LV� WR� ILQG� WKH� PRVW�
representative structure )([φ  of the ensemble of N 
snapshots. This is accomplished by solving the 
following optimisation problem: 
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It can be argued ([3] and [4]) that relation (9) is 
equivalent to the following integral eigenvalue 
problem : 
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where the two points correlation function K is 
defined as : 
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Equation (10) has a finite number of orthogonal 
solutions )([{φ , called the proper orthogonal 
modes (POM) with corresponding real and positive 
eigenvalues 

|
λ . The eigenvalue with the largest 

magnitude is the minimum which is achieved in the 
minimisation problem (9). The second largest 
eigenvalue is the minimum of the same problem 
restricted to the space orthogonal to the first 
eigenfunction, and so forth. For the purposes of 
uniqueness, the eigenfunctions are normalised. 
Therefore the POM can be used as a basis for the 
decomposition of the field ),( W[Y : 

 ∑
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Moreover, by construction, the POM capture more 
energy than any other modes. It should also be 
noted that time-dependent coefficients )(WD �  in 
(12) are uncorrelated [3]. Thus the POD can be 
viewed as a bi-orthogonal decomposition because of 
the space-time symmetry of the decomposition. For 
an accurate approximation of the tensor (11) it is 
necessary to perform a long and expensive 
simulation. The computation of the eigenfunctions 
is even more expensive. Two methods exist to solve 
the problem: the direct [8] and the snapshot method 
[4]. 

Discrete formulation 

Suppose N linear snapshots of the acceleration �Y  
of size M are obtained at M locations (e.g. by 
measurements). The M x M covariance matrix & [6] 
is defined as : 

 ∑
−

=
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0
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Its eigensolutions ),( �� λφ  which satisfy : 

 1,,0, −== 1N& ��� �φλφ  (14) 
with 
 0110 >≥≥≥ −

�λλλ �  
characterise the proper orthogonal decomposition. 
Each eigenfunction �φ  is associated with an 

eigenvalue �λ . If the eigenvalues are normalised, 

they represent the relative energy captured by the 
corresponding POM. This decomposition is the best 
basis in term of de-correlation. The brute 
computation of the eigensolutions of & is called the 
direct method. However, due to the space-time 
symmetry property, an alternative method, called 
the "method of snapshots", can be employed ([4] 
and [6]).  

Computation of the POD using SVD 

The complete bi-orthogonal decomposition of the 
data may be obtained by use of the Singular Value 
Decomposition (SVD). For instance the SVD which 
is related to Principal Component Analysis, is used 
in reference [8] and [9] to compute modal metrics to 
solve model updating problems in an optimisation 
procedure. Let )(W[  denote a response time-history, 
where [  is a vector containing the displacement, 
velocity or acceleration at M discrete locations. The 
discrete matrix X is formed: 
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Thus, each row corresponds to a time history at one 
location and each column corresponds to a snapshot 
of the system at specific time. Now the singular 
value decomposition of matrix ; can be written as: 
 

�98; Σ=  (16) 
with U an orthonormal matrix (size M x M) of 
eigenvectors of 

�;;  and 9 an orthonormal matrix 
(size N x N) of eigenvectors of ;; � . The size of 
the matrix Σ  is M x N but only the main diagonal 
has non-zero elements which are the singular values 
of ;, sorted in descending order. If the matrix ; is 
rank deficient, i.e. some rows (or columns) can be 
generated by a linear superposition of the others, a 
few singular values will be zero. The SVD has a lot 
of applications, e.g. the estimation of the rank of a 
matrix, the filtering of measurement noise and so 
forth. In this paper the aim of the SVD is to 
compute the POM’s and the normalised basic shapes 
including the response time-histories [9]. 

5.2  POD and parameter identification 

The identification of the nonlinear parameters of a 
structure is based on the solution of an optimisation 
problem, which consists in minimising the 
difference between the bi-orthogonal decomposition 
of the measured and the simulated data respectively. 
Let us define the objective function ) as: 
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Where �]�� �� � 9DQG8 ∆∆Σ∆ ,,  are the differences 

between the matrices containing the bi-orthogonal 
decompositions. It must be stated that the full 
decomposition is not retained in the objective 
function. Only the terms corresponding to the 
higher singular values are considered, which means 
that we take the proper orthogonal modes that 
contain the greatest amount of energy in the signal. 
Then the objective function ) may be minimised by 
standard optimisation algorithms. The term �]�9∆  

in (17) does not represent the brute time 
decomposition of the data but the Fourier 
Transform of the time decomposition. 

5.3 Experimental example 

Identification of the nonlinear parameters 
 
It is worth pointing out that before the nonlinear 
identification a linear test was performed in order to 
obtain the Young modulus.  
Two different models are considered: 
 
• A linear model is considered: in this case the 

variables of the optimisation are the three first 
modal dampings of the underlying linear 
system. Moreover, a linear dashpot was added 
at the end of the beam.  

• A nonlinear model including a nonlinear 
dashpot modelled as a polynomial of the 
velocity including Coulomb friction. 

 
As far as the optimisation process is concerned, a 
time period of 0.4 second is considered and the 
objective function is written in terms of the first 
three POMs. The latter contain 95% of the energy 
in the signal. After the optimisation, the nonlinear 
model improves the objective function of 8% in 
comparison with the linear one. 
Figure 5 represents the comparison between 
experimental and numerical proper orthogonal 
decomposition. Only the POMs for the 
experimental test and for the nonlinear model are 
represented since the linear and nonlinear POM are 
merged. At figure 6, the displacement at the end of 
the experimental beam is plotted and is compared to 
the two models. The figure shows very slight 
differences between the two models and the 
experimental data. However, the nonlinear model 

leads to slight improvements and allows to identify 
Coulomb friction in the model. 
  

 
Figure 5: Comparison between the POM 

 
 

 
Figure 6: Comparison of the displacements  

 

5. Conclusions 

A method including three steps- nonlinearity 
detection, localisation and identification 
procedures- is introduced. The detection procedure 
works on the principle of comparing dissimilarities 
between the acceleration time series of the linear 
structural model and the corresponding 
measurements of the tested structure. Both 
dissimilarity measures used conclude that the 
structure is nonlinear. The localisation procedure 
uses the same dissimilarity measures that are used 
for the detection. The proper orthogonal 
decomposition allowed to identify quite efficiently 
the coulomb friction at the end of the experimental 
beam. The nonlinear model is compared to the 
linear one and gives only slight improvements. For 



the considered test case the performance of the 
localisation and identification procedures is 
somewhat poor, which is most likely due to the 
weak nonlinearity introduced- the Coulomb friction 
at the end of the beam. 
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