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Proper Orthogonal Decomposition (POD), also known as
Karhunen-Loeve decomposition, or principal components
analysis (PCA), is emerging as a useful experimental tool in
dynamics and vibrations. The POD is a statistical pattern
analysis technique for finding the dominant structures in an
ensemble of spatially distributed data. These structures can
be used as an orthogonal basis for efficient representation of
the ensemble. The Proper Orthogonal Modes (POM) have
been interpreted mainly as empirical system modes. They
have been shown to represent the optimal distributions of ki-
netic energy or power, and the proper orthogonal values in-
dicate the power associated with these principal distributions.
We investigate the use of the proper orthogonal modes of dis-
placements for the identification of parameters of nonlinear
dynamical structures with an optimization procedure based on
the difference between the experimental and simulated POM.
A numerical example of a beam with a local nonlinear compo-
nent will illustrate the method.
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For modal analysis, most mechanical structures are approxi-
mated by a linear model. However, when these structures are
subject to large displacement amplitudes, nonlinear effects
may become important and the linear model consequently
fails. Even when amplitudes remain small, some nonlinear
distortions may occur due to the physical behavior of the struc-
ture (e.g. dry friction contact, backslash phenomenon, ...).
Both reasons demonstrate why interest in nonlinear identifica-
tion is increasing. The aim of identification is to generate a
mathematical model of a system. Once the model parameters
are identified, the model may be used afterwards to predict
the behaviour of the system.
When an analytical model of the structure is available, a com-
mon practice for the structural analyst, the identification prob-

lem consists in a parameter estimation of the structural model.
The present paper aims to investigate the use of the proper
orthogonal modes (POM) of displacements for the identifica-
tion of parameters of nonlinear dynamical structures using an
optimization procedure based on the difference between the
experimental and simulated POM.
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Proper Orthogonal Decomposition (POD), also known as
Karhunen-Loeve (K-L) decomposition, is based on a statis-
tical formulation, although it facilitates modal projections of
partial differential equations into reduced-order determinis-
tic models " #%$ . The K-L method has been applied success-
fully in the fields of fluid dynamic " &'$ , thermics " ()$ and signal
processing " *)$ .

The Proper Orthogonal Decomposition is a means of extract-
ing spatial information from a set of time series data available
on a domain. The use of Karhunen-Loeve (K-L) transform is
of great help in nonlinear settings where traditional linear tech-
niques such as modal testing and power spectrum analyses
cannot be applied. The advantage of this method lies in the
fact that the modes (POM) obtained from the K-L decomposi-
tion for a given set of parameters, can be used to reconstruct
the response of a system whose parameters take different val-
ues from the original system. The additional advantage of the
K-L analysis is that it can be applied, not only to conservative
systems, but also to dissipative ones and that it provide infor-
mation about the spatial structure of the system dynamics as
well as the energy contained in the system.

The method was first applied to turbulence problems by
Lumley " +'$ . The POD allows to quantify spatial coherence in
turbulence " &'$ and structures " ,)$�" -'$ . A recent work " .)$ has shown
that the application of POD to measured displacements of a



discrete structure with a known mass matrix leads to an esti-
mation of the normal modes. In reference " �)$ the K-L method
is applied to vibroimpacting beams and rotors to create low
dimensional models, via a Galerkin projection.
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The POM are shown here to be the eigenfunctions of the
space correlation tensor. The definitions and formulation pre-
sented here follow closely the ones used in Azeez " �)$ .
Define a random field � �"!$#&%(' on some domain ) . This field is
first decomposed into mean ��*+�"!,'.-+/0�213' and time varying�"45�"!$#�%('6' parts. This is represented as :� �"!$#&%('.-7*+�"!,'98:45�"!$#�%(' ;6<�=
This fields are sampled at finite number of points in time.
Hence at a fixed time %6> , the system displays an instanta-
neous snapshot 4�>9�"!,' , that is a continuous function of ! , with!@?@) . Now we are looking for a representative structure AB�"!,'
of the ensemble of C snapshots. This coherent structure is
computed by minimizing the objective function D :EGF�H,F�I�FKJMLON DP- QR>MS # ��AB�"!,'$TU4�>9�"!,'6' &WVYX !@?@) ;KZM=
Equation (2) can be compactly expressed as the maximization
problem : EG[ ! F�I�FKJML\N D]- /7��A #64�>�' &^1��A #(A9' VYX !@?@) ;K_M=
with the following notations :

�K`�#&a�'Bb7c�de`$�"!,'	a,�"!,'Mf�) inner product of f and g/g4�>]12bYhC QR>MS # 4�>9�"!,' average of snapshots

This equation is equivalent to the following integral eigenvalue
problem " �)$ " &'$ : c�djik�"!$#6!�lm'�AB�"!�l '�f	!�l5-nDoAB�"!�lm' ;�p	=
where the two point correlation function ��i2' is defined as

ik�"!$#6! l '�-YhC QR>MS # 4�>9�"!,'	4�>9�"! l ' ;KqM=
Equation (4) has a finite number of orthogonal solutionsA,r6�"!,' with corresponding real and positive eigenvalues D5r . The
eigenvalue with the largest magnitude is the maximum which
is achieved in the maximization problem (3). The second

largest eigenvalue is the maximum of the same problem re-
stricted to the space orthogonal to the first eigenfunction, and
so on. In order to make the computation unique, the eigen-
functions are normalized. Therefore we can use it as a basis
for the decomposition of the field :

45�"!$#�%('.- QR r S # [ r �m%('�A r �"!,' ;KsM=
It should be noted that time-dependent part in equation (6)
forms orthogonal modes " &'$ . Thus the POD can be viewed as a
bi-orthogonal decomposition because of the space-time sym-
metry of the decomposition.

For an accurate approximation of the tensor (5) it is necessary
to perform a long and expensive simulation. The computation
of the eigenfunctions is even more expensive. Two methods
exist to solve the problem : the direct " #Kt)$ and the snapshot
method " �)$ .
� � � �u� v������w�(�x������
���� ���� ���
Suppose S linear snapshots 4 r of size

E
obtained for instance

by measurements of the acceleration on a beam at M loca-
tions. The

Ezy{E
covariance matrix |�" *)$ is defined as:

|7- h}k~�� #R r S t 4 r 4��r ;K�M=
Its eigenvectors A9� satisfying|jA9�e-nD5�wA9�M# �x-G��#W�����9# } T h ;K�M=
with D tj� D #o�n������� D ~�� # 10� ;K�M=
form the proper orthogonal decomposition we are looking for.
Each D5� corresponds to the vector A9� and represents the rela-
tive importance of that vector in the data. This decomposition
is the best basis in term of de-correlation. Due to the space-
time symmetry property, one can use an alternative method
for the resolution of (8). This method is called the ”method
of snapshots”. Providing that the eigenvectors A$� are unique
linear combinations of linearly independent snapshots 4 r :

A9�e- ~�� #R� S t [ ��� � 4 � ��-G��#W�����9# } T h � ;6<W�M=
The eigenvalue problem (8) becomes :�� �� �h} ~�� #R r S t 4 r 4��r

���� �� �~�� #R� S t [ ��� � 4 � -�D5�
���� �� �~�� #R� S t [ ��� � 4 � ;6<�<�=

h}k~�� #R r S t 4 ru� ~�� #R� S t 4��r 4 � [ ��� �W� - ~�� #R r S t D5� [ ��� r 4 r ;6<WZM=



The summations can be dropped as the 4 r are linearly inde-
pendent and we obtain :

~�� #R� S t 4��r 4 � [ ��� � -7D��� [ ��� r �� � F - ��#����W�9# } T h #� - ��#����W�9# } T h #D �� - } D5� ;6<W_M=
Defining the matrix | � and the vector �j� as|��o-�� 	
�r � ��� -� 4��r 4 ��� � F #�� -G��#����W�9# } T h ' ;6<�p	=�j�j-�� [ ��� r�� � F -G��#����W�9# } T h ' ;6<WqM=
an eigenvalue problem equivalent to (8) is obtained:|����j�j-nD��� �j�	# � F %�� D��� - } D5�	� ;6<WsM=
Depending on whether the number

}
of snapshots is greater

or smaller than the number
E

of elements in one snapshot,
the resolution,respectively, of (8) or (16) will be more suited.

If
} 1 E

, the snapshots 4 r are not linearly independent and
the matrix | � has a rank ��� E

. The method of snapshots
still works because for �x-��w#������9# } T h :

� the eigenvalues D5� will be zero due to the rank deficiency
of | �� the corresponding eigenvectors �j� will be unit vectors,� the additional eigenmodes A9� will be zero.

� � � ����
 ���M�(���� ���+�	�$���	� � ���0�	v�� �"! �5� �"!���� �M�$# ��� �	� � �M����
&%����v�� �� ���(' �(# �*)
The complete bi-orthogonal decomposition of the data may
be obtained by use of the SVD " # #%$ . For instance the SVD
which is related to Principal Component Analysis, is used in
reference " #'&'$ " # ()$ to compute modal metrics to solve model up-
dating problems in an optimization procedure. Let ! �m%(' denote
a response time-history, where ! is a vector containing the
displacement, velocity or acceleration at M discrete locations.
The discrete matrix + is formed:

+ - ,-
. ! # �m% # ' ����� ! # �m% Q '

...
. . .

...!�/{�m% # ' ����� !�/{�m% Q '
0 1
2 ;6<W�M=

So, each row corresponds to a time history at one location
and each column corresponds to a snapshot of the system
at a specific time. Now the singular value decomposition of
matrix + can be written as:+ -7*4365+� ;6<W�M=
with * an orthonormal matrix (size

E y�E
) of eigenvectors of+7+ � and 5 an orthonormal matrix (size C y C ) of eigenvec-

tors of + � + . The size of the matrix 3 is
E y C but only the

main diagonal has non-zero elements that are the singular val-
ues of + , sorted in descending order. If the matrix + is rank
deficient, i.e. some rows (or columns) can be generated by
a linear superposition of the others, some of the singular val-
ues will be zero. The SVD can be used to estimate the rank
of a matrix and filter out the measurement noise by discard-
ing the modes associated with singular values smaller than a
threshold value related to the presence of noise. In this paper
we use the SVD to compute the POM’s and the normalized
basic shapes including the response time-histories " # ()$ . This
bi-orthonormal decomposition of space and time data will be
used for the identification of parameters of nonlinear dynam-
ical structures with an optimisation procedure based on the
difference between the experimental and simulated decompo-
sition.
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The identification of the nonlinear parameters of a structure is
based on the solution of an optimization problem which con-
sists in minimizing the difference between the bi-orthogonal
decompositions of the measured and simulated data respec-
tively. Defining the objective function : as

:7- R r R � ��;�* r � ' & 8 R � ��;<3 ��� ' & 8 R � R � ��;<5 � �M' & ;6<W�M=
where ;�* r � , ;<3 ��� and ;<5 � � are the differences between the
matrices containing the bi-orthogonal decompositions. It must
be stated that the full decomposition is not retained in the ob-
jective function. Only the terms corresponding to the higher
singular values are considered, which means that we take the
proper orthogonal modes that contain the greatest amount of
energy in the signal. Then the objective function : may be
minimized by standard optimization algorithms.

= � � ! � �  	���� �(> ��! � � �
To illustrate the method, let us consider a clamped steel beam
with a local nonlinearity at the free end (see figure 1).

8 � !������ �@? 	�� ��
 ���BADC�����
FE^� ���]�@� �������,�	����� � �	���M�K� �HG �



The steel beam is ��� ����� meter length and has a square sec-
tion of ��� h ��� y h � � ( I & . The beam is modeled with six finite
elements. Each node posses two degrees of freedom: one
for the vertical deflection and one for the rotation. The whole
structure has 12 degrees of freedom. The nonlinearity is a
spring that exhibits a cubic stiffness.

= � ��� ��
��	�K� ������v�� 
���� ���� ��� ? ���	�e
��(A�� �5�BA � � E3
��M���j
��w���	�(A
Although nonlinear forces are locally distributed in the sys-
tem, the dynamic behavior of the whole structure is nonlinear
due to interactions. The numerical simulation of such systems
with the whole set of degrees of freedom can be very time
consuming. Therefore a modified Newmark " # *)$ method that is
unconditionally stable is used to integrate the responses of the
system. In this formulation, the nonlinear iterations only need
to be performed on the localized nonlinear part of the system
equations.

The equations of motion can be written as:E
	!�8 |��!�8 i@!]-0ae8 ` >� �"!$#��!5' ;KZ��M=
where

E #5|3#�i@#3?�� >���> are respectively the mass matrix,
damping matrix and stiffness matrix; ! �m%(' is the displacement
vector, and a,�m%(' is the external force vector. ` >� �"!$#��!,' is the
nonlinear spatially localized part so that (20) takes the form :

� E�� E ���E ��� E ����� 	! �	! ��� 8 � | � | ���| ��� | ����� �! ��! ���
8 � i � i ���i ��� i � ��� ! �! � � - � a �a � � 8 � ` >�� �"! � #��! � '� �;KZ�<�=

where the partition vector ! � is directly concerned by the non-
linear internal forces while ! � is indirectly nonlinear, due to the
coupling of the equations.

When applying an implicit integration scheme " #'+'$ , the dis-
placements, velocities and accelerations involved in the equi-
librium equations (21) are linked by the integration operator.
Let us rewrite the equilibrium equations as a relationship in
terms of displacements ! �m%(' .���"!,'B- E
	! �m%('98g`$�"!$#��!5' TUa,�"!$#�%('.-G� ;KZ�ZM=
where � is the residual vector. By substituting the Newmark’s
time integration relationships into (22), the residual equation
at time step

H 8 h is expressed in terms of !,>! # only:���"!5>! # '.-G� ;KZ�_M=
To solve this set of nonlinear equations, linearization tech-
niques are used. Let us denote ! �>! # an approximate value

of !5>! # resulting from iteration � . In the neighborhood of this
value the residual equation can be replaced with enough ac-
curacy by the linear expression��" �"! �  #>! # '.-����"! �>! # '98 } �"! �>! # '��"! �  #>! # T ! �>! # ' ;KZwp	=
in terms of the jacobian matrix} �"! �>! # '.- ��# �# ! �%$ �&�'�( ;KZ�qM=
In the case of the partitioned set of equations (21), the residual
equation takes the form:� } � �"! �� � >! # ' } ���} ��� } � � �*) ! ��) ! �� � - T � � � �"! �>! # '� � �"! �>! # ' � ;KZ�sM=
where the second equation is completely linear. In fact, only
the submatrix

} �
depends on the displacements. The other

matrices are constant because they correspond to the linear
part of the system. For sake of simplicity, subscripts corre-
sponding to time step (

H 8 h ) and iteration step ( � ) are elimi-
nated and (26) can be written:� } � �"!,' } ���} ��� } �+� � ;+! �;+! �,� - T � � �� �,� ;KZ��M=
If we substitute the second equation of (27);+! � - T } � #� � � T } � #� } ��� ;+! � ;KZ��M=
into the first one, we obtain:� } � �"!,'$T } ��� } � #� } ��� � ;+! � - T*� � 8 } ��� } � #� � � ;KZ��M=
Taking a constant time step, the projection

} ��� } � #� } ���
is com-

puted only one time so that the iterative solution of (29) is done
only on a few degrees of freedom.

= � �� A��	�M�� �,������ �����	�����	���	����� � �	���M�6�	�M����
��w�(�	�
In this section, the linear part is supposed to be known so that
the only parameter to identify is the nonlinear cubic stiffness.
The free vibration of the beam is simulated with an initial dis-
placement given by a static force applied at the end of the
beam. The simulation is performed over a time period of 0.1
seconds, with a time step of - y h � � * seconds. The robustness
of the technique has been tested adding a gaussian noise with
an amplitude of h/. of the initial displacement.

The objective function is written in terms of the first POM only.
The normalized value of the nonlinear parameter in the ref-
erence case is 50. This value is perturbed to start the opti-
mization process. Different starting points are tested which
lead to different minima. To obtain the correct optimum, the
optimization process needs to start with an initial value for the
nonlinear coefficient of about 0�� . of the correct value. The
comparison between the original and the reconstructed sig-
nals at the starting point is given in figure 2a, while in figure 2b,
the comparison is shown after the optimization. The recon-
structed signal (shown in dashed line) matches very closely
the original one (in solid line).
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To improve the optimization process, the influence of different
parameters were tested, such as the total time of the simula-
tion, the number of POD or the type of objective function are
modified. For each test the objective function has been calcu-
lated for a large range of variation of the nonlinear parameter.

= � ��� � ��� ��� �  � � � 8 ��� � �  ! � � � �  � �
The simulation period has a great influence on the picture of
the objective function because the time decomposition of the
data is included in the objective function (19).When the simu-
lation duration is long, the time decomposition contains a lot
of oscillations involving more oscillations in the plot of the ob-
jective function. In figure 3 two objective functions are plotted
with a simulation time of ��� �!-�� L 	�� H f and ��� -�� L 	�� H f respec-
tively. The figure clearly shows that a lot of minima appear in
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the case of a long simulation time which can be bad for the
research of the global minimum during the optimization pro-
cess. Of course a small simulation time (e.g. one oscillating
period of the proper orthogonal mode) gives too little informa-
tion on the system so that the proper orthogonal modes loose
physical significance. One solution consists to drop the time
decomposition in the objective function (19). The plot of the
objective function in figure 4 shows a more suited curve for
the optimization process. The drawback is again the lost of
temporal information over the system.
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In order to retain the time information but without the drawback
of its oscillatory nature, the wavelet transform of the decompo-
sition may be performed. The ”instantaneous frequencies” of
the signals are extracted and included into the objective func-
tion (4)in place of the right-singular vectors. The comparison
between the two formulations is shown in figure 5. The time
simulation is one second. The objective function without the
wavelet transform shows a quite ”horizontal” line connected to
a narrow valley that contains the global minimum. When the
wavelet transform is applied, the objective function decreases
from the start to the optimum, showing a large valley.
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The first part of each curve is zoomed in figure 6. The de-
crease of function in the case of the wavelet transform is very
smooth, which allows to reach easily the optimum of the func-
tion. On the other hand, the horizontal line is oscillating before
the narrow valley, which may compromise the efficiency of the
optimization procedure.
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In the previous sections only the first proper orthogonal mode
was included in the objective function. Since no external ex-
citation is applied, this mode contains more than ��� . of the
total amount of energy, which is sufficient for the identification
of the nonlinear parameter. Some tests have been performed
with more than one proper orthogonal mode and the same
conclusions than before can be formulated.

� 	�� � 	
� � �  � � �

In this paper, the proper orthogonal decomposition has been
used to identify parameters of nonlinear dynamical structures.
An optimization procedure based on the difference between
the experimental and simulated POM has been used. A nu-
merical example of a beam with a local nonlinear component
illustrates the method. The wavelet transform is then used to
improve the optimization procedure.

The extension of the technique to the optimization of several
parameters is straightforward. The method has been tested
only on simulated examples and will be verified on experimen-
tal data in the next future.
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