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SUMMARY: The restoring force surface method offers an efficient and reliable identification
of non-linear single-degree-of-freedom systems. The method may be extended to multi-
degree-of-freedom systems but by loosing the key advantage of the method which lies in the
two-dimensional representation for single-degree-of-freedom systems. An experimental
application of the restoring force surface method is considered in the present paper. The
structure investigated consists of wire rope isolators mounted between a load mass and a base
mass. These helical isolators were found to be characterised by a non-linear behaviour. The
results obtained are discussed in details and the advantages and drawbacks of the method are
underlined.
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INTRODUCTION

The importance of diagnosing, identifying and modelling non-linearity is recognised since a
long time but it is only recently that non-linear theory is beginning to be applied for structural
dynamic design. Identification of non-linear systems ranges from methods which simply
detect the presence or type of a non-linearity to those which seek to quantify the dynamic
behaviour through a mathematical model. In this latter category lies the non-parametric
scheme called the restoring force surface (RFS) method.

Masri and Caughey [1-2] laid down the foundations of the method and significant
improvements were brought about since the original papers. Al-Hadid and Wright proposed a
sensitivity approach for estimating the mass or modal mass [3]. Elaborated interpolation
procedure used to overcome the problem of an inadequately covered state plane were
presented by Worden and Tomlinson [4]. Duym and Schoukens designed optimised excitation
signals in order to guarantee the quality of the fit by uniformly covering the phase plane [5].
They also used a local non-parametric identification of the non-linear force [6]. Kerschen et
al. applied the method to beams characterised by bilinear and piecewise linear stiffness [7].

In this paper, the theoretical background of the RFS method is first recalled. Then, the method
is applied to the benchmark proposed by the VTT Technical Research Centre of Finland in the
framework of COST Action F3 working group on “Identification of non-linear systems”.



Finally, the results obtained using the RFS method are compared with those obtained by
Marchesiello et al. with the conditioned reverse path method [8].

RESTORING FORCE SURFACE (RFS) METHOD

The RFS method is based on Newton's second law :

)())(),(()( tptxtxftxm =+ &&& (1)

where )(tp  is the applied force and ),( xxf &  is the restoring force, i.e. a non-linear function of
the displacement and velocity. The time histories of the displacement and its derivatives, and
of the applied force are assumed to be measured. In practice, the data must be sampled
simultaneously at regular intervals. From equation (1), it is possible to find the restoring force
defined as iii xmpf &&−=  where subscript i  refers to the thi  sampled value. Thus, for each

sampling instant a triplet ),,( iii fxx &  is found, i.e. the value of the restoring force is known for
each point in the phase plane ),( ii xx & .

It is important to describe the system by a mathematical model. The usual way is to fit to the
data a model of the form :
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Least-squares parameter estimation can be used to obtain the values of the coefficients ijα . To

have a measure of the error between the measured value ix  and the predicted value ix̂ , the
mean-square error (MSE) indicator is defined as :
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where N is the total number of samples and 2
xσ  is the variance of the measured input.

Experience shows that an MSE value of less than 5% indicates good agreement while a value
of less than 1% reflects an excellent fit. To determine which terms are significant and which
terms can be safely discarded in equation (2), the significance factor is used :
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where 2
xσ  corresponds to the variance of the sum of all the terms of the model and 2

θσ  is the
variance of the considered term. Roughly speaking, the significance factor represents the
percentage of the contribution of the term to the model variance.

From the foregoing developments, it appears that the method requires to measure
displacement, velocity, acceleration and force time histories at each degree of freedom. A
pragmatic approach to the procedure demands that only one signal should be measured and



the other two should be estimated from it. Numerical integration and/or differentiation may be
adopted.

The differentiation can be carried out in the time domain or in the frequency domain. A
polynomial can be fitted to N  data points such that the point at which the derivative is
required is at the centre. The analytic derivative of the fitted polynomial is then computed.
This illustrates a possible way of differentiating in the time domain. However, it can be
shown that numerical differentiation leads to an inaccurate estimation of the acceleration.
Considerably more detailed discussion is available in reference [9].

The practical solution is to measure the acceleration and numerically integrate it to find
velocity and displacement. Various methods for achieving integration exist : trapezium rule,
Simpson’s rule, integration in the frequency domain, and so forth. There are two main
problems associated with the integration, i.e. the introduction of low- and high-frequency
components. The trapezium rule only suffers from the introduction of low-frequency
components and does not require the use of a low-pass filter. Furthermore, it is the simplest
integration process and offers saving of time. For these reasons, the trapezium rule is
considered throughout the paper.

Since the trapezium rule basically acts as an amplifier of the low-frequency components, the
integrated signals are to be high-pass filtered. It should be noted that high-pass filtering with
cut-off ) 2/( tNn ∆  is equivalent to a polynomial trend removal of order n  where N  is the
number of points and t∆  the sampling interval [9]. Accordingly, choosing a cut-off frequency
higher than 0 Hz immediately imposes the filtered signals to be of zero mean since a
polynomial trend of order 0, i.e. a constant, is removed. This leads to an inaccurate estimation
of velocity and displacement of asymmetrical systems [7].

DESCRIPTION OF THE BENCHMARK

The analysed data were chosen from those proposed by VTT Technical Research Centre of
Finland within the framework of the European COST action F3 working group on
"Identification of non-linear systems". The benchmark consists of wire rope isolators mounted
between the load mass and the base mass (see Fig. 1). The helical wire rope isolators were
found to be characterised by a non-linear behaviour.

The movement and forces experienced by isolators were measured. In particular, the
acceleration of the load mass 2x&& , the acceleration of the bottom plate bx1&& , the force F  and
the relative displacement between the top and bottom plates 12u  were measured. The
excitation produced by an electro-dynamic shaker corresponds to a white noise sequence,
low-pass filtered at 400 Hz. It is worth pointing out that several excitation levels were
considered going from 0.5 up to 8 Volts (V) and that a second test was carried out with
another load mass (5.8 kg instead of 2.2 kg).



Fig. 1: Wire rope isolators (VTT benchmark)

RESULTS OF THE IDENTIFICATION

The RFS method has been introduced in this paper for the identification of single-degree-of-
freedom systems while the structure under consideration is clearly a multi-degree-of-freedom
system. However, writing Newton’s second law for the load mass 2m  yields

0),(
1212

121222 =−−+
484 76
&&

484 76
&&

&u

b

u

b xxxxfxm (5)

This latter equation can be written in the equivalent form

bxmuufum 121212122 ),( &&&&& −=+ (6)

Equation (6) may be viewed as a single-degree-of-freedom system with a base acceleration.

Prior to the identification, the RFS approach offers a very interesting way of visualising the
non-linearity through the stiffness and damping curves. The stiffness (damping) curve
represents the evolution of the restoring force as a function of the displacement (velocity)
only. Fig. 2 illustrates the stiffness curves for the different excitation levels considered. The
restoring forces corresponding to the 0.5 V, 1 V and 2 V levels [Fig. 2(a), Fig. 2(b), Fig. 2(c)]
may be assumed to be linear since the stiffness curves are almost straight lines. However, the
data corresponding to the 1 V level [Fig 2(b)] will not be considered since the stiffness curve
is very noisy. The non-linear behaviour may be observed for the remaining levels, i.e. 4 V, 8
V and 4 V (m2=5.8 kg) [Fig. 2(d), Fig. 2(e), Fig. 2(f)]. It is also observed that the non-
linearity is characterised by a softening effect. Another feature to underline is the symmetry of
the stiffness curves which means that the non-linear stiffness is odd. The damping curves
could also be represented. But due to the slight participation of the damping in the system
response, these curves are quite noisy and the damping is assumed to be linear in the
following.
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The foregoing procedure helped in the decision of the model in the sense that a softening
symmetrical non-linearity in stiffness has been detected. Accordingly, a possible model for
the restoring force may be written as follows

)(sign),( 121212121212 uucubauuuf α++= && (7)

where parameters α and  , , cba  have to be estimated. The RFS method allows to identify
cba  and  ,  using a least-squares scheme provided that the non-linearity exponent α  is known.

Since it is not the case, the MSE of the identification procedure is computed for different
values of α  (Fig. 3). Several comments can be made regarding this figure:

1. A peak appears for a value of α  equal to 1 which means that a linear model is fitted to the
data. Thus, a linear model is not sufficient to capture the dynamics since the MSE is much
smaller for other values of the exponent.

2. The MSE reaches its minimum value for α  equal to 1.5. This value, corresponding to an
MSE equal to 2.11 %, is adopted for the identification procedure.
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Fig.2: Stiffness curves (a) 0.5 V (b) 1 V (c) 2 V (d) 4 V (e) 8 V (f) 4 V (m2=5.8 kg)



0 1 2 3 4
2

2.5

3

3.5

4

4.5

α
M

S
E

 (%
)

Fig. 3: Evolution of the MSE as a function of the non-linearity exponent

It should be noted that the identification procedure considers the data for all excitation levels
in a single step. The parameters of the identified model are given in Table 1. The negative
sign corresponding to the non-linear stiffness corroborates the presence of a softening effect.
To confirm that the identification has provided reliable results, the measured restoring force is
compared to the restoring force computed by the identified model. Fig. 4 represents this
comparison for two levels, i.e. 4 V and 8 V levels. It can clearly be seen that the fit is almost
perfect for the 4 V level while for the 8 V, some slight distortions are present.

There is a simple explanation to these distortions. Fig. 5 compares the stiffness curves for the
4 V and 8 V levels. This figure underlines that the superimposition between both curves is not
perfect while it should. This is probably due to the measurement noise as well as errors
introduced by the signal processing.

Table 1: Identification results

(N/m) a (Ns/m) b )(N/m 1.5c α
Identified

parameters 1.09 106 183.44 -8.52 107 1.5
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Fig. 4: Comparison between the measured and computed restoring forces (a) 4 V (b) 8 V



-4 -2 0 2 4 6
x 10-5

-20

-10

0

10

20

30

Displacement (m)
R

es
to

rin
g 

fo
rc

e 
(N

)

4 V
8 V

Fig. 5: Comparison between the stiffness curves for the 4 V and 8 V levels

COMPARISON WITH THE CONDITIONED REVERSE PATH (CRP) METHOD

The wire rope isolators were previously studied at the University of Torino using the
conditioned reverse path (CRP) method [8]. This method was introduced by Richards and
Singh [10] and is now emerging as a useful tool for the identification of multi-degree-of-
freedom non-linear systems. The description of this technique is beyond the scope of this
paper and the reader is referred to [10] for further information.

Although the CRP and RFS methods are different (frequency domain versus time domain),
similar results were obtained:

1. the same non-linearity was identified, i.e. a softening )(sign 12
5.1

12 uu  non-linearity ;
2. on the one hand, the CRP method identified a value equal to –5.5 107 N/m1.5 which is

slightly higher than the one found with the RFS method (–8.5 107 N/m1.5). On the other
hand, the frequency of the underlying linear system is slower in the CRP method (108 Hz
versus 112 Hz). Thus, it seems that the softening effect due to a lower linear frequency in
the CRP method compensates for the stiffening effect due to a less negative non-linear
stiffness.

CONCLUSION

The identification of wire rope isolators using the restoring force surface method has been
considered in the present paper. Basically, the method is defined for single-degree-of-freedom
systems. However, the experimental application has clearly demonstrated that the method is
also well suited for non-linearity localised between two degree-of-freedom. The restoring
force surface method is appealing by its simplicity and reliability but the need for numerical
integration and for filtering may introduce errors in the estimation of signals.
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