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Abstract The design of experiments (DOE) is a valuable method for studying the
influence of one or more factors on the outcome of computer experiments. There
is no limit to the number of times a computer experiment can be run, but they are
often time-consuming. Moreover, the number of parameters in a computer model
is often very large and the range of variation for each of these parameters is often
quite extensive. The DOE provides the statistical tools necessary for choosing a
minimum amount of parameter combinations resulting in as much information as
possible about the computer model. In this chapter, several designs and analysing
methods are explained. At the end of the chapter, these designs and methods are
applied to a mechanobiological model describing tooth movement.
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1 Introduction

The design of experiments (DOE) is a valuable method for studying the influence
of one or more factors on physical experiments (see tutorial [19]). Physical exper-
iments can often only be run a limited number of times and can be expensive and
time-consuming. Therefore, when performing a sensitivity analysis on a model with
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Liège, Belgium e-mail: Liesbet.Geris@ulg.ac.be

1



2 A. Van Schepdael, A. Carlier and L. Geris

many parameters, limiting the number of parameter combinations to be studied is
very important. The basic problem of designing such experiments is deciding which
factor combinations to examine. The design of experiments (DOE) - introduced by
Fisher [6] - was developed for this purpose.

There is no limit to the number of times a computer experiment can be run, but
they are often time-consuming. Moreover, the number of parameters in a computer
model is often very large and the range of variation for each of these parameters
is often larger than in physical experiments. Although there are fundamental differ-
ences between physical experiments and computer simulations, the techniques of
DOE that were originally developed for physical experimentation can also be used
to investigate the sensitivity of a computer model to its parameters with a minimum
of computational time.

2 Theory

Running a sensitivity analysis of a computer model using the DOE consists of three
steps. Firstly, a suitable design, meaning a number of parameter combinations for
which we will run the model, has to be set up. The purpose of this design is to get as
much information as possible about the influence of the relevant parameters on the
outcome of the model at minimal cost. In computer models, this cost is usually the
computational time, which is kept low by limiting the number of parameter combi-
nations that is studied. Next, simulations are run with these parameter combinations
and finally, the results are analysed and conclusions are drawn [23, 24].

2.1 Available designs

A number of designs are available to conduct a sensitivity analysis [23, 24, 31]. This
section provides an overview of the different techniques that are most commonly
found in the biomedical literature.

2.1.1 OAT-design

The simplest design is a one-at-a-time (OAT) analysis, where each parameter is var-
ied individually. A standard OAT-design uses a reference condition and then changes
each parameter individually to a higher and a lower value, while keeping other pa-
rameters at the reference value. The difference between the outcome for the high
and the low value is then used as a measure of the influence of the parameter on
the system. The main advantage of this design is its simplicity and the fact that it
only requires 2M experiments, with M being the number of parameters studied. It is
however impossible to study interactions between parameters, and the effect of the
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parameters resulting from this analysis might be different when choosing a different
reference condition [12]. The OAT analysis was used by Lacroix [17] and Geris et
al. [8] to assess the influence of the value and duration of the initial and boundary
conditions on the simulation results of a fracture healing model.

2.1.2 Factorial designs

In factorial designs, the parameters are assigned different values. In two-level de-
signs, two different levels, a high and a low level, are chosen. Several combinations
of parameter values are then compared, changing various parameters at the same
time. In a two-level full factorial design, all possible combinations are examined,
requiring 2M experiments (see figure 1a). In three-level designs, requiring 3M runs,
the outcome of the model is also studied with parameters at an intermediate level
(figure 1b). The advantage is that the effect of each parameter can be studied, and
that interactions between the factors can be examined. Furthermore, no reference
condition is required, giving the results more reliability. The main disadvantage is
the computational cost [23, 31]. The design requires 2M runs, which becomes very
high when the model contains many parameters. With 30 parameters, this would
require 1.07×109 runs.

In fractional factorial designs, not all of these 2M or 3M combinations are exam-
ined (figure 1c). In a two-level full fractional factorial design with six parameters,
only six out of 64 runs are used to estimate the main effects, and 15 are used to es-
timate the two-factor interactions. The remaining runs are used to calculate higher
order interactions [24]. Fractional factorial designs are based on the principle that,
most likely, at some point the higher order interactions become negligible. It is thus
not necessary to examine all possible combinations of parameters, but it is sufficient
to choose a suitable set of combinations [24, 31]. By omitting several combinations
compared to the full factorial design, the amount of information gained from the
sensitivity analysis decreases. The number of runs remains however limited result-
ing in a significant computational gain. Depending upon the number of experiments,
several interactions will become indistinguishable. When using a minimum amount
of experiments, only the effect of each parameter separately, the main effects, can
be determined. When increasing the number of runs, two-factor interactions can be
examined. Generally speaking, few experiments worry about higher order interac-
tions. Fractional factorial designs are classified according to the level of information
they provide. A resolution III design is set up in such way that the main effects are
distinguishable, but may be affected by one or more two-factor interactions. These
must thus assumed to be zero in order for the results to be meaningful. In a reso-
lution IV design, the main effects can be distinguished from the other main effects
and the two-factor interactions, but the two-factor interactions are confounded with
each other [24, 23, 31]. A fractional factorial design is thus a trade-off between
computational cost and accuracy, and are most frequently used to identify a subset
of parameters that is most important and needs to be studied more extensively [24].



4 A. Van Schepdael, A. Carlier and L. Geris

The main disadvantage is that the parameters are only studied at several levels and
the values are not spread out over the entire parameter space.

Several other factorial designs are possible; Plackett-Burman designs, Cotter de-
signs and mixed-level designs offer alternatives to standard fractional factorial de-
signs, each having its own specific advantages and disadvantages. Isaksson et al.
[11] determined, for example the most important cellular characteristics for fracture
healing using a resolution IV fractional factorial design. Such design was also used
by Malandrino et al. [21] to analyse the influence of six material properties on the
displacement, fluid pore pressure and velocity fields in the L3-L4 lumbar interver-
tebral disc.

2.1.3 Taguchi’s design

Taguchi’s design was originally developed to assist in quality improvement during
the development of a product or process. In a manufacturing process, for example,
there are control factors and noise factors. The latter cause a variability in the final
products and are usually uncontrollable. The goal of robust parameter design is the
find the levels of the control factors that are least influenced by the noise factors
[23]. In the Taguchi parameter design methodology one orthogonal design is chosen
for the control factors (inner array) and one design is selected for the noise factors
(outer array).

Taguchi’s methodology has received a lot of attention in statistical literature. His
philosophy was very original, but the implementation and technical nature of data
analysis has received some criticism. Firstly, it does not allow the estimation of in-
teraction terms. Secondly, some of the designs are empirically determined, but are
suboptimal compared to rigorous alternatives such as fractional factorial designs
[23]. Finally, if the Taguchi approach works and yields good results, it is still not
clear what caused the result because of the aliasing of critical interactions. In other
words, the problem may be solved short-term, without gaining any long-term pro-
cess knowledge. Despite this criticism, Taguchi’s approach is often used in biomed-
ical literature because of its simplicity [2, 18, 38].

2.1.4 Space-filling designs

In space-filling designs, the parameter combinations are spread out over the en-
tire parameter space, enabling the design to capture more complex behaviour [33].
This approach is particularly useful for deterministic or near deterministic systems,
such as computer simulations. To achieve an effective spreading of the parameters,
several sampling methods are available. One of the most used methods is latin hy-
percube sampling (LHD). This method can be most easily explained by using the
very simple example of a 2D experimental region, representing a system with 2 pa-
rameters x1 and x2 (figure 1d). For a design with N runs, the region is divided into N
equally spaced rows and columns, creating N2 cells. The points are then spread out,
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so that each row and column contains exactly one point. The main advantage of this
method is that a latin hypercube design is computationally cheap to generate and
that it can deal with a high number of parameters [33, 5]. The main disadvantage
however, is that the design is not flexible with regard to adding or excluding runs.
By changing the number of runs, the condition that each row and column contains
exactly one point is no longer met. Furthermore, LHD is well suited for monotonic
functions, but might not be adequate for other systems [5].Finally, LHD designs are
not necessarily space-filling (figure 1e). More elaborate algorithms which aim at en-
suring the space-filling property of latin-hypercube designs, are described by Fang
et al. [5].

(a) (b) (c)

x
1

x
2

(d) (e) (f)

Fig. 1: Schematical overview of different designs for two factors x1 and x2. a A
two-level full factorial design. b A three-level full factorial design. c A three-level
fractional factorial design. d A latin hypercube design with nine runs. The parameter
space is divided into 92 = 81 cells, and one cell on each row and column is chosen.
e A latin hypercube design with nine runs. This example shows that a LHD design
is not necessarily space-filling. f A uniform design. Note that the factorial designs
used discrete values of the parameters, while the LHD and uniform designs spread
out the points in space.

Another method to achieve an effective spreading in space-filling designs is uni-
form sampling [4, 5]. In uniform designs, the parameters are spread out over space
as uniformly as possible (figure 1f). The higher the number of runs, the better the
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spreading will be. Uniform designs are found to be efficient and robust, easy to un-
derstand and convenient, but computationally very demanding. Although this is a
disadvantage, the fact that uniform designs cope well with the adding and removing
of parameter combinations to the design makes them very useful in biomedical ap-
plications. For example, Carlier et al. [1] used a latin hypercube and uniform design
to determine the most influential parameters of a calcium model that describes the
effect of CaP biomaterials on the activity of osteogenic cells.

2.2 Methods for analysing the results of a design

Once a suitable design has been set up and computer simulations are run with the
different parameter combinations, the results have to be analysed. Depending on
the design and the goal of the analysis several methods are available. Analysis of
variance (ANOVA) is particularly suited for analysing the outcome of a (full or
fractional) factorial design, giving an indication of the importance of the investi-
gated parameters. For the more complex space-filling designs, Gaussian processes
are more appropriate, as they not only determine the importance of a parameter
but also giving an estimate of the exact effect of varying a particular parameter on
the outcome of the model. That way, more complex and non-linear effects can be
revealed.

2.2.1 Analysis of variance (ANOVA)

Analysis of variance (ANOVA) can be used to investigate the result of a full or
fractional factorial design. Firstly, the total variation in the output is modelled by
calculating the total sum of squares of the deviation about the mean (SST ) [12].

SST =
N

∑
i=1

[yi − ȳ]2 (1)

In this equation, N is the number of runs, yi the output for the ith run, and ȳ the
overall mean of the output. The influence of one parameter is determined by SSF :

SSF =
L

∑
i=1

NF,i[ȳF,i − ȳ]2, (2)

where L is the number of levels used for each parameter, NF,i is the number of runs
at each level of each factor and ȳF,i is the mean output at each level of each factor.
The percentage of the total sum of square,

%T SS = [SSF/SST ]×100% (3)
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is a measure of importance for the parameter to the defined outcome [2].

2.2.2 Gaussian process

Gaussian processes not only estimate the importance of individual parameters, but
also the influence of the parameters on the outcome of a model. Given the output
data tN = {ti}N

i=1 resulting from a combination XN = {xi}N
i=1 of input parameters,

determined in the set-up of the design, Gaussian processes are used to predict the
output t∗ for a certain combination x∗ of input parameters [20]. To make this predic-
tion, the output data are studied (figure 2), and a function y(x) is searched, so that
y(xi) approaches the measured data ti as closely as possible. In linear regression, the
function y(x) is assumed to be linear and usually least square methods are applied
to find the most likely result for y(x). This analysis method however implies that
assumptions have to be made regarding the form of the function, prior to analysing
the data.

x1 x2 xNx*
x

t

t1

t2

t3

t*

y(x)

Fig. 2: Schematic representation of a Gaussian process on a system with output
t, depending on one parameter x. The system is analysed for parameter values
{x1,x2, ...,xN}, for which output values {t1, t2, ..., tN} are obtained. In order to find
the output value t∗ resulting from parameter value x∗, the Gaussian process searches
for a function y(x) which can explain the output values {t1, t2, ..., tN} the best. t∗ is
then found as t∗ = y(x∗).

A Gaussian process starts from the following posterior probability function:

P(y(x)|tN ,XN) =
P(tN |y(x),XN)P(y(x))

P(tN |XN)
. (4)

The first factor on the right hand side of (4), P(tN |y(x),XN), is the probability of
the measured data given the function y(x), and the second factor P(y(x)) is the prior
distribution on functions assumed by the model. In linear regression, this prior spec-
ifies the form of the function (e.g.: y = ax+b) , and might put some restrictions on
the parameters (e.g.: a ̸= 0). The idea of Gaussian process modelling is to place a
prior P(y(x)) directly on the space of functions, without making assumptions on the
form of the function. Just as a Gaussian distribution is fully defined by the mean
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and the covariance matrix, a Gaussian process is defined by a mean function and a
covariance function. The mean is thus a function µ(x), which is often assumed to
be the zero function, and the covariance is a function C(x,x′). The only restriction
on the covariance function is that it must be positive semi-definite. Several func-
tions have been used widely, and proven valuable in literature. To get a better grasp
on what exactly the covariance function represents and how a choice between the
different available functions has to be made, an intuitive approach to developing
the covariance function is explained below. A fully detailed and more theoretical
approach can be found in Mackay [20].

Consider a system dependent upon one parameter x, with N parameter values xi,
and a parametrisation of y(x) using a set of basis functions {ϕh(x)}H

h=1. The function
y(x) can then be written as:

y(x,w) =
H

∑
h=1

whϕh(x). (5)

As basis functions {ϕh(x)}, radial basis functions centred at fixed points {ch} are
chosen (figure 3).

ϕh(x) = e−
[x−ch ]

2

2r2 (6)

Using the input points {xi} and the H basis functions ϕh, an N ×H matrix R can be
defined.

Rih = ϕh(xi) (7)

For a certain set of parameters w, the function y(x) then has the values yN = {yi} at
the input points xi.

yi =
H

∑
h=1

whϕh(xi) =
H

∑
h=1

whRih (8)

Fig. 3: Radial basis functions centred at ch = 10, used for the parametrisation of
y(x). The parameter r is a length scale defining the width of the basis function. A
larger value of r results in a wider basis function and a smoother approximation of
the function y(x).
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In parametric regression methods, it is normally assumed that the prior distribu-
tion of the parameters w is Gaussian with a zero mean.

P(w)∼ N (0,σ2
wI) (9)

In that case, yN , being a linear function of w is also Gaussian distributed with mean
zero and covariance matrix Q.

Q =
⟨
yNyN

T ⟩= σ2
wRRT (10)

If each data point tn is assumed to differ by additive Gaussian noise of variance σ2
v

from the corresponding function value y(xi), then:

P(t) ∼ N (0,Q+σ2
v I)

∼ N (0,C). (11)

Now the assumption is made that the radial basis functions are uniformly spaced,
that H → ∞ and that σ2

w = S/(∆H), where ∆H is the number of base functions per
unit length of the x-axis. The summation over h then becomes an integral and the
(i, j) entry of Q equals:

Qi j =
√

πr2Se−
[x j−xi]

2

4r2 . (12)

The covariance function C(x,x′) of the Gaussian process is thus related to the basis
functions chosen in the model. The parameter r is a length parameter describing
the width of the basis function. For a high value of r, the basis functions are wider,
implying a higher correlation of the values of y(x) at input points xi and x j, resulting
in a smoother function.

As mentioned before, several forms of the covariance function are possible. The
first one used is the Gaussian or squared exponential covariance function.

Qi j = σ2e−∑M
m=1 θm[xim−x jm]

2
= σ2

M

∏
m=1

eθm[xim−x jm]
2

(13)

The summation in (13) is a result of the M−dimensional nature of the parameter
combinations, which has not been taken into account in the intuitive approach, but
is reintroduced here. The parameter 1/θm, corresponding to parameter m, is related
to the length scale r described above. A very large number of θm implies a short
length scale, indicating the function value will change significantly when changing
the parameter. A value of θm = 0 implies an infinite length scale, meaning y is a
constant function of that input.

The second form for the covariance function is the cubic correlation covariance
function. The covariance matrix is composed of the following elements:

Qi j = σ2
M

∏
m=1

ρ(di jmθm), (14)
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where

di jm = xim − x jm (15)

ρ(dθ) =


1−6[dθ ]2 +6[|d|θ ]3, |d| ≤ 1

2θ
2[1−|d|θ ]3, 1

2θ ≤ |d| ≤ 1
θ

0, 1
θ ≤ |d|.

(16)

Equation (16) shows that for a certain distance di jm between the points xim and x jm
the covariance function becomes zero, meaning that the values of the output at these
locations are not correlated. This allows the cubic covariance function to capture
variations on smaller length scales and include outliers in the model.

The regression process now consists of selecting the parameters {θm,σ2,σ2
v }.

This is done by maximizing the following equation:

M = log p(tN |XN ,{θm,σ2,σ2
v }) =−1

2
tN

T C−1tN − 1
2

log |C|− n
2

log2π (17)

It should be noted that Gaussian processes are not designed to actually find a
specific function y(x) that fits the data best. They are designed to make predictions
of the outcome for a new input point x∗, without specifying the actual function y(x)
that was used to reach that conclusion. For every input x∗, the result of the Gaussian
process will be a mean t̄∗ and a variance σ2

t̄∗ on the prediction. Using

C∗ = [C(x∗,x1)C(x∗,x2) · · ·C(x∗,xN)] and C∗∗ =C(x∗,x∗), (18)

the mean and variance of t∗ become [3]:

P(t∗|tN) ∼ N (t̄∗,σ2
t∗)

∼ N (C∗C−1tN ,C∗∗−C∗C−1CT
∗ ). (19)

The result of a Gaussian process regression are usually visualised by plotting the
mean t̄∗ as a function of the different inputs xm and adding a confidence interval to
the graph, calculated by using the variance σ2

t∗ (figure 4).

2.3 Interpretation of the results

After statistically processing the simulation outcomes with ANOVA or Gaussian
processes, the most influential parameters and possible interactions between param-
eters can be determined. Moreover, a biological interpretation of the predictions
might lead to a greater understanding of the modelled processes at hand. Remark,
however, that the results of the sensitivity analysis are valid within the chosen pa-
rameter as well as response space. Indeed, if the parameter ranges or the responses
would be altered, different results could be obtained. Moreover, DOE is a statistical
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Fig. 4: Visualisation of the results of a Gaussian process. The horizontal axis shows
the parameter value, the vertical axis shows the output value predicted by the Gaus-
sian process. For every parameter value, the predicted output has a mean (solid line)
and a confidence interval (dashed line).

tool implying that a larger number of runs will provide the statistical model with
more data thereby allowing more accurate predictions. It is instructive to test the
statistical predictions by running the original model with the according parameter
values in order to test whether the examined region was correctly sampled. Finally,
every design and analysis method has its pros and cons. If little is known about pos-
sible non-linearities, interactions and monotonicity of the model being studied, it
might be informative to compare the results of different designs and analysis meth-
ods.

3 Application to a mechanobiological model of tooth movement

This section demonstrates the techniques described previously by applying them to
a mechanobiological model describing tooth movement. Progress in medicine and
higher expectation of quality of life have led to a higher demand for several dental
and medical treatments [30], making it more and more common for other medi-
cal conditions needing to be taken into account by the orthodontist when planning
orthodontic treatment. During treatment, tooth displacement is achieved by apply-
ing orthodontic forces to the tooth. Under the influence of these forces, the pressure
side of the tooth root will experience bone resorption while bone formation will take
place on the tension side. The coordination of these two processes through cellular
communication results in permanent tooth displacement through the alveolar bone.
Together with experiments, computer models might lead to a better understanding
of orthodontic treatment and the pathologies affecting the outcome. The model anal-
ysed by DOE in this section is a mechanobiological model using partial differential
equations to describe cell densities, growth factor concentrations and matrix densi-
ties occurring during orthodontic tooth movement and was presented previously by
the authors [34].
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3.1 Model equations

The mechanobiological model consists of a set of nine coupled non-linear partial
differential equations, of the taxis-diffusion-reaction (TDR) type. The equations
describe the concentration of various cells, growth factors, cytokines and matrix-
components. The periodontal ligament (PDL) consists of collagen fibres (m f ) and
contains a large amount of fibroblasts (c f ). The alveolar bone consists of mineral-
ized collagen, with mm representing the degree of mineralization of the collagen.
The bone has a small concentration of osteoblasts (cb) and osteoclasts (cl), con-
stantly remodelling and renewing the bone. To coordinate bone remodelling, osteo-
clasts, osteoblasts and fibroblasts communicate through the RANKL-RANK-OPG
signalling pathway. In the model, RANKL (gr = grb + gr f ) is produced by fibrob-
lasts (gr f ) and osteoblasts (grb), while OPG (go) is produced by osteoblasts only.
The osteogenic differentiation of mesenchymal stem cells into osteoblasts is regu-
lated by active TGF-β (gb), also produced by osteoblasts and fibroblasts. Multinu-
cleated osteoclasts are formed through the fusion of hematopoietic stem cells, which
are present in the vascular matrix in the PDL and the bone.

Fibroblasts are modelled to respond to mechanical stretching by producing the
osteogenic growth factor TGF-β , along with other osteogenic factors of the TGF-β
superfamily [36, 14, 22, 27]. The upregulation of the TGF-β production results in
the appearance of a high number of osteoblasts in and around the PDL. This leads to
bone formation in the tension zones. Fibroblasts respond to compression by upreg-
ulating the production of RANKL [13, 25, 37, 15]. This results in a higher number
of osteoclasts, which start resorbing the alveolar bone, making it possible for the
tooth to move. A schematic overview of the processes captured by the model can be
found in figure 5. More information concerning the biological assumptions made in
this model can be found in Van Schepdael et al. [34, 35] and a more comprehensive
overview of the biology of tooth movement can be found in Garant [7], Krishnan
and Davidovitch [16, 15] and Henneman et al. [10].

The specific equations for all nine variables are represented below. More infor-
mation on the parameters, equations and initial conditions can be found in Van
Schepdael et al. [34]. An overview of the origin and value of all parameters can
be found in Table 1.

∂mc

∂ t
= Pcs[1−κcmc]cb︸ ︷︷ ︸

production by osteoblasts

+Pcs f [1−κc f mc]c f︸ ︷︷ ︸
production by fibroblasts

(20)

∂mm

∂ t
= Pms[1−mm]cb︸ ︷︷ ︸

mineralisation by osteoblasts

− QmdclH(mm)︸ ︷︷ ︸
demineralisation by osteoclasts

(21)

∂cb

∂ t
=

Y11gb

H11 +gb
[1−mm]H(m̄m −mbt)︸ ︷︷ ︸

differentiation from MSCs

+Ab0mmcb[1−αbcb]︸ ︷︷ ︸
proliferation

− dbcb︸︷︷︸
apoptosis

(22)
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Fig. 5: Schematic overview of the most important cells and signalling pathways in-
volved in orthodontic tooth movement. a In homeostasis, the fibroblast is the most
abundant cell in the PDL, while osteoclasts and osteoblasts are present in the alve-
olar bone. Osteoblasts are derived from MSC’s, which differentiate under the influ-
ence of TGF-β . Osteoclasts are derived from HSC’s, which express RANK on their
membranes. When RANK binds to RANKL, HSC’s are stimulated to fuse into mult-
inucleated osteoclasts. OPG is a soluble decoy operator that also binds to RANKL,
thus preventing the formation of osteoclasts. b - c In response to tension, fibroblasts
express TGF-β . As a response, MSC’s differentiate into osteoblasts, which start
forming new bone. d - e In response to compression, fibroblasts express RANKL,
stimulating osteoclast formation. Osteoclasts attach to the bone surface and bone
resorption starts.
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∂cl

∂ t
= Y2gr︸︷︷︸

fusion from HSCs

− [D2 +H2gb]dl0cl︸ ︷︷ ︸
apoptosis

−∇ · [Cmhcl∇mm]︸ ︷︷ ︸
attachment to bone matrix

(23)

∂c f

∂ t
= A f 0

[
1+A f s |S|

]
mcc f [1−α f c f ]︸ ︷︷ ︸

proliferation

−d f mmc f︸ ︷︷ ︸
apoptosis

+Φ∇ ·
[
D f ∇c f

]︸ ︷︷ ︸
diffusion

(24)

∂gb

∂ t
= Ggb[1−αggb]cb︸ ︷︷ ︸

production by osteoblasts

+Egb[S ·H(S)]c f︸ ︷︷ ︸
production by fibroblasts

− dgbgb︸ ︷︷ ︸
denaturation

+∇ ·
[
Dgb∇gb

]︸ ︷︷ ︸
binding to OPG

(25)

∂grb

∂ t
= Prs

[
1− grb

R1cb

]
︸ ︷︷ ︸

production by fibroblasts

−dgrgrb︸ ︷︷ ︸
denaturation

−B1rgrbgo︸ ︷︷ ︸
binding to OPG

(26)

∂gr f

∂ t
= Egr f [[H(S)−1]S]c f︸ ︷︷ ︸

production by fibroblasts

−dgrgr f︸ ︷︷ ︸
denaturation

−B1rgr f go︸ ︷︷ ︸
binding to OPG

+∇ ·
[

D f

c f
gr f ∇c f

]
︸ ︷︷ ︸

moving with fibroblasts

− d f mmgr f︸ ︷︷ ︸
apoptosis of fibroblasts

(27)

∂go

∂ t
= Pos[1−κogo]cb︸ ︷︷ ︸

production by osteoblasts

− dgogo︸ ︷︷ ︸
denaturation

− B1ogrgo︸ ︷︷ ︸
binding to RANKL

+∇ · [Dgo∇go]︸ ︷︷ ︸
diffusion

(28)

The numerical simulations were performed on a domain that consists of two
rectangular parts that represent small sections of the tooth root as shown in figure 6,
and are located about halfway between the tooth crown and the tooth apex.

Table 2 shows the initial values of all variables in the PDL and the bone. To
prevent the appearance of numerical instabilities, continuous initial conditions were
used to model the boundary between PDL and alveolar bone. To simulate an abrupt,
but continuous, transition from PDL to alveolar bone, the following function was
used.

ci(t = 0) =
c0

i,bone − c0
i,PDL

π
arctan(D · [x− xS])+

c0
i,bone − c0

i,PDL

2
+ c0

i,PDL (29)

The parameter D is dependent upon the desired steepness of the function, xS is the
x-coordinate of the boundary between PDL and alveolar bone, and c0

i,bone and c0
i,PDL

are the initial conditions of the variable in the alveolar bone and the PDL.
The model parameters and variables were non-dimensionalised for the numer-

ical calculations. A typical length scale during orthodontic tooth movement is
the thickness of the periodontal ligament, L0 = 0.2mm [29] and a typical time
scale of T0 = 1day was chosen. A representative concentration of collagen con-
tent in the tissue is m0 = 0.1g/ml [9]. Typical growth factor concentrations are in
the order of magnitude of g0 = 100ng/ml, and a non-dimensionalisation value of
c0 = 106 cells/ml was used for the cell densities [9]. All results and parameter val-
ues are presented in their undimensionalised value, unless mentioned otherwise.
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Table 1: Overview of the parameters of the mechanobiological model, their value,
unit and origin. (1) Derived from Geris et al. [9]. (2) Derived from Pivonka et al.
[28]. (3) Derived from Pfeilschifter et al. [26] (4) Derived from Sandberg et al. [32].

Parameter Value Unit Origin

Pms 3.42×10−5 ml cells−1 day−1 From steady state conditions
Qmd 3.6×10−5 ml cells−1 day−1 (1)
Pcs 2×10−7 gcells−1 day−1 (1)
κc 13.55 ml g−1 (1)
Pcs f 2×10−8 gcells−1 day−1 (1)
κc f 10 ml g−1 (1)
Ab0 0.54 day−1 (1) and stability analysis
αb 2×10−5 ml cells−1 (1) and stability analysis
db 0.18 day−1 (1)
Y11 3.27×108 cellsml−1 day−1 (1)
H11 10 ngml−1 (1)
mbt 0.3 [−] Estimated
Cmh 3.06×10−2 mm2 day−1 Estimated
Y2 551.6 cellsng−1 day−1 (2)
dl0 0.7 day−1 Using life span of osteoclast
D f 0.25 mm2 day−1 (1)
A f 0 1.06 ml g−1 day−1 (1)
A f s 10 [−] Estimated
α f 1×10−6 ml cells−1 (1)
d f 0.11 day−1 From steady state conditions
Dgb 6.13×10−2 mm2 day−1 (1)
Ggb 6.03×10−5 ngcells−1 day−1 (1)
αg 0.1 ml ng−1 (3), (4)
Egb 1×10−4 ngcells−1 day−1 Estimated
dgb 100 day−1 (1)
Prs 3440 ngml−1 day−1 (2)
R1 9.15×10−5 ngcells−1 (2)
dgr 10.05 day−1 (2)
B1r 2.5×10−3 ml ng−1 day−1 (2)
B1o 1.67×10−3 ml ng−1 day−1 (2)
Egr f 1×10−3 ngcells−1 day−1 Estimated
Dgo 4.58×10−2 mm2 day−1 Using molecular weight of OPG
Pos 6.83×10−3 ngcells−1 day−1 (2)
κo 8.3×10−8 ml ng−1 (2)
dgo 35 day−1 (2)
D2 248.5 [−] From H2
H2 48.6 ml ng−1 (2)
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u

Model Domain

(a)

f

(b)

f

(c)

Alveolar Bone

PDL

Tooth Root

Fig. 6: Schematic representation of the model domain. (a) The model domain con-
sists of two rectangular parts that are located on the left and the right side of the
tooth root. For the simulations, a horizontal translation u is applied to the root. The
left part of the domain will thus experience bone formation, the right part experi-
ences bone resorption. (b) Detail of the formation side of the model domain at the
start of force application. (c) Detail of the formation side of the model domain at the
end of the simulation. Due to bone formation, more alveolar bone is now present,
and the PDL has shifted to the right.

Table 2: Initial conditions applied to the model domain. The initial values and units
of all variables in the PDL, the alveolar bone and the root are shown.

PDL Alveolar Bone Root Unit

mm 0 0.9 0 [−]
mc 1 0.075 0 gml−1

cb 0 3.2×104 0 cellsml−1

cl 0 2.3×103 0 cellsml−1

c f 1×106 0 0 cellsml−1

gb 0 2×10−2 0 ngml−1

grb 0 2.9 0 ngml−1

gr f 0 0 0 ngml−1

go 0 6.2 0 ngml−1
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3.2 Model analysis

The complexity of the biological processes occurring during orthodontic tooth
movement results in a high number of parameters in the mechanobiological model.
When performing numerical analysis using such models, it is important to study the
behaviour of the model, and its parameters, more closely. That way, stability, nu-
merical accuracy and convergence can be ensured (see also Chapter 2 by Kirk et al.
elsewhere in this volume).

The model described in the previous section depends upon 37 parameters, al-
though not all of these are independent. To make good predictions, all the parame-
ters have to be determined as accurately as possible, which is not an easy task (see
also Chapter 11 by Mannakee et al. elsewhere in this volume). Some of the param-
eters do not represent physical processes and cannot be measured. Others represent
a combination of several processes, making it more difficult to measure them ex-
perimentally. Some of the parameter values are based on experimental values, but
although some experiments were conducted in vivo, most of the estimations are
based on in vitro experimental results.

A sensitivity analysis can be used to determine the importance of the parameters,
as well as important interactions between them. Secondly, a sensitivity analysis can
also be used to simplify the model by eliminating insignificant model parameters
(see also Chapter 12 by Eriksson et al. elsewhere in this volume). Finally, if un-
expected behaviour of the model surfaces during the sensitivity analysis, this be-
haviour can be studied more closely and corrected if necessary.

Since a space-filling design for the full model would be computationally very
demanding and very difficult to interpret, a fractional factorial design was performed
first to estimate the importance of the parameters. The results were analysed using
ANOVA analysis.

The most important parameters were then studied more closely using space-
filling designs. As will be explained in Sect. 3.2.1, some of the parameter combina-
tions will create instabilities in the mechanobiological model or predict physically
impossible situations and have to be excluded from the analysis. Furthermore, the
tooth model is highly non-linear. Therefore, latin hypercube designs are probably
not the best choice for the analysis, while the fact that uniform designs cope well
with the adding and removing of parameter combinations makes them a very good
choice to examine the tooth model.

Three different uniform designs were performed: one containing the ten most
important parameters, one containing the 12 parameters that were most important to
the equilibrium conditions in the PDL and the bone, and one containing the 12 pa-
rameters that had the highest influence on bone formation and resorption. The results
of all uniform designs were analysed using a Gaussian process with a Gaussian and
a cubic covariance function. The designs were generated and analysed using JMP
(SAS Institute Inc., Cary, North Carolina, USA).
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3.2.1 Sensitivity analysis using a fractional factorial design

A two-level fractional factorial design was used to identify the most important pa-
rameters of the model. Of the 37 parameters of the model, 28 were studied, as shown
in Table 3. All parameters describing matrix densities at which matrix productions
stops (κc, κc f ), growth factor concentrations at which growth factor production stops
(αg,κo) or cell concentrations at which cell proliferation is halted (αb, α f ), were ex-
cluded from the analysis, since they do not have a specific physiological meaning
and influence the model in a very predictable way [12]. The parameter B1o, describ-
ing the reaction rate of OPG and RANKL, is related to B1r and varied accordingly.

The parameters were investigated at two levels, a high and a low level (see Table
3), using a resolution IV array with 64 runs. The use of a resolution IV array guaran-
tees that the main effects will not be confounded with two-factor interactions, while
limiting the number or runs required for the analysis. For each parameter combina-
tion, the model was run three times, once in steady state conditions, once modelling
bone formation and once modelling bone resorption. To assess the results obtained
from the study, several output variables were studied.

During steady state, the concentrations of nine variables in both the alveolar bone
and the PDL were measured. To assess the ability of the model to represent a mean-
ingful situation, a variable Real was introduced, shown by (30). All 18 variables
(nine in the alveolar bone, nine in the PDL), were assigned a boolean parameter γi
which is zero or one. The value γi = 1 was given when a predicted concentration
approaches the expected concentration (e.g. mm(bone) = 0.7), γi = 0 was assigned
to a predicted concentration which is not realistic (e.g. mm(bone) = 0). Secondly,
when one of the steady states has a positive eigenvalue, the boolean parameter γ was
set to γ = 0, for two stable steady states, γ was equal to one.

Real =
γ +∑18

i=1 γi

19
(30)

A typical parameter combination for which the value of Real is small, is one for
which the predicted mineralization of the alveolar bone is equal to zero. The same
is true for parameter combinations for which one of the steady states is unstable or
for which the mineralization of the PDL is very high.

Next, the ability of the model to combine the alveolar bone and the PDL was also
studied. This was done by assessing the variable vSS which is the movement of the
boundary between bone and PDL. When vSS ̸= 0, the boundary between bone and
ligament will move, even when no orthodontic force is applied. In that case, it is
not possible to model co-existence of the alveolar bone and the PDL, which is not a
physiological situation.

During bone formation, three variables were recorded: the speed of tooth move-
ment (vF ), the mineralization of the newly formed bone (mmnew) and the concen-
tration of TGF-β in the PDL (gbF). During bone resorption, the speed of tooth
movement (vR) and the concentration of RANKL in the PDL (grR) were monitored.
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Table 3: Non-dimensionalised parameter ranges used in the different designs of the
sensitivity analysis. For the fractional factorial design, the parameters are varied
between a low and a high value, as can be seen in the first column. For the other
design, several parameters were selected and varied over approximately the same
range. Highlighted numbers indicate ranges that have been corrected in order to
avoid non-physiological situations. FF: parameter ranges for the fractional factorial
design of Sect. 3.2.1. U: parameter ranges for the uniform design of Sect. 3.2.2.
USS: parameter ranges for the uniform design on the equilibrium concentrations
(Sect. 3.2.3). UM: parameter ranges for the uniform design on bone formation and
resorption (Sect. 3.2.4).

Parameter FF U USS UM
Low High Low High Low High Low High

Pms 15 60 15 60 15 60
Qmd 18 72 18 72 18 72
Pcs 1 4
Pcs f 0.1 0.4 0.1 0.4
Ab0 0.25 1 0.25 1
db 0.07 0.3 0.07 0.2 0.07 0.3 0.07 0.25
Y11 180 600 180 600 180 600 180 600
H11 0.05 0.2 0.05 0.2 0.05 0.2
mbt 0.15 0.6 0.15 0.6 0.15 0.4
Cmh 0.3 1.4 0.5 1.4 0.3 1.4
Y2 0.02 0.1 0.02 0.1
dl0 0.35 1.5
D f 3 9
A f 0 0.05 0.2 0.05 0.2
A f s 5 20 5 20
d f 0.05 0.2 0.05 0.2
Dgb 0.6 3
Ggb 0.3 1.2 0.5 1.2 0.3 1.2
Egb 0.5 2 0.5 2
dgb 50 200 50 200 50 200 50 150
Prs 15 70
R1 0.5 2 0.5 2
dgr 5 20 5 20 5 20
B1r 0.07 0.3
Egr f 5 20 5 20
Dgo 0.5 2
Pos 40 120
dgo 20 70 20 70
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Steady State

The data were investigated using analysis of variance (ANOVA) and the percentage
of the total sum of square, %T SS, for each parameter and output variable can be
found in Table 4 and Table 5. The parameters that most influenced the alveolar bone
were mostly related to the concentration of TGF-β . Both the production rate Ggb
and the degradation rate dgb have a high influence on many output variables. The
same is true for the parameter H11, related to the sensitivity of MSC’s to TGF-β .
The rate at which osteoclasts demineralize bone (Qmd) and the haptotactic parameter
Cmh also seemed to influence the alveolar bone.

Table 4: Results of the fractional factorial design concerning the parameters Real
and vSS. The percentage of total sum of squares (%T SS) is listed for each parameter
and output variable.

Real vSS Real vSS

Ab0 8.40 0.00 Egb 1.27 0.00
A f 0 0.03 0.00 Egr f 0.03 0.71
A f s 0.00 0.71 Ggb 4.38 5.87
B1r 0.65 0.00 H11 0.03 5.91
Cmh 3.14 0.00 mbt 0.03 5.87
db 24.93 0.00 Pcs 0.93 0.00
D f 1.27 0.72 Pcs f 0.03 0.70
d f 2.59 0.00 Pms 1.27 0.74
dgb 2.59 5.99 Pos 1.66 0.00
dgo 0.93 5.91 Prs 0.00 0.00
dgr 0.23 5.91 Qmd 4.38 0.00
Dgb 1.66 0.00 R1 0.93 5.95
Dgo 0.10 0.70 Y2 3.14 0.00
dl0 0.10 0.00 Y11 0.10 5.87
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The periodontal ligament was mainly influenced by the proliferation and apop-
tosis rate of the fibroblasts (A f 0 and d f ), the fusion and apoptosis of osteoclasts (Y2
and dl0) and the production of TGF-β (Ggb). The artificial variable Real was most
influenced by parameters Ab0 and db, describing the proliferation and apoptosis of
osteoblasts. The influence of the parameters on vSS was limited.

Out of the 64 parameter combinations chosen for the screening design, 17 gave
results where the mineralization mm in the alveolar bone was smaller than 0.1. In that
case, the modelled situation is assumed to be non-physiological, and no results were
obtained for bone formation and bone resorption. To prevent this in future analyses,
the parameter combinations in which this problem occurred were examined more
closely. Without making definite conclusions, the problem seemed to occur more
frequently for high values of Qmd , db and Y2 and for low values of Cmh and Ggb. In
future analyses care must be taken not to allow parameter combinations that promote
bone resorption too strongly, especially when the object is to study bone formation
or resorption.

Bone formation and bone resorption

The same process was applied to analyse the data concerning bone formation and
bone resorption. The percentage of the total sum of squares of the relevant output
variables can be found in Table 6. As expected, the speed of bone formation was
mostly influenced by the parameter mbt , determining when a mesenchymal stem cell
is close enough to the bone to differentiate into an osteoblast. The mineralization
rate of collagen by osteoblasts also influenced the speed of bone formation. The
concentration of TGF-β in the PDL during tooth movement was mainly influenced
by the production of TGF-β by fibroblasts (Egb) and the degradation rate dgb. This
degradation rate also influenced the mineralization of the newly formed bone, just
like the parameter mbt and the proliferation rate Ab0 of the alveolar bone.

The speed of bone resorption was mainly influenced by the degradation rate db
of osteoblasts and the denaturation rate dgr of RANKL, but many other parameters
also had an influence on bone resorption. The amount of RANKL in the PDL was
mainly influenced by the denaturation rate dgr of RANKL and the production rate
of RANKL by fibroblasts (Egr f ).

Preliminary conclusions

Although the ANOVA process is able to identify the most important parameters
in the process, it gives no insight into the effect of these parameters on the out-
come. Furthermore, although some of the results are very straightforward, others
need some more explaining. The effect of TGF-β on alveolar bone and fibroblasts
on the PDL is quite clear, but the influence of the parameter Cmh on the alveolar
bone is more puzzling. In the following sections, the results of the fractional facto-
rial design will be used to set up several uniform designs, analysed using Gaussian
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Table 6: Results of the fractional factorial design concerning bone formation and
bone resorption during orthodontic tooth movement. The percentage of total sum
of squares (%T SS) is listed for each parameter and output variable. The two most
influential parameters for each output variable are highlighted.

Formation Resorption
vF gbF mmnew vR grR

Ab0 0.00 1.03 7.77 4.51 3.96
A f 0 0.01 0.05 0.25 0.70 0.03
A f s 0.33 0.53 0.45 0.42 3.11
B1r 0.00 0.09 1.51 0.56 0.05
Cmh 0.43 0.12 0.47 0.46 1.87
db 0.06 0.02 4.30 10.08 3.20
D f 0.66 0.13 0.08 0.07 0.21
d f 0.73 0.29 1.15 3.47 0.10
dgb 0.58 37.78 9.93 7.04 0.05
dgo 0.55 1.44 0.33 0.79 5.85
dgr 0.16 0.06 0.38 10.07 28.37
Dgb 0.11 0.30 0.11 0.13 0.45
Dgo 1.10 0.16 4.21 1.42 0.72
dl0 0.10 0.03 0.15 0.79 0.08
Egb 0.10 42.07 0.02 0.56 0.01
Egr f 2.17 0.05 0.38 5.94 23.76
Ggb 0.51 0.20 1.35 3.57 0.20
H11 0.41 0.63 0.64 2.97 0.80
mbt 63.24 0.23 36.30 1.38 3.92
Pcs 0.00 0.15 0.27 0.04 0.01
Pcs f 0.48 0.17 0.04 5.60 1.11
Pms 8.14 0.00 4.14 1.85 2.01
Pos 0.20 0.02 1.29 0.10 1.80
Prs 0.09 0.10 0.71 3.33 0.99
Qmd 0.68 0.33 6.41 3.17 0.13
R1 0.33 0.43 1.87 0.02 0.22
Y2 0.67 0.07 1.42 1.13 0.01
Y11 1.08 2.30 1.84 5.66 0.01

processes, that study the influence of these parameters more closely. That way, the
exact effect of the parameters can be investigated, and the interaction between pa-
rameters can be studied.

3.2.2 Sensitivity analysis using a uniform design

To solve the questions that arose in the previous section, it was decided to look
more closely at the ten most influential parameters. Those parameters were chosen
by selecting every parameter for which %T SS > 10%. As the high influence of the
artificial parameter mbt on the speed of bone formation dominated the results, the
parameter Pms was added to this list. From this list, those parameters who influenced
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several output variables or output variables with a large variation, represented by a
high value of SST , were chosen. The parameter ranges of db, Ggb and Cmh were lim-
ited to avoid non-physiological situations in which the mineralization of the alveolar
bone was too low (Table 3).

The influence of the ten parameters was investigated as previously explained
using a uniform design with 100 runs. 100 parameter combinations were generated,
evenly spread out over the ten-dimensional parameter space. The uniformity of the
distribution can be checked using scatterplots and histograms (figure 7).
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Fig. 7: Uniformity of the distribution in a uniform design. a Histogram showing the
distribution of the parameters Pms and db in a uniform design. In this particular ex-
ample, it can be seen that the distribution of Pms is uniform, while for the parameter
db, only a small number of low values are included. b Scatterplot of all parameter
combinations. The parameter combinations are spread out over the entire parameter
space.

The results of a uniform process can no longer be analysed using ANOVA. Since
the parameter points are now spread out over the parameters space, the exact value
of the parameters has to be taken into account. A Gaussian process with a Gaussian
covariance function was therefore used. Afterwards, the results were compared to
an analysis using a Gaussian process with a cubic covariance function.

One remark concerning the results of the Gaussian process is that one should
take care when interpreting the predictions. When assessing the accuracy of the
predictions, two methods can be used. Firstly, looking at the value of the function
M , defined in (17), will give a good idea of the efficiency of the process. Secondly,
JMP plots the actual results, computed by your model, and compares these to the
results predicted by the Gaussian process. Figure 8 illustrates this for the specific
examples of mineralization of the alveolar bone and the concentration of fibroblasts
in the PDL. As can be seen from this figure, the results for the mineralization of
the bone are predicted far more accurate than the results for the concentration of
fibroblasts. Since the horizontal axis plots the predicted value and the vertical axis
the actual value, all the points would be located on a 45-degree line in a perfect
model. A deviation from this line can have various causes. Firstly, because a more
sophisticated covariance function may be needed, but secondly, as is the case here,
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because the variation in the output variable is so small the numerical errors become
too important. When interpreting the analysis, care should be taken only to include
those results with accurate predictions.
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Fig. 8: Actual by predicted plot for the mineralization of the alveolar bone and the
fibroblast density in the PDL. The horizontal axis shows the value of the output
predicted by the Gaussian process, the vertical axis shows the actual output value of
the mechanobiological model. a Actual by predicted plot for the mineralization of
the alveolar bone. b Actual by predicted plot for the fibroblast density in the PDL.

Steady State

The predictions for the most important output variables are summarized in figure 9.
From these results it can be seen that the mineralization rate Pms of the collagen fi-
bres by osteoblasts positively influences the mineralization of both the alveolar bone
and the PDL, and has a negative influence on the amount of fibroblasts in the bone.
Increasing the apoptosis rate of osteoblasts db decreases the number of osteoblasts
and the concentrations of RANKL and OPG, both produced by osteoblasts. Rais-
ing the production rate Ggb of TGF-β by osteoblasts increases the mineralization
of the bone and the TGF-β concentration while decreasing the number of osteo-
clasts. Increasing the denaturation rate dgb has the exact opposite effect. From this
uniform design, it is now clear that increasing Cmh seems to favour bone formation
by decreasing the number of osteoclasts.

The variable vSS only becomes non-zero for low values of dgb, but this result
should be taken lightly, since out of 100 parameter combinations, the parameter was
non-zero for only two parameter combinations. The results also show that limiting
the parameter ranges of db, Ggb and Cmh had its desired effect, keeping the miner-
alization in reasonable bounds. As a result, the output Real has a value of one over
the entire parameter space (results not shown).
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Fig. 9: Results of the uniform design concerning the equilibrium conditions in the
alveolar bone and the PDL, and the parameters Real and vSS. Only significant results
are shown. Solid lines represent the prediction of the non-dimensionalised output
variable by the Gaussian process, dashed lines represent the confidence intervals.
The first column of figures shows the influence of Pms on several output variables, as-
suming all other parameters have values in the middle of their range (e.g db = 0.135,
Ggb = 0.85, etc.). The same holds for the other columns showing the influence of
db, Ggb, dgb and Cmh.
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Bone formation and bone resorption

As was already shown in the ANOVA analysis, the main influence on the speed of
bone formation was the parameter mbt , although increasing the mineralization rate
also increased bone formation. As figure 10 shows, a value of mbt > 0.4 reduced
the speed of bone formation to zero. Decreasing the denaturation rate dgb greatly
increased the concentration of TGF-β in the PDL.
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Fig. 10: Results of the uniform design concerning bone formation and resorption
during orthodontic tooth movement. Only significant results are shown. Solid lines
represent the prediction of the non-dimensionalised output variable by the Gaussian
process, dashed lines represent the confidence intervals.

The concentration of RANKL is clearly influenced by the production rate Egr f
and the denaturation rate dgr, but the speed of bone resorption shows some complex
behaviour that will be looked at more closely in the next analysis. In summary, the
osteogenic parameters Pms and Ggb slow down bone resorption, while increasing db,
Egr f or dgb allowed bone to be resorbed faster.

The effect of the choice of the covariance function

In order to study the influence of the covariance function, the analysis was repeated
using a cubic covariance function. As discussed in Sect. 2.2.2, the cubic covariance
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function includes smaller length scale, allowing smaller features to be incorporated
in the results.

The majority of the results for the cubic covariance function did not differ from
the results with the Gaussian covariance function. However, there were three major
differences. Firstly, when looking at the results concerning the parameter db (the
apoptosis rate of osteoblasts), θm becomes very large (θm > 50) for several out-
put variables. Since 1/θm represents the length scale of the modelled features, this
means that very small variations will be incorporated into the results. As can be seen
from figure 11 this does not change the general trend of the results. Since the pa-
rameter db (and many others) represent a physical process, the small variations are
most likely due to numerical errors. Although non-linearities occur in nature, chang-
ing one parameter will more than likely result in a smooth change of the outcome
variable.
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Fig. 11: Some results of the uniform design obtained using the cubic covariance
function. Small fluctuations can be seen in the predicted influence of the osteoblast
apoptosis rate db on the osteoblast density in the alveolar bone, as well as in the
influence of db on the RANKL and OPG concentrations in the alveolar bone.

Secondly, when studying the results for the speed of bone formation and the min-
eralization of the newly formed bone (figure 12), some highly non-linear behaviour
can be seen. Once mbt exceeds mbt = 0.4, the predicted results for the mineralization
of the newly formed bone show a very erratic behaviour. Furthermore, the predicted
effect of H11 on the speed of bone formation shows similar variations. The cause of
this effect can be seen when looking at the marginal model plots for H11 and mbt ,
produced by JMP. These are plots that show the actual and the predicted values of
an output variable as a function of only one parameter, disregarding the influence of
other parameters. Figure 13 shows the actual and predicted values of vF as a func-
tion of these two parameters. There is an apparent split into two classes: one for
which the speed of bone formation is positive, and one for which it is zero. The lat-
ter class appears when mbt > 0.4, regardless of the values of other parameters. Since
the cubic covariance function allows for very small length scales, the Gaussian pro-
cess attempts to include both classes into one model, when actually they represent
very different processes.
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Fig. 13: Marginal model plots for H11 and mbt . The horizontal axis shows the value
of the parameter, the vertical axis shows the value of the output variable vF . The
dots indicate actual results obtained using the mechanobiological model, the solid
line shows the results predicted by the Gaussian process. a The influence of mbt ,
indicating how close MSC’s have to be to the bone to differentiate into osteoblasts,
on the speed of bone formation. When mbt > 0.4, no bone formation occurs. b The
influence of the sensitivity of MSC’s to TGF-β (determined by H11) on the speed
of bone formation. The actual results can be split up into two classes: one for which
there is bone formation, and one for which vF = 0, located at the bottom.
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Finally, it should be noted that in general, the confidence intervals are much larger
when using the cubic covariance function, compared to the Gaussian covariance
function. This is particularly apparent in the case of the speed of bone formation.
In that case, the plot of the actual value versus the predicted value already indi-
cates a problem when using the cubic covariance function, while for the Gaussian
covariance function the results were good (figure 14).
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Fig. 14: Actual by predicted plot for the speed of bone formation, using the Gaussian
and the cubic covariance function. a Actual by predicted plot using the Gaussian co-
variance function. All points are located quite close to the 45-degree line, indicating
a good prediction. b Actual by predicted plot using the cubic covariance function.
In this case, the points are spread out, indicating the predictions made by the sensi-
tivity analysis for the speed of bone formation using the cubic covariance function
are less reliable.

Preliminary conclusions

From this uniform design, some preliminary conclusions can be drawn. Firstly, the
use of the cubic covariance function added little to the value of the analysis. On the
contrary, it introduced some errors and problems that did not appear when using the
Gaussian covariance function. Secondly, when setting up more designs, care should
be taken with the parameter range of mbt . To avoid that the speed of bone formation
drops to zero, mbt should be kept smaller than 0.4.

This uniform design was implemented using the ten parameters which proved
to be most influential according to the ANOVA analysis of the fractional factorial
design explained in Sect. 3.2.1. However, the high number of output variables com-
plicated the analysis of the results. Furthermore, most of the output variables were
only influenced by one, or sometimes two, of the parameters. This implies that the
uniform design will not give any information on the interaction between different
parameters. For these reasons, it was decided to run two more uniform designs. The
first one studies the influence of 12 parameters on the steady states, the second one
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looks more closely into the influence of 12 (different) parameters on bone formation
and bone resorption.

3.2.3 Sensitivity analysis on the equilibrium concentrations using a uniform
design

A 12-parameter uniform design with 100 runs was set up. Using the fractional fac-
torial design described in Sect. 3.2.1, 12 parameters were chosen that influenced the
steady states the most. In Table 4, the most important parameter was chosen out
of each column related to the steady state. This set of seven parameters was then
expanded with five parameters which were not included yet, but had a significant
influence on one or more outcome variables. Since no results for bone formation or
resorption will be calculated, and in order to study the influence of the parameters
over the entire parameter space, the parameter ranges were kept the same as in the
fractional factorial design.

Steady State

The parameters can be classified into two sets: those favouring bone formation and
those favouring bone resorption. The most significant results of the analysis are
shown in figure 15. Increasing the production rate of TGF-β (Ggb) increases the
mineralization of the bone, while decreasing the osteoclast concentration and the
number of fibroblasts in the bone. The apoptosis rate of osteoblasts (db), the decay
rate of TGF-β (dgb), the demineralization rate of the bone by osteoclasts (Qmd), the
sensitivity of HSC’s to RANKL (Y2) and the maximum RANKL carrying capac-
ity of osteoblasts (R1) have the opposite effect. They decrease mineralization and
osteoblast concentration, while increasing the number of osteoclasts, resulting in a
lower mineralization of the bone. As in the previous uniform design, the haptotactic
parameter Cmh seemed to encourage bone formation by decreasing the number of
osteoclasts. Finally, increasing the proliferation rate of fibroblasts A f 0 increased the
density of the PDL and the concentration of fibroblasts, although the influence was
very small and confidence intervals quite large.

The analysis also shows a significant interaction between the parameters H11,
Ggb and dgb when modelling the concentrations of osteoblasts and TGF-β . When
looking at the results of the analysis more closely, it can be concluded that for low
values of H11 and dgb (figure 16), the model is more non-linear. The influence of
Ggb becomes more irregular and highly non-linear. The marginal model plots (fig-
ure 17) suggest this might be related to the presence of two outliers, in which the
concentrations of osteoblasts and TGF-β are much higher then average.

These outliers are located in an area of the parameter space with a high sensitivity
of MSC’s to TGF-β , described by a low value of H11, combined with a long half-life
of TGF-β , expressed by the low value of dgb and an average to high production of
TGF-β by osteoblasts (Ggb). This particular combination results in a chain reaction
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Fig. 15: Results of the uniform design on the equilibrium concentrations. Only
significant results are shown. Solid lines represent the prediction of the non-
dimensionalised output variable by the Gaussian process, dashed lines represent the
confidence intervals.

in which the concentration of osteoblasts will rise quickly, producing even more
TGF-β . The fact that the analysis predicts that the concentrations of osteoblasts
will return back to normal for high values of Ggb can be explained by the lack of
parameter combinations in that particular area of the parameter space. This was
confirmed by running the model with parameter combinations in that area of the
parameter space.

For the variable vSS no conclusions can be drawn, since, out of 100 runs, only
three values are non-zero. To prevent non-physiological situations in the next de-
sign, the results for the variable Real were interpreted. It was concluded that the
appearance of such a situation was most likely with high values of db, dgb, Y2, Qmd
and R1, all parameters favouring bone resorption, or with low values of Ggb and Cmh.

The effect of the choice of the covariance function

The results of the uniform design were also analysed using a cubic covariance func-
tion. As before, results were generally very similar to the Gaussian covariance anal-
ysis. One observed difference is the effect of the parameter dgb on the osteoblast
concentration and the presence of TGF-β , OPG and RANKL in the bone. Figure 18
shows the results obtained using the cubic covariance function, revealing a sharp rise
in osteoblast concentrations for small values of dgb. Using the Gaussian covariance
function, this rise is only seen to that extent when a low value of dgb is combined
with a low value of H11. The analysis with the cubic covariance function predicts
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Fig. 16: Influence of the production rate of TGF-β (Ggb) on the predicted osteoblast
density in bone, for different values of H11 and dgb. A low value of H11 indicates a
high sensitivity of MSC’s to TGF-β and a low value of dgb coincides with a long
half life of TGF-β . a Results for H11 = 0.08 and dgb = 60, for which the influence
of Ggb on the osteoblast density is highly non-linear. b Results for H11 = 0.18 and
dgb = 180, showing a limited influence of Ggb on the osteoblast density. c Results
for H11 = 0.08 and dgb = 180, showing a limited influence of Ggb on the osteoblast
density. d Results for H11 = 0.18 and dgb = 60, showing a limited influence of Ggb
on the osteoblast density.
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Fig. 17: Marginal model plots for Ggb, dgb and H11. The horizontal axis shows the
value of the parameter, the vertical axis shows the osteoblast concentration in alve-
olar bone. The dots indicate actual results obtained using the mechanobiological
model, the solid line shows the results predicted by the Gaussian process. On each
figure, two outliers (circled) with a very high osteoblast density can be noted. a The
influence of the production rate of TGF-β (Ggb) on osteoblast density. b The influ-
ence of the denaturation rate of TGF-β (dgb) on osteoblast density. c The influence
of the sensitivity of MSC’s to TGF-β (determined by H11) on osteoblast density.
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that the chain reaction leading to an alveolar bone with a high osteoblast and TGF-
β content occurs at low values of dgb, independent of the sensitivity of MSC’s to
TGF-β , described by H11. To get a more detailed description of this phenomenon,
a more elaborate sensitivity analysis with more points in that region of parameter
space is needed.
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Fig. 18: The influence of dgb on the osteoblast density and TGF-β concentration
in the alveolar bone, using the cubic covariance function. When using the cubic
covariance function a sharp rise in both osteoblast density and TGF-β concentration
is predicted for low values of dgb. This rise is not predicted when using the Gaussian
covariance function (figure 15).

3.2.4 Sensitivity analysis on bone formation and bone resorption using a
uniform design

A 12-parameter uniform design with 100 runs was used to assess the influence of
several parameters on tooth movement. Using the fractional factorial design de-
scribed in Sect. 3.2.1, 12 parameters were chosen that influenced the processes of
bone formation and resorption during tooth movement the most. In Table 4, the most
important parameter was chosen out of each column. This set of seven parameters
was then expanded with five parameters which were not included yet, but had a
significant influence on one or more outcome variables.

To prevent the occurrence of non-physiological situations in which the mineral-
ization of the alveolar bone was too low, the parameter ranges of dgb and db were
limited. The upper limit of mbt was also changed to 0.4, in order to avoid situations
in which the speed of bone formation dropped to zero (see Sect. 3.2.2).

As expected, the speed of bone formation was mainly influenced by the param-
eter mbt (figure 19), but also increased with increasing mineralization rate Pms. The
mineralization of the newly formed bone decreases when the decay rate of TGF-β
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(dgb) is higher and the presence of TGF-β in the ligament was influenced by the
production rate Egb of TGF-β by fibroblasts and the parameter dgb.
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Fig. 19: Results of the uniform design on bone formation and resorption. Only
significant results are shown. Solid lines represent the prediction of the non-
dimensionalised output variable by the Gaussian process, dashed lines represent the
confidence intervals.

The effect of the parameters on the resorption rate vR is less clear. Most param-
eters influence the resorption rate to some extent. Increasing the mineralization rate
Pms or the apoptosis rate dgr of RANKL slows down bone resorption during tooth
movement. Increasing the demineralization rate Qmd , the apoptosis rate db of os-
teoblasts and dgb of TGF-β , or the production Egr f of RANKL by fibroblasts speeds
up bone resorption. As expected, the concentration of RANKL in the PDL during
bone resorption is determined by the parameters Egr f and dgr. Similar results were
obtained using the cubic covariance function.

3.3 Discussion

The design of experiments was used to determine the most important parameters
of the model, and to investigate their result on the outcome of the model. The sen-
sitivity analysis started with a two-level fractional factorial design, followed by an
ANOVA analysis of the results. Several parameters where then selected for a more
in-depth analysis. Three different uniform designs were performed using these pa-
rameters, in order to assess their influence on the alveolar bone, the PDL, and the
speed of bone formation and resorption.
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The results of these analyses are summarized in Table 7. During homeostasis,
bone resorption was shown to be promoted by the activity of osteoclasts (Qmd) and
their sensitivity to RANKL (Y2). Increasing the decay constant used to model the
apoptosis of osteoblasts (db), or the denaturation rate of TGF-β (dgb) had similar
effects. The disappearance of both osteoblasts and TGF-β from the bone decreased
the bone mass. Increasing bone mass was mainly noted as a result of increasing the
production of TGF-β (Ggb) or the activity of osteoblasts (Pms).

Table 7: Summary of the parameters that showed the most influence on equilibrium
conditions and tooth movement (TM), as indicated by the sensitivity analysis.

Parameter Influence

Qmd Promotes bone resorption
db Promotes bone resorption

Increases bone resorption during TM
Y2 Promotes bone resorption
Ggb Promotes bone formation
dgb Promotes bone resorption

Increases TGF-β concentration during TM
Increases mineralization during TM
Increases bone resorption during TM

Pms Promotes bone formation
Increases bone formation during TM
Decreases bone resorption during TM

mbt Decreases bone formation during TM
Egb Increases TGF-β concentration during TM
dgr Decreases bone resorption during TM

Decreases RANKL concentration during TM
Egr f Increases bone resorption during TM

Increases RANKL concentration during TM

Under normal conditions, the model has two separate steady states. The first
one represents the PDL, with a high concentration of fibroblasts and no mineral-
ization, the second one represents the alveolar bone, consisting of mineralized col-
lagen fibres, osteoblasts and osteoclasts. Changing the parameters usually resulted
in a small, continuous change of the steady states, preserving their main properties.
Alveolar bone and PDL remained recognisable as such. However, in some cases
more abrupt changes where noted.

Firstly, with several parameter combinations that promoted bone resorption, the
predicted mineralization of the alveolar bone dropped to zero. With those parameter
combinations, only one steady state was possible and the alveolar bone could not
be modelled. Secondly, when a high sensitivity of MSC’s to TGF-β was combined
with a high production and a long half-life of TGF-β , a chain reaction occurred. The
steady state representing the alveolar bone switched from bone containing a small
amount of osteoblasts to bone containing large amounts of osteoblasts. Since the
parameter combinations at which the phenomenon occurred were located at the edge
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of the parameter space investigated in this analysis, it did not pose any problems.
For the same reason, not much information of the phenomenon and its influences
on tooth movement was obtained. Performing a sensitivity analysis with a broader
parameter space will give a better insight in this chain reaction.

Concerning the parameter Cmh, describing the haptotaxis of osteoclasts, an un-
expected effect was discovered. The modelling of haptotaxis of osteoclasts, attract-
ing them to the alveolar bone, was included in the model to mimic the function of
osteopontin and the working of osteoclasts during bone resorption. The fact that in-
creasing Cmh seemed to favour bone formation during steady state was unexpected,
and initiated a closer investigation of this process. It was concluded that this effect
was related to the implementation of the continuous transition between the PDL and
the alveolar bone during steady state, as described in (29). Due to this approach, the
mineralization in the alveolar bone is not constant, but increases slightly when mov-
ing away from the PDL. As a result, with higher values of Cmh, more osteoclasts will
migrate to the more mineralized part of the domain, where osteoclast apoptosis is
slightly higher due to the higher concentration of TGF-β . The number of osteoclasts
at the measuring point will thus decrease, resulting in a higher degree of mineral-
ization. It should be noted that, although the effect does occur, it is more subtle than
predicted by the sensitivity analysis.

Four parameters had a significant influence on bone formation during orthodontic
tooth movement. The activity of osteoblasts (Pms) increased bone formation, while
the parameter mbt had the opposite effect. The production and denaturation of TGF-
β had a very high influence on the TGF-β concentration in the PDL. The same
conclusion can be drawn for the concentration of RANKL in the PDL at the resorp-
tion site during tooth movement. This concentration was mainly influenced by the
production and denaturation of RANKL. Decreasing the activity of osteoblasts or
decreasing their life span speeds up bone resorption during tooth movement, as well
as decreasing the half-life of TGF-β .

The results of all uniform designs were analysed using a Gaussian process with
both a Gaussian and a cubic covariance function. The general trend of the results was
the same, regardless of the applied covariance function. However, in some cases
the cubic covariance function picked up on numerical errors, while the Gaussian
covariance function was able to filter them out. On the other hand, when dealing with
outliers, the cubic covariance function had less problems incorporating them into the
analysis. When analysing the results of physical experiments outliers are usually
the result of measurement errors and random noise, and incorporating them into
the analysis should be avoided. When investigating computer models, such errors
are not present, and outliers are indicators of abrupt changes in the outcome of the
model. As such, they should not be ignored, but instead be investigated more closely.

With the results of the sensitivity analysis, it was possible to identify the ten
parameters that had the highest influence on the outcome of the mechanobiological
model presented in this work. Most notable was the high influence of osteoblast
apoptosis and the half-life of TGF-β . When using experimental results to refine the
estimates of the parameters, these are the parameters that should be looked at first.
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Some further observations were made that should be kept in mind when analysing
and developing the model further. Some parameter combinations promoted bone
resorption too strongly, resulting in a total loss of bone mass. Others resulted in
a fast occurrence of a large number of osteoblasts in the bone. The effect of the
mechanical stimulus on bone formation proved to be small, indicating a closer look
into the assumption that osteoblasts will only form close to bone could be useful.

Some unexpected results did occur, and were investigated closer. In most cases
valid explanations for the phenomenons were found, and no further actions were
necessary, in other cases, suggestions for further analysis could be made. In sum-
mary, the extensive sensitivity analysis resulted in a better understanding of model
and its parameters.

4 Conclusions

The design of experiments is a valuable tool for studying a large variety of computer
models. Any type of model can be analysed using a DOE, as long as the experiment
can be easily repeated using different parameters. The designs are developed to get
as much information as possible at minimal cost, usually referring to the computa-
tional time. Each design has its pros and cons and depending on the needs of the
researcher a suitable design is generated. Several statistical software packages pro-
vide support for DOE.

As with all statistical tools, care has to be taken when interpreting the results of
a DOE, certainly with more complex models. Both the designs and the analysing
methods have it limitations. However, keeping those in mind, DOE is a great tool,
allowing the researcher to gain a better insight into their model and its behaviour
in parameter space. Moreover, the results of a DOE analysis can be a good starting
point for further model optimization (see Chapter 12 by Eriksson et al. elsewhere in
this volume).
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