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SUMMARY: A new spectral approach for identification of multi-degree-of-freedom non-
linear systems, called the conditioned reverse path method, has recently been introduced. The
key idea of this method is to eliminate the distortions caused by the presence of non-linearities
in frequency response functions. Conditioned frequency responses are then computed and
yield the underlying linear properties without influence of non-linearities. The non-linear
coefficient is estimated in a second step.

The aim of the paper is twofold. Firstly, the conditioned reverse path method is described in
details together with the spectral conditioning techniques. Secondly, the ability of this
technique to identify the behaviour of an experimental cantilever beam with a geometrical
non-linearity is tested.

KEYWORDS: non-linear system identification – conditioned reverse path – geometrical
non-linearity – experimental application.

INTRODUCTION

The last twenty years have witnessed impressive progress in non-linear structural dynamics.
The identification of non-linear systems began in 1979 with the study of single-degree-of-
freedom (s.d.o.f.) systems [1]. Since then, techniques which can consider multi-degree-of-
freedom (m.d.o.f.) systems were introduced, i.e. the Hilbert transform [2], NARMAX models
[3-4] and Volterra series [5]. However, it appeared quickly that these techniques are not
suitable for systems with high modal density. For a detailed review of the past years, the
reader is referred to [6]. Recently, progress in the analysis of m.d.o.f. systems has been
realised. This progress can be attributed to a confluence of new methods of analysis and to the
expansion in computer processor power.

The non-linear identification through feedback of the outputs (NIFO) [7] is a frequency-
domain formulation and treats non-linearities as internal feedback forces in the underlying
linear system. The key advantage of the method lies in the fact that the frequency response



functions of the underlying linear system as well as the non-linearities are estimated in a
single step. This is done in a least-squares system of equations through averaging.

Proper orthogonal decomposition is emerging as an efficient method in the field of structural
dynamics to solve both direct and inverse problems [8-10]. Particularly, it can be exploited for
identification and model updating of non-linear systems [11]. The procedure is based on the
solution of an optimisation problem which consists in minimising the difference between the
bi-orthogonal decompositions of the measured and simulated data respectively.

The conditioned reverse path formulation [12] extends the application of the reverse path
algorithm to systems characterised by non-linearities away from the location of the applied
force. This technique has been developed by generalising the concepts introduced by Bendat
[13-14]. The presence of non-linearities introduces distortions in the frequency response
functions computed by the “ 1H ” and “ 2H ” methods. In the conditioned reverse path,
“conditioned” frequency responses are estimated and yield the underlying linear properties
without influence of non-linearities. The non-linear coefficients are identified in a second
step.

In this paper, the theoretical background of the conditioned reverse path method is first
recalled, together with the spectral conditioning techniques. Then the ability of this technique
to identify the behaviour of an experimental cantilever beam with a geometrical non-linearity
is tested.

CONDITIONED REVERSE PATH (CRP) METHOD

For the sake of clarity, all the subsequent developments consider a system with a single non-
linearity. However, it is worth pointing out that the generalisation to multiple non-linearities
is straightforward [12].

The equations of motion of a system with a single non-linearity takes the form

)()()()()( ttttt fAyKxxCxM =+++ &&& (1)

where )(ty  is a non-linear function vector often represented as a function of relative
displacements. In the frequency domain, equation (1) becomes

)()()()( ωωωω FAYXB =+ (2)

where KCMHB ++−== − ωωωω i21 )()(  is the linear dynamic stiffness matrix. A reverse
path model is constructed by imposing the applied force to be the output and the measured
responses to be the inputs. This is illustrated in Fig. 1.

Fig. 1: Reverse path Model
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Estimation of the underlying linear system properties

The key idea of the CRP method is the separation of the non-linear part of the system
response from the linear part and the construction of uncorrelated response components in the
frequency domain. The spectra of the measured responses X  can be decomposed into a
component which is correlated with the spectrum of the non-linear vector Y , denoted by

)1(+X , through a frequency response matrix X1L , and a component which is uncorrelated

with the spectrum of the non-linear vector, denoted by )1(−X  (see Fig. 2). In other words,

)1(−X  is the linear spectral component of the response.

Fig. 2: Decomposition of the spectra of the measured responses

Thus, Fig. 1 may be replaced by Fig. 3 where the inputs )1(−X  and Y  are uncorrelated. The

path between Y  and )1(+F  is the frequency response matrix F1L  while the path between

)1(−X  and )1(−F  is the linear dynamic stiffness matrix B :

)()( )( )1(1 ωωω += FLY F (3)

)()( )( )1()1( ωωω −− = FBX (4)

Fig. 3: Reverse path model with uncorrelated inputs

By transposing equation (4), by multiplying it by the complex conjugate of X , i.e. *X , by
taking the expectation and by multiplying by T/2 , the underlying linear system may be
identified without corruption from the non-linear term
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where )1(−XFG  and )1(−XXG  are conditioned power spectral density matrices. From
equation (5), the dynamic compliance matrix H  can be estimated
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This expression is known as the conditioned 2cH  estimate. If relation (4) is multiplied by the
complex conjugate of F  instead of X , the conditioned 1cH  estimate is obtained
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It should be noted that if the number of excitations is smaller than the number of measured
responses, then matrix )1(−XFG  is not square. In this, case, the pseudo-inverse of this matrix

is performed rather than the inverse.

Estimation of the non-linear coefficient

Once the linear dynamic compliance H  has been identified, the non-linear coefficient A  may
be computed. Transposing the equations of motion in the frequency domain (2), multiplying
these by the complex conjugate of Y , taking the expectation and finally multiplying by T/2
yields

F
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where X1G is the cross spectral density matrix between the non-linear term Y  and the
measured responses ;

11G is the power spectral density matrix of the non-linear term Y  ;

F1G is the cross spectral density matrix between the non-linear term Y  and the
measured forces.

If the non-linear coefficient is isolated in equation (8), this equation becomes
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In practice, the knowledge of the linear dynamic compliance is preferred. Accordingly,
equation (9) is rewritten in a more suitable form
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If excitations are not applied at every response locations, only the columns corresponding to
the degree-of-freedom where excitations are applied are determined. However, by taking
advantage of the reciprocity principle, the non-linear coefficient A  may be estimated. Let
illustrate this on a three degree-of-freedom system with a non-linear term between the second
and third degree-of-freedom and with a force applied on the first degree-of-freedom. In this
case, equation (10) becomes at each frequency
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Expression (11) clearly illustrates that the non-linear coefficient can not be identified since it
is multiplied by unknown quantities. However, due to the reciprocity principle, 2112 HH =
and 3113 HH = , and equation (11) is rewritten in the following form
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It is worth pointing out that the non-linear coefficient is frequency dependent. By taking the
spectral mean, the actual value of the coefficient should be retrieved.

Conditioned power spectral density matrices

It remains now to indicate how conditioned power spectral density matrices like )1(−XFG  are
computed. For the sake of simplicity, only the final formulae are described here. It can be
shown [15] that
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Since the developments are underlined for a single non-linearity, the two latter equations are
written in a simpler manner
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DESCRIPTION OF THE BENCHMARK

The benchmark is similar to the one proposed by the Ecole Centrale de Lyon (France) in the
framework of COST Action F3 working group on “Identification of non-linear systems” [16].
This experimental application involves a clamped beam with a thin part at the end of the beam
(see Fig. 4).

Seven accelerometers which span regularly the beam are used to measure the response and a
displacement sensor is located at the end of the beam. The structure is excited near the
clamping (see Fig. 4) and the force is a white-noise sequence band-limited in the 0-500 Hz
range. Different excitation levels are considered in the 0.3-21 N rms range.

Fig. 4: Tested structure

The frequency response functions (FRFs) are estimated using the 2H  method. Fig. 5
illustrates the magnitude of 72H  for the 0.3 N rms and 21 N rms levels. As can be seen in this
figure, distortions appear in the FRFs when the excitation level increases. This is confirmed
by the ordinary coherence functions 2

7FXγ  (Fig. 6). Accordingly, if the structure may be

assumed to be linear for the lowest excitation level, it is no more the case for higher levels.
Indeed, if the excitation level is increased, the thin part tends to be excited in large deflection
and a geometrical non-linearity is activated.
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Fig. 5: Magnitude of 72H  ( 2H  estimate). (a) 0.3 N rms ; (b) 21 N rms.
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Fig. 6: Ordinary coherence functions 2
7FXγ . (a) 0.3 N rms ; (b) 21 N rms.

The natural frequencies were also estimated in the 0-500 Hz range using the least squares
complex exponential (LSCE) method [17]. Table 1 gives the natural frequencies identified for
the different excitation levels. It can be noticed that the first two natural frequencies are
shifted towards higher frequencies when the excitation level is increased. This is due to the
stiffening effect of the thin part. The third natural frequency does not seem to be affected by
the presence of the non-linearity.

Table 1: Estimated natural frequencies ( 2H  estimate)

0.3 N rms 8 N rms 16 N rms 21 N rms

First natural
frequency (Hz) 25.00 25.97 28.34 30.44

Second natural
frequency (Hz) 136.46 136.65 137.78 139.23

Third natural
frequency (Hz) 375.54 375.27 374.43 374.86

RESULTS OF THE IDENTIFICATION

Model selection

The first step in the identification procedure is the selection of a suitable model. To this aim,

the cumulative coherence function 
2

Miγ  may be exploited [18-19]
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The cumulative coherence functions are scalar values between 0 and 1 at each frequency and
may be considered as a measure of the accuracy of the entire model.



Due to the presence of a second harmonic of the first mode in the FRF (see Fig. 5b), a
grounded quadratic spring at the end of the beam (location 7) was introduced in the model. To

take the stiffening effect of the thin part into account, a non-linearity of type )(xsignx α  was
added to the quadratic spring. Finally, the non-linearity is modelled as

2)()( BxxsignxAxf += α (19)

where x  is the displacement at the end of the beam. Exponent α  is determined by seeking
the maximum value for the spectral mean of the averaged cumulative coherence of all the
sensors
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where N  is the number of frequencies considered between 10 and 500 Hz. The maximum
value is found for 3=α  and is equal to 0.9834 (21 N rms).

Estimation of the FRFs of the underlying linear system

The 2cH  estimate (6) is used to compute the FRFs of the underlying linear system. Fig. 7

illustrates the magnitude of ]2[
72
cH  together with the cumulative coherence 2

7Mγ  (21 N rms
level). Aside from a few minor drops, the cumulative coherence is unity indicating that the
model is quite accurate.
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Fig. 7: 21 N rms level. (a) Magnitude of ]2[
72
cH  ; (b) Cumulative coherence 2

7Mγ .

Fig. 8 represents the comparison between the true FRF and the FRFs obtained using the 2cH
and 2H  estimates for the first two resonances (21 N rms level). It can clearly be seen that the

2cH  estimate is closer to the true FRF while the 2H  estimate is contaminated by the
presence of the non-linearity.
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Fig. 8: Comparison of the true FRF with the 2cH  and 2H  estimates (21 N rms level).
(a) First resonance ; (b) Second resonance.

Again, the natural frequencies were estimated from the 2cH  estimates in the 0-500 Hz range
using LSCE method. Table 2 gives the natural frequencies identified for the different
excitation levels. The comparison between Tables 1 and 2 shows that

• the natural frequency of the first mode ( 2cH  estimate) tends to decrease when the
excitation level is increased. Nevertheless, the 2cH  estimate is closer to the actual value
than the 2H  estimate.

• the natural frequency of the second mode ( 2cH  estimate) remains constant and is almost
equal to the actual value. For the 2H  estimate, the natural frequency of this mode is
shifted towards higher frequencies when the excitation level is increased.

Table 2: Estimated natural frequencies ( 2cH  estimate)

0.3 N rms 8 N rms 16 N rms 21 N rms

First natural
frequency (Hz) 25.00 24.49 23.35 23.11

Second natural
frequency (Hz) 136.46 136.17 136.14 136.24

Third natural
frequency (Hz) 375.54 374.55 373.88 373.71

Estimation of the non-linear coefficient

Once the FRFs of the underlying linear system have been estimated, the non-linear
coefficients may then be evaluated. Fig. 9 displays the real part of the non-linear coefficients
A  and B  (19). As pointed out before, the coefficients are frequency dependent and a spectral
mean has to be performed to have an estimation of the coefficients. However, it can be
noticed that the quadratic non-linearity only improves the FRFs around the second harmonic.
This is the reason why the spectral mean of the quadratic coefficient is realised between 50
and 80 Hz.
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Table 3 gives the spectral mean of coefficients A  and B  for the 8, 16 and 21 N rms levels.
Firstly, it can be seen that the imaginary part of the coefficients, without any physical
meaning, is several orders of magnitude below the real part. Secondly, the real part of the
coefficients is quite stable while the excitation level goes from 8 N rms up to 21 N rms.

Table 3: Spectral mean of the non-linear coefficients

A (10-500 Hz)
(N/m3.5)

B(50-80 Hz)
(N/m2)

8 N rms 6.43 109 + i 1.96 107 2.60 106 + i 1.24 103

16 N rms 6.68 109 + i 1.29 108 1.83 106 – i 2.77 104

21 N rms 6.66 109 + i 1.59 108 1.81 106 + i 2.95 104

CONCLUSIONS

The aim of this paper was to apply the CRP method to a non-linear beam. The non-linearity
was realised by a thin beam excited in large deflection. On the one hand, the 2H  estimate
was unable to recover the linear dynamic compliance functions of a multi-degree-of-freedom
non-linear system. On the other hand, the 2cH  estimate, proposed by the CRP method,
allowed to reduce significantly the distortions introduced by the non-linearities. Moreover, the
method leads to the estimation of reliable non-linear coefficients.

The key advantage of the method is its ability to deal with multi-degree-of-freedom non-linear
systems. In this context, it appears as a useful method to be employed on more complex non-
linear structures.
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