
Approximation of Reliability for Multiple-Trait Animal
Models with Missing Data by Canonical Transformation

N. GENGLER* and I. MISZTALt
"Fonds National Beige de la Recherche Scientifique, Unite d'Enseignement et de Recherche de Zootechnie,

Faculte Universitaire des Sciences Agronomiques, B-5030 Gembloux, Belgium
tDepartment of Animal SCiences, University of Illinois, Urbana 61801

ABSTRACT

An algorithm for approximation of reliability for
multiple traits by multiple diagonalization was modi­
fied to support missing data by weighting trans­
formed contributions of records based on the pattern
of missing data. The accuracy of approximation was
assessed with simulated and field data by comparing
approximate reliabilities with those from direct inver­
sion. Simulated data had several levels of missing
data and covariances between traits; correlations
were close to those for linear type traits of dairy
cattle. Field data were 1) dairy records for milk, fat,
and protein yields with 26% of the observations for fat
and protein removed and 2) beef records for birth
weight, weaning weight, and mean gain after wean­
ing with 43% of observations missing. These files also
contained empty fixed effect classes. The algorithm
worked best for simulated data, and, when covari­
ances between traits decreased, proportion of missing
traits decreased and the number of empty fixed
classes decreased. For dairy data, improvement over
single-trait reliability occurred only for traits with
missing data; for beef data, little or no improvement
occurred. The method is useful with multiple di­
agonalization if the proportion of missing records or
number of empty fixed effect classes or covariances
between traits is moderate.
(Key words: reliability, multiple trait, animal
model, missing data)

Abbreviation key: PEV =prediction error variance.

take much longer. If an identical model is used for
each trait, a canonical transformation can save com­
puting time and resources for multiple-trait models
(11). Multiple diagonalization, which is an extended
form of canonical transformation, accommodates more
than one random effect (8, 11, 12). Recent develop­
ments show that missing data for certain traits can
be analyzed, as can different models per trait after
combining single- and multiple-trait algorithms (4).
Thus, multiple-trait models, canonical transforma­
tion, and therefore also multiple diagonalization
generally are applicable for prediction of breeding
values for data files with missing observations.
However, similar algorithms for computing approxi­
mate measures of accuracy of prediction are not avail­
able. For dairy cattle, the concept of reliability is
mostly used to describe accuracy, which is defined as
a linear function of the prediction error variance
( PEV) , expressed between 0 and 1.

A method to approximate reliabilities for single­
trait models has been established (10, 13, 14). For
multiple-trait models, methods have been developed
to approximate reliabilities for a sire model (6) and
for models using multiple diagonalization for data
files with no missing observations (11). The objec­
tives of this study were 1) to extend the latter method
to accommodate missing data and 2) to demonstrate
that different models per trait can be supported with
multiple diagonalization without extra programming.

MATERIALS AND METHODS

Statistical Model

A multiple-trait linear model with t traits and
records ordered within traits, where no observations
are missing, is

INTRODUCTION

The solution for mixed models (7) associated with
single-trait animal models and large data files now is
possible and practical (11) using techniques that
iterate on the data (15). For multiple-trait models,
the same principles can be used, but computations

y = (It ® X) b + (It ® Z) p
+ (It ® Z) a + e [1]
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where y is the vector of observations, b is the vector
of fixed effects, p is the vector of random permanent
environmental effects, a is the vector of random
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[~:;~~Z'YQJ

[4]

b = (Q-1 @ I) bQ'

P = (Q-1 @ In) PQ, and

il = (Q-1 @ In) ilQ.

A condition for the use of the multiple diagonaliza­
tion is that no observations for certain traits are
missing. Ducrocq and Besbes (4) described a method
that permits canonical transformation with missing
data and the same incidence matrices for all traits.
Their method is based on the replacement of a miss­
ing observation with its expectation (3) using an
expectation-maximization algorithm (9). Assume
that a record of animal j contains two groups of traits,
traits that are observed and traits that are missing. If
Yj represents this record, then Yja is the part of the
record containing the observed traits, and Yji3 is the
part of the record with the missing traits. For itera-

t · k ~ [kj d
IOn 'Yja = Yja' an

where Ti = l!Oi, (Xi = lIdj, and OJ and dj = diagonal
elements i of ~ and D, respectively. Original solutions
can be obtained by backtransformation:

[

X'X X'Z X'Z ]
Z'X Z'Z + Til Z'Z
Z'X Z'Z Z'Z + G:iA-1

[2]

Y = ( y'l Y2 Y~) "

b = ( b~ b~ b~) "

p = ( p~ P2 p~) "

a = ( a~ a 2 a~) " and

e = ( e~ e 2 e~) ';

where @ denotes a Kronecker product, and X and Z
contain incidence matrices. The (co)variance ma­
trices of the random effects are defined as Varep) =P
=Po @ In, Var(a) =G =Go @A, and Var(e) =R =Ro
@ I where Po, Go, and Ro are the (co)variance ma­
trices between traits, n is the number of animals, and
A is the numerator relationship matrix. The mixed
model equations can be expressed as

animal effects, and e is the vector of random residual
effects:
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Multiple Random Effects and Missing Data

Let L be the Cholesky factor ofRo (i.e., Ro =LL').
Multiple diagonalization ofthe (co)variance matrices
Po, Go, and R o is possible if a matrix B exists that
satisfies the following three equations

which can be rewritten as

i\o[k] _ x. b~ [kl + p~ [kj + ark] + e~J['~]
or ji3 - -'"ji3 ji3 ji3 ji3 I' [5]

where D and ~ are diagonal matrices, and I is an
identity matrix. Such a matrix B exists if one of the
three matrices can be expressed as a linear function
of the other two. In other cases, a good approximation
often exists (5). If [3] is true, the transformation
matrix can be defined as Q =(LB) -1, with QPoQ' =
.6., QGoQ' =D, and QRoQ' =I. Then Y is transformed
to YQ by YQ = (Q ® In) y.

The mixed model Equations [2] associated with the
original Model [1] can be simplified and split into t
independent single-trait mixed model equations:

L-1Ro( L-1)'

L-1Go( L-1)'
L-1Po( L-1)'

= BIB',

= BDB', and

= B.6.B'; [3)

wher~ Xji3 is the submatrix of X that associates Yj/3
and bW All the terms on the right side of the equa­
tion are obtained as solutions from iteration k, except
for the residuals for missing observations, which are
estimated to be the regression of those residuals on
the current estimates of the residuals for observed
traits. These calculations represent the expectation
step of the expectation-maximization algorithm.

At iteration k + 1, a missing observation is replaced
by its expectation, and new solutions for b, p, and a
are obtained (the maximization step). Ducrocq and
Besbes (4) proposed a method to avoid backtransfor­
mation that simplified computations.

Different Models per Trait

Ducrocq and Besbes (4) also showed that canoni­
cal transformation can support different sets of fixed
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effects per model by computing these effects as in a
regular multiple-trait procedure and then transform­
ing data adjusted for the fixed effects. Although this
method extended canonical transformation to general
models, computer programming had to include a
procedure to solve multiple-trait models and, there­
fore, was complicated. The same result can be accom­
plished for multiple diagonalization and, therefore,
also for canonical transformation without additional
programming by 1) declaring all fixed effects for each
trait, 2) splitting each record into multiple records
such that each new record contains the same combi­
nation of fixed effects, and 3) assigning values of
unneeded fixed effects to a "dummy" level for each
new record. If every trait has a different model, each
new observation contains one known trait with all
remaining traits unknown. This approach results in
increased storage requirements for data files unless
splitting the records is incorporated into the iteration
program.

Numerical example. Consider a joint analysis for
production traits and final score, in which milk, fat,
and protein records are distributed in fixed herd-year­
season classes, and final score records are grouped
according to fixed herd-year-month-classification
classes and are also affected by the classifier effect.
Consider the following records for three cows A, B,
and C:

Approximation of Reliability

Let WQi be the diagonal matrix of PEV of the t
transformed traits for animal j. Following the method
of Misztal et a1. (11), if Wj is the matrix of PEV for
the original traits, then

The PEV for the transformed traits can be obtained
using the method proposed by Misztal and Wiggans
(13): WQij = lI(aj + bij), where wQjj is PEV of trans­
formed trait i of animal j, ai = lIdj, and bjj is the
information on animal j expressed as effective records
(11, 13). This information is assumed to be a sum of
contributions from own records (fjj) and from im­
mediate relatives (parent or progeny) of animal k
(g ijk):

where fij and gjjk were derived as in Misztal and
Wiggans (13). For a repeatability model with one
important fixed effect, reduction of information be­
cause of fitting the permanent environmental effect is
reflected by

where Tj is a variance ratio for permanent environ­
ment for trait i, and Zij is the numbers of records
adjusted to reflect the reduction of information be­
cause of fitting the fixed effect:

where nl is the number of records in fixed effects
subclass 1 when cow j has a record.

The contribution from pedigree is obtained by an
iterative procedure (13). If no observations are miss­
ing for the original traits, the contributions fjj differ
only between transformed traits because of different
permanent environmental variances. If some observa­
tions are missing, bjj is overestimated, and, conse­
quently, WQij is underestimated. Contributions gjjk
are affected indirectly because they are functions of
bij'

To examine the reduction of bjj because of missing
data, assume that after multiple diagonalization, the
left side of the coefficient matrix of Equation [4] can
be approximated:

Herd·
year-

Herd· month·
year· classif· Final

Cow season ication Classifier Milk Fat Protein score

A 1 1 1 6000 200 175 78
B 2 2 1 7000 225 200 80
C 2 3 2 8000 250 225 82

They can be rewritten using the algorithm just
described:

Main
fixed Final

Cow effect Classifier Milk Fat Protein Bcore

A 1 0 6000 200 175 M
B 2 0 7000 225 200 M
C 2 D 8000 250 225 M
A 1 1 M M M 78
B 2 1 M M M 80
C 3 2 M M M 82

where the main fixed effect represents herd-year­
season for yield traits or herd-year-month­
classification for final score, M is the code for missing
values, and D is the code for a dummy level, which in
this case is 1.

Zjj = I/l - lInl) ,
1

[7]

[8]
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* _ [R~l 0]R· - ,
J 0 0

where Hid is a diagonal matrix of weights that reflect
the contributions of observations. New formulas for
the contribution of records are derived by analyzing
submatrices of Equation [9].

The fixed effect and animal equations for trait i of
animal j with a record in fixed effects subclass 1 are

and R~l is the inverse of the part of R o that is

associated with nonmissing traits. Rj* is also a partic­

ular generalized inverse of Ro, the residual
(co)variance matrix of original traits with zeros in
rows and columns corresponding to missing data. On
the transformed scale, we can compute

n 1 'Yijl 'Yijl

'Yijl L 'Yijl + Ti L'Yijl
1 1

'Yijl L 'Yijl L'Yijl + ar .. J
1 1

[13]

*By isolating Wj '

where r =

'Ytj

and 'Yij are contributions from one record, reduced to
reflect lack of contributions from missing data. Exact
PEV on the original scale (WI) is

[14J

In Equation [15], an approximate diagonalization of

W; is performed, and the resulting off-diagonals are

discarded. With all traits recorded, the equation is
exact because [diag(QWjQ')J-1 - D-1 = It> or 'Yij =1.
If some traits are missing, QWj*Q' has off-diagonal

elements, and Equation [15] is an approximation
only. Equation [15J also gives exact results ( 'Yij = 0 if
trait i is missing, and 'Yij = 1 if i is not missing) if
(co)variances between traits are 0, which is equiva­
lent to the single-trait model. As a matter of fact,
given Equation [15], the approximation improves if

* 'off-diagonals of QWj Q are small.

For computing PEV of individuals, different possi­
bilities exist to approximate G. They can be based on
equating complete formulas or only diagonals on
either the original or transformed scale. The three
most obvious possibilities are based on an approxi-
mate diagonalization of Rj*, on equating diagonals of

Equations [12] and [14], or on equating diagonals of
Equations [11] and [13J. Preliminary tests using these
and other possibilities were done and showed the
superiority of the last approach, which can be rewrit­
ten as

[10]

[l1J

o
y.

IJo

z" = ~ {'Y"I(l - I'"l/n'l) }
IJ "'" IJ IJ'

I

where 'Yijl represents a reduction in reliability because
of missing data. Once 'YijI is approximated, approxi­
mate reliabilities can be calculated.

If a coefficient matrix for only one animal and one
observation is considered and all other fixed and per­
manent environmental effects are ignored, then PEV
on the transformed scale is assumed to be

where 'Yijl is the part of transformed trait i with
observations present, and n; is the sum of 'Yijl in fixed
effect subclass 1. After the sequential absorption of
the equations for fixed effect subclasses and perma­
nent environment into the animal equation, Equation
[7] does not change, and Equation [8] becomes

where R; is in the case of ordered traits (present
before missing):

* * -1 -1Wj = [Rj + Go] , [12] Algorithm

The algorithm to calculate the approximate relia­
bilities for a large-scale multitrait animal model with
missing data follows:
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1. For every observation, compute 'Yij as in Equa­
tion [15].

2. For every animal, compute adjustments for fixed
effects as in Equation [10], and then adjust for
permanent environmental effect as in Equation
[71.

3. After calculating fij, the adjustment for effect of
permanent environment, compute the single­
trait PEV algorithm of Misztal and Wiggans
( 13) for each of t traits.

4. Backtransform PEV as in Equation [6].
5. Compute reliabilities for every animal and origi-

nal trait as 1 - (wi/(j~), where wij is the PEV for

original trait i and animal j and (j~ is the genetic

variance of original trait i.

Comparison of Rellablllties Approximated
with and Without Correction for Missing Data

Reliabilities were calculated for simulated and field
data. (Co)variance matrices used were checked to be
positive definite.

Simulated data. Data were simulated for 900
cows with records having 400 ancestors. All cows had
a minimum of one record with a random number of
additional records with up to 10 records for one
animal. A total of 3000 records was grouped in 100
classes for fixed effects. The design was unbalanced,
and the classes for fixed effects contained from 17 to
46 observations. Records were distributed randomly
among fixed effect classes.

For the first simulated data file (F1), random
effects included additive genetic, permanent environ­
mental, and residual effects with respective
(co )variances:

[

1000 500 -900]
Po = 500 2000 -100 ,

-900 -100 2000

[

4000 500 700]
Go = 500 3000 -1000

700 -1000 2000

and

[

2000 1000 -1800]
Ro = 1000 4000 -200.

-1800 -200 4000

These genetic parameters correspond to correlations
reported by Misztal et al. (12) for type traits. Three
other data files (F2, F3, and F4) were simulated with

identical variances but with covariances of 0.1, 0.5,
and 1.4 times the covariances of F1, respectively.
These four data files were examined with various
percentages (0, 11, or 33%) of data considered miss­
ing to determine whether correlations decreased as
covariances increased. Observations to be considered
missing were randomly chosen, but three missing
observations for one record were avoided.

Dairy field data. Data for dairy cattle were ob­
tained from A. Toussaint, and A. De Bast (]~levage
Informatique, Ciney, Belgium) and included 5809
305·d records for milk, fat, and protein from 500 cows
chosen randomly and their 3108 contemporaries in
614 herd-year-seasons. The number of animals to­
taled 6072 with ancestors included. Variance and
covariance components, expressed in square kilo·
grams, were obtained from another study with simi­
lar but more data (P. Coenraets and N. Gengler,
1994, personal communication):

[

126,102 4508 3538]
Po = 4508 271 145

3538 145 115

[

153,767 4925 3890l
Go = 4925 347 1561,

3890 156 123J

and

[

484,291 19,429 15,098]
Ro = 19,429 973 641.

15,098 641 510

Data for protein and fat were considered to be
missing for 26% of records, with 9% of the missing
observations concentrated in the 58 most recent herd­
year-seasons and the other 17% dispersed randomly
among other records. The purpose of eliminating
some data was to provide a realistic situation for
Belgium and the US in which information on protein
or on fat and protein was missing.

Beeffield data. Data for beef cattle were obtained
from R. E. Golden (1994, Colorado State University,
Fort Collins) and included 7270 records for birth
weight (7270 observations), weaning weight (7270
observations), and postweaning gain (4150 observa­
tions) with a total of 7864 cattle. The model included
fixed management effects, which were assumed to be
common to all traits, and random animal effects, but
not permanent environmental or maternal effects.
(Co)variance, expressed as square kilograms, was
based on information from B. Klei (Cornell Univer-
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Dairy field data. Data for dairy cattle were ob­
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covariance components, expressed in square kilo·
grams, were obtained from another study with simi­
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Go = 4925 347 1561,
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and
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484,291 19,429 15,098]
Ro = 19,429 973 641.
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Data for protein and fat were considered to be
missing for 26% of records, with 9% of the missing
observations concentrated in the 58 most recent herd­
year-seasons and the other 17% dispersed randomly
among other records. The purpose of eliminating
some data was to provide a realistic situation for
Belgium and the US in which information on protein
or on fat and protein was missing.

Beeffield data. Data for beef cattle were obtained
from R. E. Golden (1994, Colorado State University,
Fort Collins) and included 7270 records for birth
weight (7270 observations), weaning weight (7270
observations), and postweaning gain (4150 observa­
tions) with a total of 7864 cattle. The model included
fixed management effects, which were assumed to be
common to all traits, and random animal effects, but
not permanent environmental or maternal effects.
(Co)variance, expressed as square kilograms, was
based on information from B. Klei (Cornell Univer-
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sity, Ithaca, New York, 1994, personal communica­
tion):

[

7.9 21.1 11.8]
Go = 21.1 236.8 103.7 ,

11.8 103.7 174.6

and

[

12.4 15.3 10.1]
Ho = 15.3 588.6 -91.9 .

10.1 -91.9 496.7

Missing data (43% of observations) were essentially
all grouped in specific classes for fixed effects, unlike
the dairy data, for which only 9% of missing observa­
tions were concentrated in recent herd-year-seasons.

Method of comparison. Approximate reliabilities
were calculated with the algorithm that corrects for
missing values and with the normal algorithm that
ignores missing data; then those approximate values

were compared with exact reliabilities obtained from
a direct inversion approach by MTDFREML (1), a
package using the SPARSPAK sparse matrix solver
(2), which was modified to obtain the reliabilities.
For field data files, single-trait reliabilities were cal­
culated using the same algorithm but ignoring
(co)variances between traits. Accuracy of the
methods was assessed by Pearson's correlation be­
tween approximated and exact reliabilities and by
means, standard deviations, and maxima of the ap­
proximation error, computed separately for all
animals, animals with records, and sires of animals
with records.

RESULTS AND DISCUSSION

Table 1 shows correlations, mean errors, standard
deviations of errors, and maximum absolute errors
between approximate and exact reliabilities for simu­
lated data observed for all the animals, with and
without the correction for missing traits. With no
missing observations (data file F1), approximate

TABLE 1. Correlations (r) between exact reliabilities from multiple-trait direct inversion and reliabilities from multiple-trait approxima-
tion by multiple diagonalization for simulated data with and without correction for missing observations, mean errors of approximation
(mean error), standard deviation of errors (SD error), and maximum absolute errors (max error) observed for all animals.

Without correction With correction
Data Observations
file missing Measure Trait 1 Trait 2 Trait 3 Trait 1 TraIt 2 Trait 3

(%)

F1 0 r 1.000 1.000 1.000 1.000 1.000 1.000
Mean error 0.005 0.005 0.004 0.005 0.005 0.004
SD Error 0.003 0.003 0.004 0.003 0.003 0.004
Max error 0036 0.024 0.026 0.036 0.024 0.026

11 r 0.979 0.979 0.981 0.998 0.999 0.996
Mean error 0016 0.017 0.015 0.004 0.005 0.004
SD Error 0.037 0.026 0.025 0.010 0.007 0012
Max error 0.542 0.342 0.300 0.183 0.099 0.156

33 r 0.895 0.905 0.900 0.992 0.991 0970
Mean error 0.057 0.054 0.057 -D.OOI 0.010 0.007
SD Error 0.084 0.057 0.058 0.024 0.018 0.032
Max error 0.591 0.368 0.374 0.174 0.152 0.220

F21 33 r 0.899 0.887 • 0.893 1.000 1.000 0.999
Mean error 0.055 0.059 0.056 0.006 0.006 0.005
SD Error 0.076 0.061 0.051 0.004 0.004 0.004
Max error 0.554 0.406 0.345 0.028 0.019 0.019

F32 33 r 0.899 0.891 0.898 0.998 0.996 0.983
Mean error 0.056 0.058 0.057 0.002 0.008 0.007
SD Error 0.077 0.060 0.051 0.012 0.012 0.021
Max error 0.560 0.399 0.348 0.085 0.100 0.138

F43 11 r 0.975 0.983 0.976 0.999 0.999 0.997
Mean error 0.012 0.015 0.011 0.004 0.004 0.003
SD Error 0.044 0.024 0035 0.011 0.007 0.012
Max error 0.579 0.306 OAOO 0.216 0.114 0.204

lCovariances are 0.1 times those for data file F1.

2Covariances are 0.5 times those for data file F1.

3Covariances are 1.4 times those for data file F1.
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For field data files, single-trait reliabilities were cal­
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deviations of errors, and maximum absolute errors
between approximate and exact reliabilities for simu­
lated data observed for all the animals, with and
without the correction for missing traits. With no
missing observations (data file F1), approximate

TABLE 1. Correlations (r) between exact reliabilities from multiple-trait direct inversion and reliabilities from multiple-trait approxima-
tion by multiple diagonalization for simulated data with and without correction for missing observations, mean errors of approximation
(mean error), standard deviation of errors (SD error), and maximum absolute errors (max error) observed for all animals.

Without correction With correction
Data Observations
file missing Measure Trait 1 Trait 2 Trait 3 Trait 1 TraIt 2 Trait 3

(%)

F1 0 r 1.000 1.000 1.000 1.000 1.000 1.000
Mean error 0.005 0.005 0.004 0.005 0.005 0.004
SD Error 0.003 0.003 0.004 0.003 0.003 0.004
Max error 0036 0.024 0.026 0.036 0.024 0.026

11 r 0.979 0.979 0.981 0.998 0.999 0.996
Mean error 0016 0.017 0.015 0.004 0.005 0.004
SD Error 0.037 0.026 0.025 0.010 0.007 0012
Max error 0.542 0.342 0.300 0.183 0.099 0.156

33 r 0.895 0.905 0.900 0.992 0.991 0970
Mean error 0.057 0.054 0.057 -D.OOI 0.010 0.007
SD Error 0.084 0.057 0.058 0.024 0.018 0.032
Max error 0.591 0.368 0.374 0.174 0.152 0.220

F21 33 r 0.899 0.887 • 0.893 1.000 1.000 0.999
Mean error 0.055 0.059 0.056 0.006 0.006 0.005
SD Error 0.076 0.061 0.051 0.004 0.004 0.004
Max error 0.554 0.406 0.345 0.028 0.019 0.019

F32 33 r 0.899 0.891 0.898 0.998 0.996 0.983
Mean error 0.056 0.058 0.057 0.002 0.008 0.007
SD Error 0.077 0.060 0.051 0.012 0.012 0.021
Max error 0.560 0.399 0.348 0.085 0.100 0.138

F43 11 r 0.975 0.983 0.976 0.999 0.999 0.997
Mean error 0.012 0.015 0.011 0.004 0.004 0.003
SD Error 0.044 0.024 0035 0.011 0.007 0.012
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lCovariances are 0.1 times those for data file F1.

2Covariances are 0.5 times those for data file F1.

3Covariances are 1.4 times those for data file F1.
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reliabilities were close to exact reliabiIities from
direct inversion.

The improvement with the correction was most
dramatic for simulated data with extremely low
covariances among traits (data file F2). The improve­
ment with the correction was smaller for data with
higher covariances between traits. Thus, the al­
gorithm works best with fewer missing observations
and low correlations between traits. This last fact is
obvious because Equation [15] is only an approxima­
tion because of discarded off-diagonals.

Tables 2 and 3 show values for the same measures
observed for animals with records and for sires of
animals with records. The minimum correlation for
animals with records without the correction is only
0.408, but for sires it is never <0.969. After the correc­
tions, these correlations increase to 0.888 and 0.992,
which suggests that, although the correction for miss­
ing data helped the reliability approximation for
animals with records, these approximations were still
not as good as for sires with several progeny.

Also, for the field data for dairy cattle, correlations
between approximate and exact reliabilities (Table
4) were much higher than for simulated data. For
milk and protein yields, they were >0.990, even
without the use of the algorithm for the correction for
missing data. The correction has increased the corre­
lations for fat from 0.931 to 0.997, marginally
decreased the correlation for protein, and reduced the
correlation for milk from 0.995 to 0.969. The correc­
tion changed bias for milk from 0.013 to -0.010, mean­
ing that reliability for milk changed from generally
being overestimated to being underestimated, The
single-trait approximation had a bias up to four times
higher than the multiple-trait approximation with the
correction, but the standard deviation of the single­
trait approximation was better for milk, the only trait
that was always recorded; the maximum error was
smaller for milk and fat. Relatively modest gains from
the correction in yield traits were likely caused by
high correlations among the traits.

The most accurate method for beef data was the
single-trait approach. The correction in the multitrait

TABLE 2, Correlations (r) between exact reliabilities from multiple-trait direct inversion and reliabilities from multiple-trait approxima-
tion by multiple diagonalization for simulated data with and without correction for missing observations, mean errors of approximation
(mean errorl, standard deviation of errors (SD error), and maximum absolute errors (max error) observed for all animals with records,

Observations
Without correction With correction

Data
me missing Measure Trait 1 Trait 2 Trait 3 Trait 1 Trait 2 Trait 3

(%)

F1 0 r 0.995 0.995 0.995 0.995 0,995 0.995
Mean error 0,005 0,005 0,005 0.005 0.005 0.005
SO Error 0.003 0.003 0,003 0.003 0.003 0.003
Max error 0.012 0.012 0011 0.012 0.012 0,011

11 r 0,656 0.831 0,778 0,978 0,993 0,955
Mean error 0.019 0.020 0.018 0.004 0,006 0,004
SO Error 0.043 0.031 0.029 0.012 0.007 0,014
Max error 0.542 0.342 0.300 0.183 0,099 0,156

33 r 0,549 0,651 0,619 0.968 0.980 0.888
Mean error 0.068 0,063 0,067 -0.001 0.011 0.008
SD Error 0,098 0,065 0,067 0.028 0.021 0,038
Max error 0.590 0.368 0,374 0,174 0.152 0,220

F2 1 33 r 0.576 0.625 0.638 1,000 0,999 0,999
Mean error 0.065 0,068 0.065 0.007 0.006 0,006
SO Error 0,088 0,070 0,057 0.003 0.003 0.004
Max error 0,554 0.406 0,345 0.019 0.019 0.019

F32 33 r 0,571 0,631 0,642 0,993 0.993 0,950
Mean error 0,066 0.067 0,066 0.002 0,010 0.008
SO Error 0.090 0,069 0.058 0,014 0.013 0,025
Max error 0.560 0.399 0.348 0.085 0,100 0.138

F43 11 r 0.408 0,844 0.519 0.975 0.989 0.957
Mean error 0,014 0,017 0,014 0.004 0.005 0.004
SD Error 0.052 0,028 0,042 0.012 0.008 0.014
Max error 0,579 0.306 0.400 0.216 0.114 0,204

lCovariances are 0,1 times those for data tile Fl.

2Covariances are 0.5 times those for data tile Fl.

3Covariances are 1.4 times those for data tile Fl.
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the correction in yield traits were likely caused by
high correlations among the traits.

The most accurate method for beef data was the
single-trait approach. The correction in the multitrait
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tion by multiple diagonalization for simulated data with and without correction for missing observations, mean errors of approximation
(mean errorl, standard deviation of errors (SD error), and maximum absolute errors (max error) observed for all animals with records,

Observations
Without correction With correction

Data
me missing Measure Trait 1 Trait 2 Trait 3 Trait 1 Trait 2 Trait 3

(%)
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SO Error 0.003 0.003 0,003 0.003 0.003 0.003
Max error 0.012 0.012 0011 0.012 0.012 0,011

11 r 0,656 0.831 0,778 0,978 0,993 0,955
Mean error 0.019 0.020 0.018 0.004 0,006 0,004
SO Error 0.043 0.031 0.029 0.012 0.007 0,014
Max error 0.542 0.342 0.300 0.183 0,099 0,156

33 r 0,549 0,651 0,619 0.968 0.980 0.888
Mean error 0.068 0,063 0,067 -0.001 0.011 0.008
SD Error 0,098 0,065 0,067 0.028 0.021 0,038
Max error 0.590 0.368 0,374 0,174 0.152 0,220

F2 1 33 r 0.576 0.625 0.638 1,000 0,999 0,999
Mean error 0.065 0,068 0.065 0.007 0.006 0,006
SO Error 0,088 0,070 0,057 0.003 0.003 0.004
Max error 0,554 0.406 0,345 0.019 0.019 0.019

F32 33 r 0,571 0,631 0,642 0,993 0.993 0,950
Mean error 0,066 0.067 0,066 0.002 0,010 0.008
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2Covariances are 0.5 times those for data tile Fl.

3Covariances are 1.4 times those for data tile Fl.
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TABLE 3. Correlations (r) between exact reliabilities from multiple-trait direct inversion and reliabilities from multiple-trait approxima-
tion by multiple diagonalization for simulated data with and without correction for missing observations, mean errors of approximation
(mean error), standard deviation of errors (SD error), and maximum absolute errors (max error) observed for sires of animals with
records.

Data Observations
Without correction With correction

file missing Measure Trait 1 Trait 2 Trait 3 Trait 1 Trait 2 Trait 3

(%)
Fl 0 r 0.999 0.999 0.999 0.999 0.999 0999

Mean error 0.005 0005 0.004 0.005 0.005 0.004
SD Error 0.003 0,003 0.003 0.003 0.003 0.003
Max error 0.024 0.024 0.019 0.024 0.024 0.019

11 r 0,993 0.994 0.996 0.999 0.999 0.998
Mean error 0.011 0.014 0.012 0,004 0.005 0004
SD Error 0.011 0.011 0.008 0,005 0.004 0006
Max error 0.141 0.091 0.059 0.047 0.025 0.029

33 r 0.969 0.980 0.978 0.996 0.998 0.992
Mean error 0.038 0.042 0.041 0.000 0.009 0.005
SD Error 0.025 0.019 0.018 0.009 0.007 0.011
Max error 0.177 0.091 0.097 0.032 0.028 0.039

F2 1 33 r 0.970 0.974 0.975 1.000 0,999 0.999
Mean error 0.039 0.046 0.046 0.005 0.005 0.005
SD Error 0.025 0.022 0.021 0.003 0.004 0.003
Max error 0.182 0.103 0.118 0.020 0.019 0.015

F32 33 r 0.971 0.976 0.976 0.999 0.999 0.996
Mean error 0.039 0.045 0026 0.002 0.007 0.005
SD Error 0.025 0.021 0.020 0.005 0.005 0.008
Max error 0.180 0.104 0.111 0.023 0.026 0.033

F43 11 r 0.992 0.995 0995 0.998 0.999 0.998
Mean error 0.009 0.013 0.009 0.004 0.004 0.003
SD Error 0.012 0.010 0.008 0.006 0.004 0.005
Max error 0.147 0.078 0.054 0.055 0.019 0,022

lCovariances are 0.1 times those for data file F1.

2Covariances are 0.5 times those for data file F1.

3Covariances are 1.4 times those for data file Fl.

TABLE 4. Correlations (r) between exact reliabilities from multiple-trait direct inversion and reliabilities from multiple-trait approxima-
tion by multiple diagonalization for field data with and without correction for missing observations and single-trait reliabilities obtained by
ignoring covariances between traits; mean errors of approximation (mean error), standard deviation of errors (SD error) and maximum
absolute errors (max error), measures observed for all the animals.

Correlations between multiple-trait reliabilities

Without With Single-trait reliabilities with
correction correction correction for missing data

Data Measure Milk Fat Protein Milk Fat Protein Milk Fat Protein

Dairy r 0.995 0.931 0.997 0969 0.997 0.994 0.995 0.972 0.870
Mean error 0.013 0.036 0.009 -0.010 0.008 0.002 -0.042 -0.038 -0.029
SD Error 0.015 0.052 0.011 0.032 0.013 0.012 0.013 0.031 0.054
Max error 0.151 0.334 0.167 0.143 0.153 0.124 0.126 0.080 0.286

Post- Post- Post-
Birth Weaning weaning Birth Weaning weaning Birth Weaning weaning
weight weight gain weight weight gain weight weight gain

Beef r 0.994 0984 0.805 0.971 0.990 0.918 0.994 0.982 0.989
Mean error 0,013 0025 0.092 -0.011 0.001 0.067 0.008 -0.018 -0.034
SD Error 0.011 0.016 0.064 0.024 0.013 0.043 0.011 0.017 0.019
Max error 0.335 0.319 0.342 0.259 0.251 0.267 0.328 0.344 0.144
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tion by multiple diagonalization for simulated data with and without correction for missing observations, mean errors of approximation
(mean error), standard deviation of errors (SD error), and maximum absolute errors (max error) observed for sires of animals with
records.

Data Observations
Without correction With correction

file missing Measure Trait 1 Trait 2 Trait 3 Trait 1 Trait 2 Trait 3

(%)
Fl 0 r 0.999 0.999 0.999 0.999 0.999 0999

Mean error 0.005 0005 0.004 0.005 0.005 0.004
SD Error 0.003 0,003 0.003 0.003 0.003 0.003
Max error 0.024 0.024 0.019 0.024 0.024 0.019

11 r 0,993 0.994 0.996 0.999 0.999 0.998
Mean error 0.011 0.014 0.012 0,004 0.005 0004
SD Error 0.011 0.011 0.008 0,005 0.004 0006
Max error 0.141 0.091 0.059 0.047 0.025 0.029

33 r 0.969 0.980 0.978 0.996 0.998 0.992
Mean error 0.038 0.042 0.041 0.000 0.009 0.005
SD Error 0.025 0.019 0.018 0.009 0.007 0.011
Max error 0.177 0.091 0.097 0.032 0.028 0.039

F2 1 33 r 0.970 0.974 0.975 1.000 0,999 0.999
Mean error 0.039 0.046 0.046 0.005 0.005 0.005
SD Error 0.025 0.022 0.021 0.003 0.004 0.003
Max error 0.182 0.103 0.118 0.020 0.019 0.015

F32 33 r 0.971 0.976 0.976 0.999 0.999 0.996
Mean error 0.039 0.045 0026 0.002 0.007 0.005
SD Error 0.025 0.021 0.020 0.005 0.005 0.008
Max error 0.180 0.104 0.111 0.023 0.026 0.033

F43 11 r 0.992 0.995 0995 0.998 0.999 0.998
Mean error 0.009 0.013 0.009 0.004 0.004 0.003
SD Error 0.012 0.010 0.008 0.006 0.004 0.005
Max error 0.147 0.078 0.054 0.055 0.019 0,022

lCovariances are 0.1 times those for data file F1.

2Covariances are 0.5 times those for data file F1.

3Covariances are 1.4 times those for data file Fl.

TABLE 4. Correlations (r) between exact reliabilities from multiple-trait direct inversion and reliabilities from multiple-trait approxima-
tion by multiple diagonalization for field data with and without correction for missing observations and single-trait reliabilities obtained by
ignoring covariances between traits; mean errors of approximation (mean error), standard deviation of errors (SD error) and maximum
absolute errors (max error), measures observed for all the animals.

Correlations between multiple-trait reliabilities

Without With Single-trait reliabilities with
correction correction correction for missing data

Data Measure Milk Fat Protein Milk Fat Protein Milk Fat Protein

Dairy r 0.995 0.931 0.997 0969 0.997 0.994 0.995 0.972 0.870
Mean error 0.013 0.036 0.009 -0.010 0.008 0.002 -0.042 -0.038 -0.029
SD Error 0.015 0.052 0.011 0.032 0.013 0.012 0.013 0.031 0.054
Max error 0.151 0.334 0.167 0.143 0.153 0.124 0.126 0.080 0.286

Post- Post- Post-
Birth Weaning weaning Birth Weaning weaning Birth Weaning weaning
weight weight gain weight weight gain weight weight gain

Beef r 0.994 0984 0.805 0.971 0.990 0.918 0.994 0.982 0.989
Mean error 0,013 0025 0.092 -0.011 0.001 0.067 0.008 -0.018 -0.034
SD Error 0.011 0.016 0.064 0.024 0.013 0.043 0.011 0.017 0.019
Max error 0.335 0.319 0.342 0.259 0.251 0.267 0.328 0.344 0.144
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TABLE 5. Correlations (r) between exact reliabilities from multiple-trait direct inversion and reliabilities from multiple-trait approxima­
tion by multiple diagonalization for field data with and without correction for missing observations and smgle-trait reliabilities obtained by
ignoring covariances between traits; mean errors of approximation (mean error), standard deviation of errors (SD error, and maximum
absolute errors (max error), measures observed for animals with records

Data

Dairy

Beef

Correlations between multiple-trait reliabilities

Without With Single-trait reliabilities with
correction correction correction for missing data

Measure :\1ilk Fat Protein Milk Fat Protein Milk Fat Protein

r 0.981 0.785 0.990 0.900 0.992 0.982 0.980 0.970 0.738
Mean error 0.019 0.054 0013 -0.014 0013 0.002 -0007 -0.041 -0.042
SD Error 0.014 0.059 0.01l 0.040 0012 0.014 0.015 0.033 0.066
Max error 0.151 0.334 0167 0.143 0.153 0.124 0.126 0.160 0.286

Post- Post- Post·
Birth Weaning weaning Birth Weaning weaning Birth Weaning weaning
weight weight gain weight weight gain weight weight gain

r 0.986 0.964 0711 0.933 0980 0.902 0.986 0.963 0.992
Mean error 0.014 0.025 0.094 -0.012 0.001 0.068 0.008 -0.019 -0.035
SD Error 0009 0.016 0.065 0.024 0.013 0.044 0.009 0.016 0017
Max error 0.147 0.172 0.3ll 0.101 0.104 0.248 0.138 0.108 0121

model has decreased bias and maximum error for all
traits, but the standard errors actually increased from
0.011 to 0.024, and the correlation for postweaning
gain was only 0.918. The failure of the correction
could be due to an inability to account for missing
management classes.

Tables 5 and 6 show the results for animals with
records and sires of animals with records. As for
simulated data, the correction is much better for sires
than for cows. Correlations for sires were all >0.99,
which was better than with the single-trait model for
which the correlation for protein was 0.974. Correla­
tions for sires with beef data were all >0.97; however,

the correlations by the single-trait model were all
>0.99. One explanation for the different behavior ob··
served for the three types of data files is the different
distribution of missing values for the fixed effects. For
the simulated data files, missing values were not
grouped in complete empty levels of the fixed effect.
For the field data for dairy cattle, 9% of the missing
values were concentrated in certain herd-year-season
classes, and, for the field data for beef cattle, neacly
all missing data were concentrated in certain fixed
effect classes. This result suggests that the algorithm
is less accurate if complete classes of fixed effects
were missing.

TABLE 6. Correlations (r) between exact reliabilities from multiple-trait direct inversion and reliabilities from multiple-trait approxima­
tion by multiple diagonalization for field data with and without correction for missing observations and single-trait reliabilities obtained by
ignoring covariances between traits; mean errors of approximation (mean error), standard deviation of errors (SD error, and maximum
absolute errors (max error), measures observed for sires of animals with records.

Data

Dairy

Beef

Correlations between multiple-trait reliabilities

Without With Single-trait reliabilities with
correction correction correction for missing data

Measure Milk Fat Protein Milk Fat Protein Milk Fat Protein

r 0.998 0.986 0.998 0.993 0.998 0.998 0.998 0.992 0.974
Mean error 0.011 0.029 0.011 -0.005 0.009 0.005 0.002 -0.017 -0.020
SD Error 0.013 0.026 0.013 0.018 0.013 0.012 0.01l 0.017 0.028
Max error 0.079 0.190 0.077 0.085 0.073 0.067 0.062 0.141 0.223

Post- Post- Post-
Birth Weaning weaning Birth Weaning weaning Birth Weaning weaning
weight weight gain weight weight gain weight weight gain

r 0.991 0.992 0.954 0.992 0.994 0.974 0.991 0.992 0.996
Mean error 0.024 0.030 0.100 0.007 0.012 0.079 0.022 0.007 -0.010
SD Error 0.024 0.023 0.056 0.024 0021 0.042 0.024 0.026 0.028
Max error 0.335 0.319 0.342 0.259 0251 0.267 0.328 0.264 0.095
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is less accurate if complete classes of fixed effects
were missing.

TABLE 6. Correlations (r) between exact reliabilities from multiple-trait direct inversion and reliabilities from multiple-trait approxima­
tion by multiple diagonalization for field data with and without correction for missing observations and single-trait reliabilities obtained by
ignoring covariances between traits; mean errors of approximation (mean error), standard deviation of errors (SD error, and maximum
absolute errors (max error), measures observed for sires of animals with records.

Data

Dairy

Beef

Correlations between multiple-trait reliabilities

Without With Single-trait reliabilities with
correction correction correction for missing data

Measure Milk Fat Protein Milk Fat Protein Milk Fat Protein

r 0.998 0.986 0.998 0.993 0.998 0.998 0.998 0.992 0.974
Mean error 0.011 0.029 0.011 -0.005 0.009 0.005 0.002 -0.017 -0.020
SD Error 0.013 0.026 0.013 0.018 0.013 0.012 0.01l 0.017 0.028
Max error 0.079 0.190 0.077 0.085 0.073 0.067 0.062 0.141 0.223

Post- Post- Post-
Birth Weaning weaning Birth Weaning weaning Birth Weaning weaning
weight weight gain weight weight gain weight weight gain

r 0.991 0.992 0.954 0.992 0.994 0.974 0.991 0.992 0.996
Mean error 0.024 0.030 0.100 0.007 0.012 0.079 0.022 0.007 -0.010
SD Error 0.024 0.023 0.056 0.024 0021 0.042 0.024 0.026 0.028
Max error 0.335 0.319 0.342 0.259 0251 0.267 0.328 0.264 0.095

Journal of Dairy Science Vol. 79, No.2, 1996



326 GENGLER AND MISZTAL

Figure 1. Plot of exact versus approximate reliabilities for milk
yield obtained by multiple diagonalization with (.) and without
(0) correction for missing data for sires of cows with records.
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Figures 1, 2, and 3 show plots of approximate
versus exact reliabilities for sires of cows with records
for milk yield traits. For most sires, the multitrait
approximation overestimated the reliabilities, and the
correction has reduced that overestimation. The un­
derestimation occurred only for lower repeatability
sires «55%), suggesting that the approximation does
not affect sires with more offspring. Except for milk
yield, for which certain values were slightly overcor­
rected, those corrected values were close to the exact
reliabilities. Figures 4, 5, and 6 show plots of approxi­
mates versus exact reliabilities for sires of animals
with beef records. For birth weight and weaning
weight, the multitrait approximation overestimated
slightly the reliabilities for most animals, and the
correction for missing values reduced that overesti­
mation. The approximations were worse for two sires
that had progeny in fewer herds than other sires and
whose relationships were less complete. For certain
animals, values were slightly overcorrected. For post­
weaning gain, multitrait approximation showed big
estimation errors. The correction reduced these er­
rors, but not as much as for the two other traits. A
systematic bias existed for animals with high exact
reliabilities, and approximate reliabilities were over­
estimated.
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Figure 2. Plot of exact versus approximate reliabilities for fat
yield obtained by multiple diagonalization with (.) and without
(0) correction for missing data for sires of cows with records.
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Figure 3. Plot of exact versus approximate reliabilities for pro­
tein yield obtained by multiple diagonalization with (.) and
without (0) correction for missing data for sires of cows with
records.
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weight, the multitrait approximation overestimated
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correction for missing values reduced that overesti­
mation. The approximations were worse for two sires
that had progeny in fewer herds than other sires and
whose relationships were less complete. For certain
animals, values were slightly overcorrected. For post­
weaning gain, multitrait approximation showed big
estimation errors. The correction reduced these er­
rors, but not as much as for the two other traits. A
systematic bias existed for animals with high exact
reliabilities, and approximate reliabilities were over­
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yield obtained by multiple diagonalization with (.) and without
(0) correction for missing data for sires of cows with records.
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Figure 3. Plot of exact versus approximate reliabilities for pro­
tein yield obtained by multiple diagonalization with (.) and
without (0) correction for missing data for sires of cows with
records.
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Figure 4. Plot of exact versus approximate reliabilities for birth
weight obtained by multiple diagonalization with (.) and without
(0) correction for missing data for sires of animals with records.

CONCLUSIONS

The accuracy of the algorithm for approximating
PEV or reliabilities by multiple diagonalization with
a multiple-trait repeatability model with missing
data decreased as the percentage of observations
missing and the correlation between traits increased
For simulated data with 33% of records missing and
correlations $50% between traits, correlations of ap­
proximate reliabilities with those obtained by direct
inversion were >0.97, means of estimation errors were
<0.01, and standard deviations of estimation errors
were <0.032. The algorithm worked best for sires of
animals with records.

If large percentages of data were missing and con­
centrated in certain levels of fixed effects, and correla­
tions between traits were high, reliabilities obtained
with the multiple-trait model and multiple diagonali­
zation were inaccurate. For the field data for dairy
cattle, half-sib families were small, and parents were
not known for all animals. For simulated data with
the same (co)variances and similar patterns of miss­
ing observations, correlations (not shown) between
approximate and exact reliabilities were higher than
for the field data. Accuracy of the algorithm may be
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Figure 5. Plot of exact versus approximate reliabilities for wean­
ing weight obtained by multiple diagonalization with (.) and
without (0) correction for missing data for sires of animals with
records.

Figure 6. Plot of exact versus approximate reliabilities for post­
weaning gain obtained by multiple diagonalization with (.) and
without (0) correction for missing data for sires of animals with
records.
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Figure 4. Plot of exact versus approximate reliabilities for birth
weight obtained by multiple diagonalization with (.) and without
(0) correction for missing data for sires of animals with records.
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were <0.032. The algorithm worked best for sires of
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Figure 6. Plot of exact versus approximate reliabilities for post­
weaning gain obtained by multiple diagonalization with (.) and
without (0) correction for missing data for sires of animals with
records.
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greater for larger data files with more complete
pedigree information.

This algorithm is a first approach to the problem of
calculating reliabilities using multiple diagonaliza­
tion with large-scale, multiple-trait animal models
with missing data. Possible extensions would be to
calculate the effective number of observations per
trait as described and then 1) to develop multiple­
trait algorithms that are equivalent to the single-trait
algorithm proposed by Misztal and Wiggans (13) or
2) to calculate single-trait PEV that are combined to
approximate multiple-trait PEV.
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