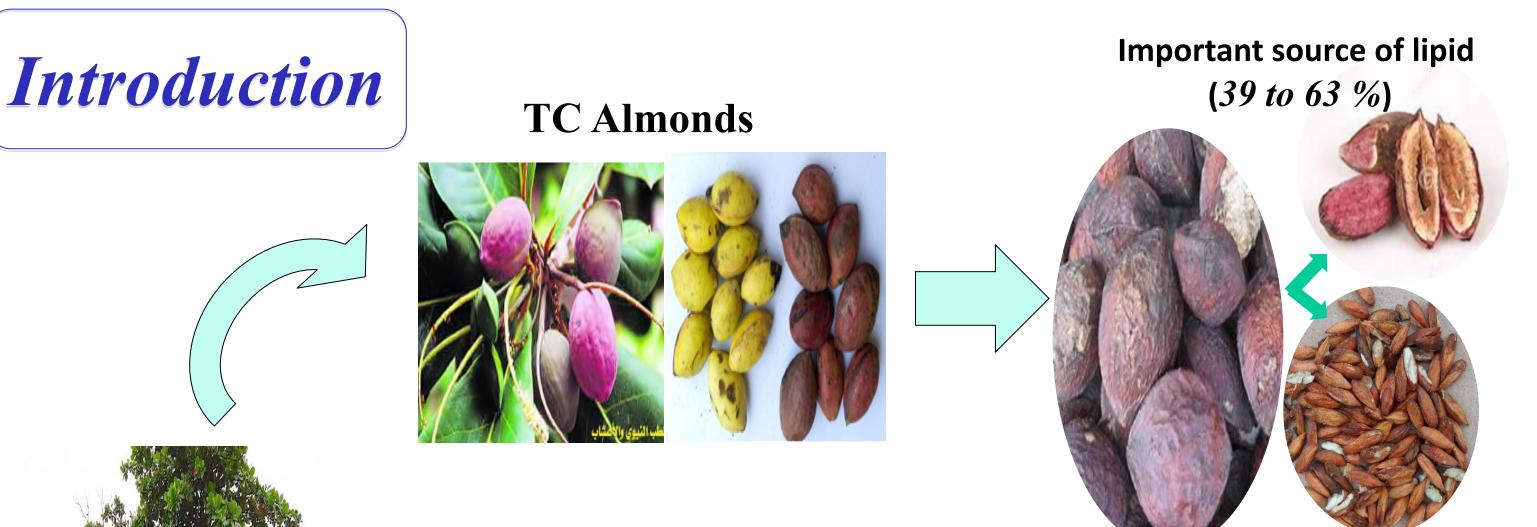
Physicochemical characterization and thermal behaviour of almonds oils from two morphotypes of *T. catappa* grown in two regions with three soil types


Kowiou Aboudou^{1,2}, Paul Malumba^{3,} Christophe Blecker², Eva Tyteca⁴, Mohamed Manzourou Soumanou¹, Sabine Danthine²

¹Research Unit Enzyme Engineering and Food Technology, Laboratory of Study and Research in Applied Chemistry, Department of Food and Technology Engineering,

University of Abomey Calavi, 01 BP 2009 Cotonou 01, Benin. ²Food Science and Formulation, University of Liege, Gembloux Agro-Bio Tech, Passage of the Deportees, 2, B-5030 Gembloux, Belgium ³Care FoodIsLife, Terra Teaching and Research Center, Liège University, Gembloux Agro-Bio Tech, Avenue de la Faculté 2B, 5030 Gembloux 'Laboratory of Analytical Chemistry, University of Liege, Gembloux Agro-Bio Tech, Passage des Déportés, 2, B-5030 Gembloux, Belgium * Corresponding Author: sabine.danthine@uliege.be

The tropical almond tree (Terminalia cattapa) is recognized for its edible fruits which are unexploited industrially due to a lack of scientific data on the potential applications in food systems of the oil it contains. In the present study, oils from two morphotypes of T.catappa (TC) were

Terminalia catappa

solvent extracted and characterized.

The key purpose of the present study was to provide more data on the chemical composition, some physical properties especially crystallization and melting behavior and oxidative stability of oils extracted from almonds of two morphotypes of TC found on different soil types in order to determine the variability and their potential applications in food systems.

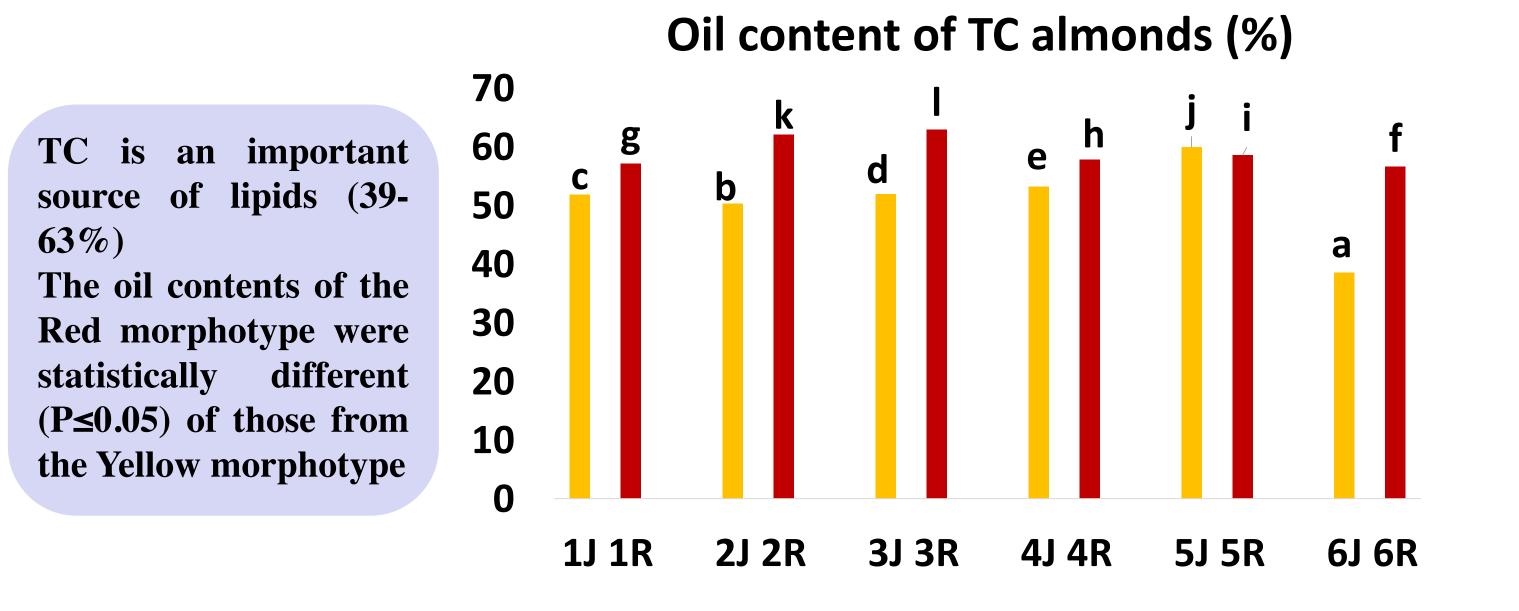
Material and Methods

Sample codes

Zones	Soil	Morpho types	Sample codes
	Damana	Yellow	1J
	Ferrous	Red	1 R
Coostal	Condu	Yellow	2J
Coastal	Sandy	Red	2R
	<u>C1</u>	Yellow	3J
	Clayey	Red	3R
	D	Yellow	4J
	Ferrous	Red	4R
Oueme	C 1	Yellow	5J
	Sandy	Red	5R
		Yellow	6J
	Clayey	Red	6R

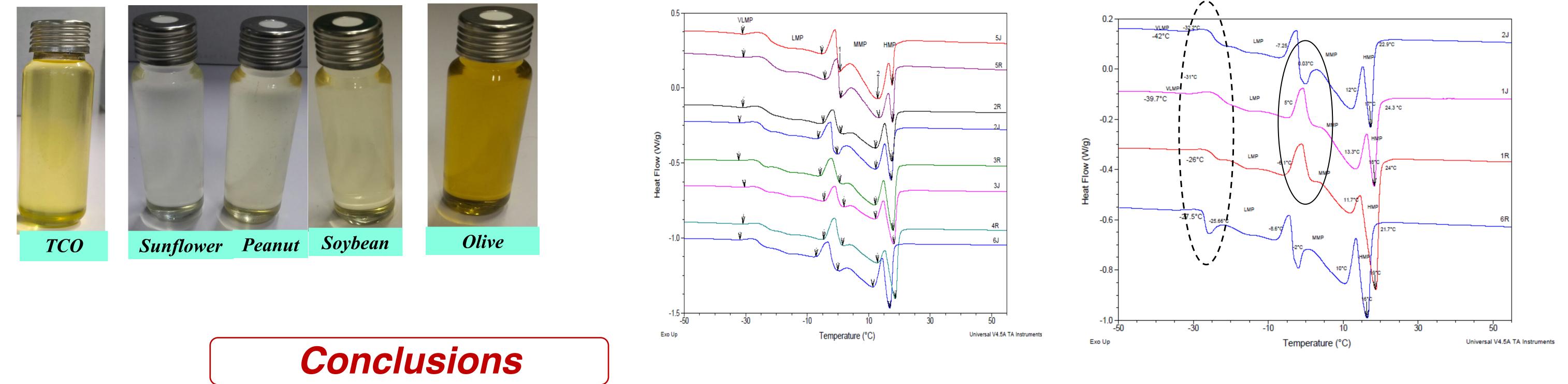
Samples preparation

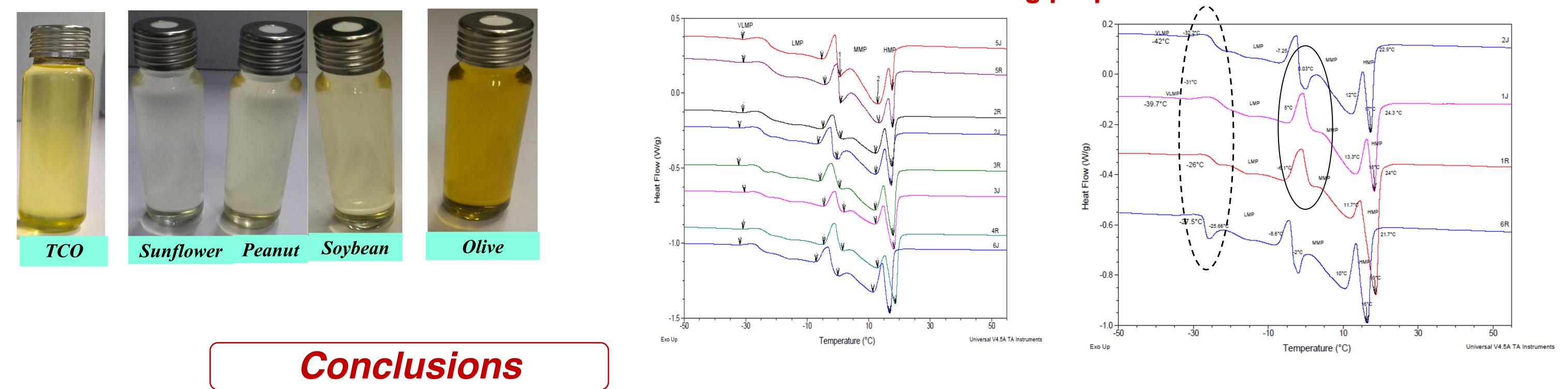
- Mature fruits collected on 3 (Ferrous, Sandy, soils types in 2 areas Clayey) (coastal zone and Ouémé) from Benin (See table for sample codes)


Oil extraction by Soxlhet using the AOAC Method 945.10

Methods

	- Fatty acid	-Color: Lovibond 3-	-DSC melting profiles
	composition by	Aparatus comparator	using a Q2000 DSC (TA
16	GC according to	and Hunter Lab Color	Instruments) according to
	AOCS (2005) Ce 2-66 method	Flex EZ	AOCS Cj 1-94 method
	2-66 method		


1. Oil content of *T.catappa* almonds


2. Fatty acid composition of TC oils

Fatty acid composition (%)								
Samples	C 16:0	C 18:0	C 18:1	C 18:2 ω-6		USFA	SFA/US FA	
1J	47.5±0.5	4.7±0.03	22.2±0.2	25.5±0.2	52.2	47.7	1.1	ПІ
1 R	49.5±0.1	4.8±0.01	20.7 ± 1.3	24.8 ± 2.1	54.3	45.6	1.2	Pal
2 J	46.4±0.6	3.8±0.45	22.6±0.03	27.0±0.1	50.2	49.6	1.01	%)
2R	44.2±1.5	2.9±0.35	24.2±1.5	28.6±0.4	47.1	52.8	0.9	33
3J	43.7±3.1	3.7±0.3	19.7±0.4	32.8±0.2	47.4	52.5	0.9	(20
3R	46.3±0.3	4.1±0.11	21.7±0.21	28.0±0.20	50.3	49.6	1.0	stea
								acio
4J	48.3±0.7	3.6±0.04	21.5±0.2	26.5±0.4	51.9	47.9	1.1	mai
4R	45.7±0.49	4.1±0.13	21.4±0.02	28.7±0.6	49.8	50.1	0.99	ider
5J	45.0±0.32	4.1±0.002	24.6±0.4	26.2±0.02	49.1	50.8	0.96	the
5 R	44.7±0.06	3.6±0.21	23.1±0.1	28.5±0.1	48.2	51.6	0.9	
6 J	43.4±0.62	5.4 ± 1.3	23.0±0.3	28.2±0.3	48.7	51.2	0.95	
6 R	41.4±1.21	3.6±0.22	22.8±0.8	32.0±0.6	45.1	54.9	0.8	

3. Color

-TC Almonds are interesting sources of lipids. The Red morphotype contains more oil than the Yellow morphotype.

-TC oil is completely liquid at ambient temperature and contains around 50-50% of SAFA and USFA.

-Thermal properties such as onset, peak, and endset temperatures (°C) showed significant changes due to the saturated fatty acids content of the oil samples -The oil extracted from the almonds of TC constitutes an alternative source of lipids and could be suitable for applications in several areas of the food industries.