ULg, Liege, Belgium

MATH0024 — Modeling with PDEs

Separation of variables and spectral problem
with applications to Laplace/Poisson equation

Maarten Arnst and Romain Boman

October 25, 2017

MATHO0024 — Lecture 5

1/28



Outline

B Separation of variables.

B Review of series and function series.

B Convergence and separation of variables.

B Sturm-Liouville problem.

B Summary and conclusion.

B References.

ULg, Liége, Belgium MATHO0024 — Lecture 5 2/28



Separation of variables
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Separation of variables

Motivating example: solution of linear problem with real symmetric system matrix

B Linear problem: Let us consider a linear problem of the following form:
Az =y.

B Eigenproblem: Let us assume that [A] is a real, symmetric, square n-dimensional matrix. Then,
the eigenvalues A1, ..., A, of [A] are real and there is an orthonormal basis consisting of eigen-

, ... Hence, with [D] = [Diag(A1, ..., A\n)] and [V] = [¢4]. .. |®,,], we obtain:

vectors ¢4, . ..
Alpy = Ay, 1<k<mn, AllV] = [V][D],
P =0k, 1<k L<n. VITV] = VIvIT = (1.
[A] = [VI[D][V]*

B Series: Because the eigenvectors form an orthonormal basis, we can expand x as follows:

x = Z brpy With by, =x-,, 1 <k <n. x=[V]b with b=[V]'z.

k=1
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Separation of variables

Motivating example: solution of linear problem with real symmetric system matrix (continued)

B System of uncoupled equations (“diagonalization”):

. A|lV]b=y.
[A]Zbksok:y. [AJ[V]
k=1
y:chgok with e, =y - ., 1 <k <n. y=[V]e with c=[V]'y.
k=1
b [Alpr, = ) Acbrpr = ) crepy. A[V] b= [V][D]b = [V]e.
;k[lwk;km;m A][V] b= [V][D]b = [V]e
B =[V][D]
Mbr =cr, 1<k<n. Db = c.

B We can observe that the projection of a linear problem with a real symmetric system matrix onto the
eigenvectors of this matrix breaks down this linear problem (harder to solve) into a system of uncou-
pled scalar equations (easier to solve). Once a solution b1, . . ., b, is available, a solution to the
linear problem is obtained in the form of the series ZZ:l br. ;. in the eigenvectors ¢, ..., @, .
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Separation of variables

Notion of separation of variables

B Separation of variables refers to a family of solution methods that share the property that a

solution is sought in the form of a (series of) product(s) of functions of fewer independent variables.

B This (series of) product(s) of functions of fewer independent variables is often constructed by using
eigenfunctions obtained by solving an eigenproblem. A particular advantage of eigenfunctions is

that their use often transforms the problem under consideration into a system of subsidiary

problems that involve fewer independent variables (“diagonalization”).

Example: Laplace’s equation in a square

B Dirichlet problem: Let us consider the following Dirichlet problem:

ULg, Liége, Belgium

Y A

u(z,1) =0

u(1,y)

u(x,0) =0

0%u  0*u
Ox? i 0y?
u(x,0) =0
u(l,y) =0
u(x,1) =0
w0,y) = f
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=0

in |0, 1[x]0, 1],

on]O,l[x{y — 0}7
on {z = 1}x]0, 1],
on](),l[x{y — 1}7
on {z = 0} x]0, 1].
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Separation of variables

Example: Laplace’s equation in a square (continued)

B Eigenproblem: With reference to the boundary conditions u(x,0) = Oaty = 0 and u(x,1) = 0
at y = 1, we begin by solving the following eigenproblem, also called spectral problem:

SEW=xely) ol
©(0) =p(1)=0 aty =0andy = 1.

4 Given a value of A\, the homogeneous ODE is solved by any linear combination of two linearly
independent elementary solutions given by

exp(—vV —Ay), exp(vV —Ay), if A < 0,
1, Y, if\=0,

cos(VAy), sin(V\y), if A > 0.

¢ For A < 0and X\ = 0, the only linear combination of the elementary solutions that satisfies the
boundary conditions is the trivial solution equal to zero everywhere.
¢ For A > 0, the solution need not be equal to zero everywhere if and only if

sin(vV'\) = 0.
€ Thus, we find a sequence of eigenvalues )y, with corresponding eigenfunctions ¢y,
Ap = k212 with o, = V2sin(kry), where k =1,2,3,....
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Separation of variables

Example: Laplace’s equation in a square (continued)

€ Using trigonometric identities, it can be easily verified that the eigenfunctions are orthogonal; in
fact, thanks to the factor v/2 in their expression, the eigenfunctions are orthonormal:

/0 wr(y)pe(y)dy = Ope.

where 0y is the Kronecker delta equal to 1 if £ = ¢ and 0 otherwise.

& From the theory of Fourier series, we know that the functions {v/2 sin(k7y)},/2], hence, the
eigenfunctions of the aforementioned eigenproblem, constitute an orthonormal basis for
L?(]0,1[), that is, any square-integrable function g from 0, 1] into R can be represented as

400 1
9(y) = > grer(y), where gi = / 9(y)er(y)dy,
k=1 0

where the convergence is such that
2

dy = 0.

1
lim

¢
9(y) — Z IkPr(Y)

& Here,{v/2sin(kmy)}, 2 denotes the sequence /2 sin(my), /2 sin(27y),v/2 sin(37y),..
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Separation of variables

Example: Laplace’s equation in a square (continued)

B Function series: Given the eigenfunctions {gpk}zji we seek a solution of the following form:

+o0
u(z,y) =Y br(x)er(y);
k=1

thus, we seek a solution of the form of a series of products of functions of fewer independent
variables, namely, a solution of the form of a series of products of functions b;. of only x (yet to be
determined) and the eigenfunctions ;. of only y (already known).

B System of uncoupled equations (“diagonalization™): Inserting this function series into the BVP
and assuming that the second-order partial derivatives of this function series can be obtained by
term-by-term differentiation, that is, by interchanging differentiation and summation, we obtain

r +0o0 2 9
Z (%(w)@k(y) + bi () dd;;k (y)) =0 in]0,1[x]0,1],

2\

> br(0)er(y) = f(y) on {z = 0}x]0,1],

> br(Der(y) =0 on {z = 1}x]0,1].
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Separation of variables

Example: Laplace’s equation in a square (continued)

€ Because gy, is an eigenfunction of the aforementioned eigenproblem, we have

d? .
~ T W) = Aege(y) n]0.1f

further, assuming that f is a square-integrable function from |0, 1| into R, we have

400 1
FW) = feer(y), where fi = / fW)er(y)dy;
k=1 0

thus, we obtain

( +00 2
> (ﬁ(%‘) - bk(fL‘)Ak) er(y) =0 in]0,1[x[0,1],

— dx?
lj—oo +o0
X Zbk(O)%ﬁk(y) = kasﬁk(y) on{z = 0}x]0, 1],
k=1 k=1
+0o0
> be(D)er(y) =0 on {z = 1}x]0,1[.
\ k=1
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Separation of variables

Example: Laplace’s equation in a square (continued)

€ Clearly, the previous equations hold if the following system of uncoupled equations holds:

c d%b
~ (@) = —Mibe(x) in]0,1]
bk<0):fk atr =0 Wherek:1,2737””
( bk(1) =0 atz =1

It can be easily verified that the solution to this system of uncoupled equations is given by

bk (SE) —

Siﬂhfkﬂ') sinh (km(1 —x)), wherek =1,2,3,....

B As a conclusion, we obtain the following representation of the solution to the aforementioned
Dirichlet problem as a series of products of functions in fewer independent variables:

+00 1
u(x,y) = Z Sin}{fkw) sinh (kﬂ(l—ﬂ:))\@sin(kwy) with  f = /Of(y)\/isin(kwy)dy.
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Separation of variables

Example: Laplace’s equation in a square (continued)

B In the previous example, the method of separation of variables worked because we were able to
“separate” the original BVP involving two independent variables (x and y) in a useful way into
subsidiary BVPs involving only one independent variable (either x or y).

It is not in general possible to “separate” PDEs or BVPs into PDEs or BVPs with fewer independent
variables. BVPs that can be “separated” into BVPs with fewer independent variables are typically
BVPs defined on simple geometries, such as squares, disks, or cylinders.

Thus, as a method for solving BVPs, the range of applicability of separation of variables is typically
limited to BVPs defined on simple geometries, such as squares, disks, or cylinders.

B To show mathematically fully rigorously that the previous function series indeed solves the
aforementioned Dirichlet problem, we still need to show that it converges in an appropriate sense,
as well as that its second-order partial derivatives can be obtained by term-by-term differentiation.

In the following, we will highlight how notions of convergence of series and function series from
earlier courses in the engineering curriculum can be used to study these matters further.
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Review of series and function series
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This is not a lecture but rather a summary of key elements relevant to series and function series. For a
more complete treatment of series and function series, please refer to MATHO0002 “Analyse
Mathématique” (E. Delhez) and MATHO007 “Analyse Mathématique II” (F. Bastin).

ULg, Liége, Belgium MATHO0024 — Lecture 5 14 /28



Review of series and function series

Series and convergence of series
B With a sequence {ay };>° of real scalars ay, one can associate a series >, > ay.

: ( - .
If the sequence {sy },/°5 of partial sums s, = >, _, aj, converges to a limit s, then the series
Z:j aj. is said to converge to s, also called the sum of the series.

Please note that the sum of a series must be understood as the limit of a sequence of partial sums
and is not obtained simply by addition.

B The root test for the convergence of series asserts that

¢ iflimsup,_, o ¥ar <1, thenthe series 223 aj, converges;

¢ iflimsup,_, o ¥ax > 1, then the series ZZ;’? ay, diverges;
¢ iflimsup,_,, o ¥ar = 1, then the root test gives no information.

B The ratio test for the convergence of series asserts that

¢ iflimsup,_,_ . |ax+1/ak| < 1, then the series S ay, converges;
® if |apy1/ax|>1forall k> k, where k is a fixed integer, then the series 3> a;, diverges.

B Let f be a function from [0, +oc| into R that is positive and monotonically decreasing. Then, the
integral test asserts that 3% f(k) converges if and only if the integral f;roo f(x)dz is finite.
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Review of series and function series

Convergence of function series

B Let {f},>] be a sequence of functions f from a subset 2 of R¢ into R. Then, the function
series ZZ;’? f1. is said to converge pointwise to a function s from €2 into R if the sequence of
partial sums sy, = Zizl fi. convergence pointwise to s, that is,

EE?OO se(x) = s(xz), Ve .

B Let {f},>] be asequence of functions f from a subset 2 of R¢ into R. Then, the function
series ZZj f1. is said to converge uniformly to a function s from €2 into R if the sequence of
partial sums sy, = Zizl fi. converges uniformly to s, that is,

Ve>0, HeN : |sx)—sx)|<e Ve, (>
Clearly, every uniformly convergent series is also pointwise convergent.

B Let {fk};_:f{ be a sequence of square-integrable functions from a subset €2 of R into R. Then, the
function series Z::i fi is said to converge in the norm of the square-integrable functions to a

square-integrable function s from {2 into R if the sequence of partial sums sy = 22:1 Tk
converges in the norm of the square-integrable functions to s, that is,

Jim \//Q [se(a) — s(x)| da = 0.
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Review of series and function series

Cauchy criterion for uniform convergence of function series

B Let {fx}, be asequence of functions fj, from a subset 2 of R? into R. Then, 3_,'% fx
converges uniformly if and only if the sequence of partial sums sy = Z£:1 fi is such that

Ve>0, HeN : |sy(x)—sp(x)|<e Ve, 0,0 >17

Weierstrass’s m-test for uniform convergence of function series

B For function series, there is a very convenient test for uniform convergence, due to Weierstrass.

B Let {fx},>; be a sequence of functions f. from a subset  of R into R such that | f(x)| < my
for all  in ). Then, the Weierstrass’s m-test asserts that the function series sz f1r. converges
uniformly if the series 3, %S my, converges.
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Review of series and function series

Convergence, continuity, and differentiability

B A key problem which arises is to determine whether important properties of functions are preserved
under limit operations. For example, if the functions f}, in a function series ) |, _; fi are continuous
or differentiable, is the same true for the sum of the function series s (if it exists)?

Results from earlier courses in the engineering curriculum include the following ones.

B Let {f}, > be a sequence of continuous functions from a subset 2 of R? into IR. If the function
. —+o0 . . .
series § —1 f1r. converges uniformly to s, then s is continuous.

B Let {fx},> be a sequence of differentiable functions from a closed interval [a, b] of R into R and
let the series Z:O? fr(x0) converge at least at a point xg in |a, b]. Then, we have that if the
function series Zk 1 ng’j converges uniformly, then the function series Zk 1 fi converges

uniformly to a function s such that 4 Ir Z+OO df; that is, we can differentiate term by term.
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Review of series and function series

Fourier series

B Let f be an a-periodic function from R into C whose restriction to the bounded open interval |0, a|
is integrable. Then, one can associate with f the following Fourier series:

o3 27 1 [ 27
E Cr €XP (zk—x) ,  where ¢ = —/ f(x)exp (—zk—x) dx.
= a a J, a

B Let f be an a-periodic function from R into C whose restriction to the bounded open interval |0, a|
is square-integrable. Then, the Fourier series associated with f converges in the norm of the
square-integrable functions to f, that is,

¢
: ¢ 2T
Elg—noo /0 flx) — E Cl €XP (zk;x)

k=—/
B Let f be an a-periodic function from R into C whose restriction to the bounded open interval |0, a|
is integrable. If at a point zq in |0, a|, the left and right limits of f at x(, as well as the left and right
derivatives of f at x, exist, then the Fourier series associated with f converges pointwise at x,

2
dxr = 0.

¢
. L2 1
eginoo R C €Xp (Zk;$0> — 9 (f(fEOJr) + f(fUO—))v

and therefore limy_, oo Sy __, i exp (ik2%x0) = f(xo) if f is continuous at .

ULg, Liege, Belgium MATHO0024 — Lecture 5 19/28



Review of series and function series

Fourier series (continued)

B Let f be acontinuous a-periodic function from R into C whose restriction to the bounded closed
interval |0, a] is differentiable except perhaps at a finite number of points. Let % be piecewise
continuous on [0, a. Then, the Fourier series associated with f converges uniformly to f on
0, a], and the Fourier series of % is obtained by term-by-term differentiation of that of f.

B Let |0, al be abounded open interval, and let f be a square-integrable function from |0, a| into C.
Then, one can associate with f the following Fourier sine series:

+o0 a
2T 2 2T
g cpsin | k—x |, where ¢ = —/ f(x)sin | k—x | dx.
— 2a a Jo 2a
This Fourier sine series converges to f in the norm of the square-integrable functions, that is,

2
im | [ 7@~ 3 cwsin (2
im x) — cpsin [ k—=x
£— 400 0 —1 g 20’
This result can be proved by extending f to | — a, a| so as to obtain an odd function, then extending

this function to IR with period 2a, and finally constructing a Fourier series with period 2a.

dr = 0.
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Convergence and separation of variables
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Convergence and separation of variables

Example: Laplace’s equation in a square (continued)

B Previously, we obtained the following function series:

+00 1
u(x,y) = Z sinlr{éckw) sinh (kﬂ(l—x))\@sin(kwy) with  fr = L f(y)V2sin(kry)dy.

B Let f be anintegrable function from ]O, 1[ into R. Then, we can prove the following properties:
& We have that v/2| sin(kmz)| < /2. Further, because f is an integrable function from ]0, 1]
into R, we have that | fi.| < \@fol | f(y)|dy. Finally, we have that

sinh (kr(1—x)) exp(kn(l1—x)) —exp( — kn(1—x)) ‘

sinh (k) exp(km) —exp(—km)
B 1—exp( — 2kn(1—2))
= |exp(=hma) 1 —exp(—2km) '
1
< exp(—hmz) 1 — exp(—27)

Thus, the terms in the function series are dominated by a constant times exp(—km ).
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Convergence and separation of variables

Example: Laplace’s equation in a square (continued)

# By the integral test, 3> exp(—kmxo) converges for 2o > 0. Therefore, by Weierstrass’s
m-test, the function series for u(x, ) converges uniformly for z > zy > 0.

¢ Because the terms in the function series for u(x, y) are continuous, u(x, y) is itself
continuous for x > xg > 0.

2
€ Because the terms in the function series for gg, gZ’ gxg, and 2% are dominated by a

2u
dy
constant times (k)2 exp(—kmx), it follows similarly from the integral test and Weierstrass’s
m-test that these function series converge uniformly for x > x5 > 0. It follows that these
partial derivatives may be obtained by term-by-term differentiation.

¢ Because each term in the function series for u(zx, y) satisfies Laplace’s equation, the same is
true for u(z, y) itself for x > x¢ > 0.
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Convergence and separation of variables

Example: Laplace’s equation in a square (continued)

B Let f, moreover, be a continuous function from [0, 1] into R with f(0) = f(1) = 0, whose
derivative j—‘; exists except perhaps at a finite number of points and is piecewise continuous on

[0, 1]. Then, we can prove the following additional properties:

4 The Fourier sine series of f converges to f uniformly, that is, by the Cauchy criterion,
Ve >0, HeN : |[s0,0,y)—s0,0,y)<e, 0<y<1, f1,0>1.

where sg(x,y) = Zk . Smh(kﬁ) sinh (km(1 — z))v2sin(kry).

Because each term in the function series for u(x, y) satisfies Laplace’s equation and vanishes
ony =0,z =1,and y = 1, we have that s — sy satisfies Laplace’s equation and vanishes
ony=0,z=1,andy = 1.

Then, by the maximum property of harmonic functions, which we discussed in Lecture 2,
151 (0,y) — s¢(0,y)| < € everywhere in the domain. Thus, by the Cauchy criterion, the

function series for u(x, ) converges uniformly for 0 < x < 1,0 <y < 1.

¢ Because each term in the function series for u(x, y) is continuous, u(x, y) is itself continuous
for0 < x <1,0 <y < 1. Putting x = 0, we find u(0,y) = Z;ﬁ frV2sin(kmy) = f(y).
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Sturm-Liouville problem
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Sturm-Liouville problem

B Let|[a,b] be a bound

ed closed interval of R. Let p be in C([a, b]) with p(z) > a > 0 for

a <z <bletgbein C(]a,b]),andlet f bein L?(]a, b[). Then, the Dirichlet problem

( d du .
— (pdx) +qu=f inla,b|,

u(a) =u(b) =0 atx = aand x = b,

7\

is an example of a Sturm-Liouville problem.
B Let [a,b] be a bounded closed interval of R. Let p be in C'1([a, b]) with p(x) > a > 0 for

a <z <bandletq

7\

be in C(]a, b[). Then, the eigenproblem

(e inJa, b
A pdx QP = APk » 015

| wr(a) = pr(d) =0 atx =aandx = b,

is an example of a Sturm-Liouville spectral problem.

B In the preceding slides, we found that for [a, b] = [0, 1], p = 1, and ¢ = 0, the solution to this
eigenproblem is a sequence of eigenvalues A\, = k?m? with corresponding eigenfunctions

or = V2sin(knx),

which form an orthonormal basis for L*(]0, 1).

B The study (well-posedness, completeness of the eigenfunctions,...) of similar eigenproblems
(under different types of regularity properties imposed on p and ¢, under different types of boundary

conditions,...) is the

subject of Sturm-Liouville theory. The study of eigenproblems involving

more general partial differential operators is part of the subject of spectral theory.
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Summary and conclusion

B Separation of variables refers to a family of solution methods that share the property that a solution
is sought in the form of a (series of) product(s) of functions of fewer independent variables.

B This (series of) product(s) of functions of fewer independent variables is often constructed by using
eigenfunctions obtained by solving an eigenproblem. A particular advantage of eigenfunctions is
that their use often transforms the problem under consideration into a system of subsidiary
problems that involve fewer independent variables (“diagonalization”).

B The method of separation of variables depends critically on the ability to “separate” the original PDE
or BVP (harder to solve) in a useful way into subsidiary PDEs or BVPs involving fewer independent
variable (easier to solve).

It is not in general possible to “separate” PDEs or BVPs into PDEs or BVPs with fewer independent
variables. BVPs that can be “separated” into BVPs with fewer independent variables are typically
BVPs defined on simple geometries, such as squares, disks, or cylinders.

Thus, as a method for solving BVPs, the range of applicability of separation of variables is typically
limited to BVPs defined on simple geometries, such as squares, disks, or cylinders.

B To make results obtained by using the method of separation of variables mathematically fully
rigorous, it is typically required to show that the function series converges in an appropriate sense
and that this series can be differentiated by term-by-term differentiation. This is not optional!
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