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Review of ordinary differential equations (ODESs)
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This is not a lecture but rather a summary of key elements of ODEs. For a more complete treatment of
ODEs, please refer to MATH0002 “Analyse Mathématique” (E. Delhez).
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Fundamental results

Notion of Lipschitz continuity

B Much of the theory of ODEs and many numerical methods for ODEs exploit in an essential manner
the notion of Lipschitz continuity. We will therefore begin by taking a closer look at it.

B A function f from R" into R™ is Lipschitz continuous over a domain
D={uecR" : ||u—uy| <a}
if there exists a constant L > 0 such that

[f(u) = f(v)]| < Ljluw — v, Vu,v € D.
=
< L|u — v
u—v ?
uoi—a Uy u vu0=—|—a v

The function f(u) = wu? is Lipschitz continu-  The function f(u) = y/u is not Lipschitz con-
ous over any finite interval |u — ug| < a, with  tinuous near ug = 0 because 0, f(u) =
L =2(ug+ a)ifug > 0. 1/(2y/u) = +ocasu — 0.
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Fundamental results

Notion of initial-value problem (IVP)

B An initial-value problem (IVP) is an ODE completed by an initial condition specified at an initial
time. An IVP takes in general the form
du
E(t) = f(t,u(t)) fort > to,
’u,(tg) = U att = 1o,
where it is often assumed that {5 = 0 for the sake of simplicity.

Well-posedness of IVPs

B A local existence, uniqueness, and stability of a solution to an IVP can be established provided that
the function f (¢, u) is continuous with respect to its first argument ¢ and Lipschitz continuous with
respect to its second argument w. The details and the proofs are outside the scope of this course.

B As an example of ill-posedness that may arise if the function on the right-hand side is not Lipschitz

continuous, consider the VP

d
d—":(t): u(t) fort >0,

u(0) =0 att = 0.
The function f is not Lipschitz continuous near u = 0. As a result, the IVP need not have a unique
solution. In fact, it has two solutions u(t) = 0 and u(t) = +¢2.
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Linear ODEs

IVP involving n-th order linear ODE with constant coefficients

B First, we consider an IVP involving an n-th order linear ODE with constant coefficients:

d" d
ran?:(t)-i—+a1d—?(t)—l—a0u:b(t), fort>t07 azn,---,a/()E(C,
< dn—lu du B B B
\ dtn_l (t()) = Unp—1,---, E(tO) — ulyu(t()) = Ug, att = to.

Equivalent system of first-order linear ODEs with constant coefficients

B The ODE involved in the aforementioned IVP can be written equivalently as a system of first-order
linear ODEs with constant constant coefficients as follows:

du
L) = [Au(t) + b(r),
in which u(t), [A], and b(t) are given by
Cou(t) T 0 10 ... 0] "0 ]
au () 0 0 1 ... 0 0
u(t) = 5 A= E E |, b)) =]
" "u (4 0 0 0o ... 1 0
%ZU( ) _ 4 _a1  __az _n—1 b(t)
L g1 (t)_ L an e 2% n "7 an - ap -
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Linear ODEs

Notion of homogeneous solution

B A so-called homogeneous solution uy, to the ODE involved in the aforementioned IVP is a solution
to this ODE when the right-hand side is set to zero, that is,

d" d
dtfzh<t>+...—|—&1%(t)+aouh =0, fort>ty, ap,...,a9 € C.

B Owing to the aforementioned results for well-posedness of IVPs, this homogeneous solution is not
unique; rather, it can be represented in general as a linear combination of n elementary solutions.

B These elementary solutions can be determined from the characteristic polynomial
p(N) = a, A"+ ...+ a1\ + ao,

which, owing to the “fundamental theorem of algebra,” can be factored into linear factors as
S

() = an [TV =2,
J=1
where n1, ..., ng are the multiplicities of the distinct roots A1, ..., Ag withny 4+ ... 4+ ngs = n.
B The homogeneous solution uy can then be represented as a linear combination

S ng
un(t) =D > ajqtqt), ajq €C,

Jj=1q=1
of the linearly independent elementary solutions

u; o (t) =t texp(\it), 1<qg<n;, 1<j<s.

Qnp
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Linear ODEs

Notion of homogeneous solution (continued)

B [f the coefficients are real, that is, a,,, . . ., ag € R, complex roots must occur in complex conjugate
pairs so that the elementary solutions ¢4~ exp((Ag &= \ii)t) for A = Az &= \ji can be replaced
with the equivalent elementary solutions 9~ ! exp(Agt) cos(\t) and t971 exp(Agt) sin(\2).

Example: linear oscillator

B Let us consider the linear oscillator with mass m, damping ¢, and stiffness k:
() 4 2
dt? dt

B The characteristic polynomial reads as
p(A) = mA? + e + k.

B Ifc® — 4mk > 0, there are two distinct real roots \; o = =<EVC —4mk
un(t) = aq exp(Ait) + o exp()\gt).

— (t) + ku(t) = f(t), fort>tg, m,c, kR,

: hence,

B Ifc? — 4mk = 0, there is a repeated real root \ = 5 hence,

un(t) = aq,0exp(At) + aq 1t exp(At).

B Ifc? — 4mk < 0, there are two complex conjugate roots A\g &= \ji = e 4mk c® i: hence,

un(t) = a1 exp(Art) cos(Ait) + ag exp(Art) sm()\ t).
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Linear ODEs

Notion of particular solution

B A so-called particular solution u, to the ODE involved in the aforementioned IVP is a solution to
this ODE which may, but need not, satisfy the initial conditions, that is,

d"™ d
dtfip(t)—k _|_a,1;i(t)—|—aoup—b( ), fort>ty, am,...,a0 €C.

B Such a particular solution u, can be determined by looking for a solution of the form

S J
= Z Z Bji.q(t)u;q(t), (variation of constants).

j=1q=1
B The coefficients ﬁj7q<t) can be determined by solving the following system for their derivatives:

Am

d
E E 5” <) =0
71=1g=1
<sz5 ”2u :
J,4d tn ;q(t)zo
Jj= 1q1
dﬁjq nlujq 1
2 (t) = —0b(t
Sy Ot () = ()
L J=1¢=1

and then determining the coefficients 3, ,(t) therefrom by integration.
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Linear ODEs

Notion of particular solution (continued)

B Indeed, we then have:

dup szﬁjq +ZZBJQ dujq (1),

J— q=1 71=1q=1
—0
- dﬁjq d" 1u3q > & d"uj g
dtn ZZ dtn—1 (t)+ . ZBJ,Q(t) A4 (t)
Jj=14q=1 7=1q=1
=20 —(— ) e () (= 20 (1)

B We will encounter these equations again, although written in a more easily understandable form,
when reviewing the Duhamel formula later.

Solution to IVP involving n-th order linear ODE with constant coefficients

B The solution to the aforementioned IVP can be written as

u(t) = up(t) + Z Z L gUj,q(t),

71=1qg=1
where the coefficients a; , must be determined such that the initial conditions are fulfilled.
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Linear ODEs

IVP involving system of linear ODEs with constant coefficients

B Next, we consider an IVP involving a system of linear ODEs with constant coefficients:

U (1) = [Alu(r) +b(1), fort > 1o, [A] € Ma(R),

’LL(to) = Ug.

Matrix exponential

B The matrix exponential of a square n-dimensional matrix | A] is the matrix exp([A]) such that
—+ o0
1

exp([A]) =)

7=0

Al
B The matrix exponential has the property that = exp([A]t) = [A] exp([A]t) = exp([A]t)[A].

B If [A] can be diagonalised by using eigendecomposition, that is, if [A] can be written as
[A] = [V][D][V]~t, where [V] = [v4] ... |v,] and [D] = [Diag(\1, ..., \,)] collect the
eigenvectors and eigenvalues of [A]v; = \;v;, 7 = 1,...,n, the matrix exponential exp([A]) is
exp([A]) = [V] exp([D])[V] " with exp([D]) = [Diag(exp(A1), .., exp(An))].

B One way of generalizing this method of obtaining the matrix exponential to nondiagonalisable
matrices involves resorting to the Jordan decomposition.
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Linear ODEs

Solution to IVP involving homogeneous system of linear ODEs with constant coefficients

m If b = 0, then the ODE involved in the aforementioned IVP is homogeneous. The solution to the

homogeneous system 4% () = [A]wu(t) with initial condition u(t) = wug is

di
u(t) = exp ([A](t — to))uo.

Solution to IVP with inhomogeneous system of linear ODEs with constant coefficients

B I bis not identically zero, then the solution to the inhomogeneous system %% (¢) = [AJu(t) + b(t)

with initial condition w(tg) = wg can be written as

u(t) = exp ([A](t — to))uo + / exp ([A](t — s))b(s)ds.

to
This is known as Duhamel’s formula.

B Indeed, if a particular solution is sought of the form w, () =exp([A|t)v(t) (var. of constants),

%(t) = [A]u,(t) + exp([A]t)‘fl—:(t); hence, exp([A]t)‘Cli—;’(t) = b(t); thus,

v(t) = fti) exp(—[A]s)b(s)ds.
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Time-marching methods for ODEs
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One-step time-marching methods

Model IVP

B Let us consider numerical methods for the approximation of the solution to the IVP

du
— () = f(t,u(t) fort €lto, to + 7],

u(to) = UQ att = top.

Forward Euler method

B There are two pieces of information: the value u(tg) = ug of the solution at the initial time and,
given the function f, the slope of the solution at the initial time from the ODE.

B The purpose of the time-marching method being to approximate the value of the solution at a later
time, say t1, the most elementary approach is to use linear extrapolation, that is,

u(ty) = ulto) +/t F(s,u(s))ds ~ uo + (t1 — to) f (to, ulto)).
’ k = time step

B The forward Euler method uses this linear extrapolation to march forward in time, computing
approximations ug, ui, us, ..., U,, atsuccessivetimesity, t1, t2, ..., t,, as follows:

Unt1 = Un + Kk f(tn, un).
The time step is denoted by k; thus, t,, = nkforn =0, ..., v, with v, = 7/k.

B System of notation: numerical solution u,, approximates exact solution u(tn) att,,.

ULg, Liége, Belgium MATHO0024 — Lecture 3 15/ 41



One-step time-marching methods

Forward Euler method (continued)

u
u(tuk> ...................................................................... : exact solution
numerical solution
Uy,
u(t2) ..................................
U tl ......................
U tO .......... ) Ul
Uo : : :
tIO tll tl2 | | tl;k /’[
Model IVP Forward Euler method
du
— (1) = f(t,u(t)) fort €lto, to + 7, {unH = up + k ftn,un) forty, =to,...,ty, .
u(ty) = ug att = tg. Up = Ug at to.
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One-step time-marching methods

Trapezoidal method (Crank-Nicolson)

B The linear extrapolation method may not be very good, and it may make more sense to make the
approximation of the derivative equal to the average of its values at the endpoints:

u(ts) = ulto) + [ F(svu())ds = uo -+ (11 o) (F(to,utto) + F(tr,u(t))

to

B This is the motivation behind the trapezoidal method (Crank-Nicolson):

k
Unt1 = Un + 5 (f(tn,un) + ftnt1, ung1)).

Backward Euler method

B The backward Euler method uses
Up41 = Up + kf(tn—l—ly un—i—l)-

Notion of explicit and implicit time-marching methods

B Because the trapezoidal and the backward Euler method give an implicit equation that must be
solved for u,, 41, they are implicit methods, whereas the forward Euler method is explicit.
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Consistency, zero-stability, convergence

Introduction to consistency, zero-stability, and convergence

B The notions of consistency, zero-stability, and convergence are concerned with how good a
time-marching method is in approximating the solution to an IVP.

u

exact solution

Eg

:numerical solution

Local one-step error Global error
.\ /
| |

| zero-stability |

I |
Consistency Convergence
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Consistency, zero-stability, convergence

Notions of consistency and convergence

The local one-step error ¢,, is the error committed in the n-th step of the time-marching method
assuming that no errors were made in the previous steps.
A time-marching method is consistent if

| nax len| = o(k).

A time-marching method is of order p if

— O(kPT).
1g}fgyklenl O(kP™)

A time-marching method is convergent if

lim < max |u(t,) — uno = 0.

E—0 \ 1<n<yy

A time-marching method is convergent with order p if

il = O(kP
1£aé}<yk|u(tn) un| = O(KP).

Whereas the notion of consistency is relevant to the local one-step error, the notion of convergence
is relevant to the global error between the exact and the numerical solution.

Consistency is typically established by using Taylor series, and the connection between consistency
and convergence is typically made by using zero-stability, as described next.
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Consistency, zero-stability, convergence

Taylor series

WM The Taylor series of a sufficiently regular function g from R into R about ¢ in R is the power series

_ _ dg - 1 ,d%g,-. 1 5d°g -
t+k)=g9gt)+k—=0)+ k") + =k —(t)+...
that is, more compactly,
+o00 ;
1 .d¢g, -
t+ k)= — k7 —(1

B If g is sufficiently regular, the remainder in the Taylor series truncated at degree p satisfies
P .
_ 1 . d¢g,-
t+k)=Y =k —(1)+O0(k"™).
glt+k) =) T (%) +O(kP™)

7=0 remainder
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Consistency, zero-stability, convergence

Consistency and order of forward Euler method

B The forward Euler method is consistent and of order 1.

Proof of consistency and order of forward Euler method:

B Assuming that no errors were made in the previous steps, the one-step error €,,.1 made in the
(n + 1)-th step of the forward Euler method is obtained as

enit = u(tns) — <u(tn) + ke f (t, u(tn))).

B Because the exact solution satisfies the ODE 2% (¢) = f (¢, u(t)), we obtain

o = ultus1) — (ults) + ké—?(tn)).

B If the exact solution wu is sufficiently regular, the remainder in its degree-1 Taylor series satisfies

d—u(tn) + O(K?).

u(tpe1) =ulty, + k) =u(ty,) +k -

B Hence,
2
€En+1 — O(k’ )
As a conclusion, the forward Euler method is consistent and of order 1, as asserted.
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Consistency, zero-stability, convergence

Notion of zero-stability

B Loosely speaking, a time-marching method is zero-stable if the global error incurred by this
time-marching method can be bounded in terms of the sizes of the local one-step errors.

Zero-stability of forward Euler method

W |[f the function f (the right-hand side in the ODE in the aforementioned IVP) is globally Lipschitz
continuous with respect to its second argument,
L > 0, V(t,U), (ta ’U) = [t07t0 —1_7_] xR : !f(t,U) R f(t,?))‘ < Llu o U|7
then the forward Euler method is zero-stable in that there exists a time step £y and a constant
c > 0 such that for all time steps k£ smaller than kg, with ¢ independent of k£, we have

Vk
max |u(t,) — uy| < cz €n|.
1<n<vg —

Proof of zero-stability of forward Euler method:

B With reference to the definition of the local one-step error, the exact solution satisfies
u(ty) =u(tn_1) + kf(tn_l, u(tn_l)) +e,, n=1,...v,
and the numerical solution satisfies
Up =Up—1+ Kk f(tho1,Un_1), n=1,...10.
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Consistency, zero-stability, convergence

Proof of zero-stability of forward Euler method (continued):

B Subtracting these equations from each other, we obtain
u(tn) — tp = u(tn_1) — Un_1 + kf(tn_l, u(tn_l)) —k f(th_1,Un_1) + €n.
B Using the triangle inequality and the global Lipschitz continuity of f, we obtain
utn) = ttn] < Jultn—1) = 1] + k| f (b, uta 1)) = f(tnorstn1)| + lenl

< (14 kL) |u(tn_1) — up_1| + |€n|

< Y (L+EL)" e

1<j<n
B Because (1 + kL) < exp(kL), we obtain
u(tn) — up| < Z exp ((n — j)kL)|e;].
1<j<n
B Hence, with v, = 7/k, we conclude that
max |u(tn) — | < CZ €] with c =exp(TL).

1<n<vg

B The local one-step-error €, contributes the term (1 4+ kL)"*~"|¢,| to the (majorant of the) global
error. Because (1 + kL)"*~™ < exp(7L) remains bounded as k — 0, each contribution to the
(majorant of the) global error can be bounded in terms of its original size.
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Consistency, zero-stability, convergence

Convergence of forward Euler method

B [f the function f(¢,u) (the right-hand side in the ODE in the IVP) is globally Lipschitz continuous
w.r.t. its second argument u, the forward Euler method is convergent with order 1.

Proof of convergence of forward Euler method:

B Using the zero-stability of the forward Euler method, we obtain

Vk
€x]
— < < —.
| nax lu(ty) — un| < exp(TL) g len| < exp(TL) v k  max =

n=1 —r

B Using the consistency of the forward Euler method, we obtain

lim < max |u(t,) — uno = 0.

E—0 \ 1<n<yy
As a conclusion, the forward Euler method is convergent, as asserted.
B Using the fact that the forward Euler method is of order 1, we obtain
max |u(t,) — u,| = O(k).
e u(tn) — un| = O(k)
As a conclusion, the forward Euler method is convergent with order 1, as asserted.

B Observe that the properties of consistency and zero-stability collectively imply convergence.
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Absolute stability

Introduction

B Previously, we dealt with behavior over bounded intervals in the limit as £ tended to zero.

B By contrast, the notion of absolute stability is concerned with asymptotic behavior of the solution as
the independent variable tends to infinity for noninfinitesimal time steps.

Model IVP used to define the notion of absolute stability

B Absolute stability is concerned with the approximation of the solution to the IVP

CCZZ_?Z(t) — )\u(t) fort > O, A€ C7
u(0) =1 att = 0.

B The asymptotic behavior of the exact solution, that is, u(t) = exp(At), is such that
lim |u(t)| =0 if Re(\) <O.

t—+o0

Notion of absolute stability

B A time-marching method is absolutely stable for a time step £ if its application to this model IVP
leads for this time step k to a numerical solution with the same asymptotic behavior, that is,

lim |u,| =0 if Re(\) <O0.

n—-4oo
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Absolute stability

Notion of region of absolute stability

W |If the application of a time-marching method to the aforementioned IVP with parameter \ leads for a
time step k to a numerical solution that decays to zero, then the product £\ is said to lie in the
region of absolute stability for this time-marching method:

A:{k)\EC: lim |un|:()}.

n—-4oo

A time-marching method is said to be unconditionally stable if its region of absolute stability
contains the entire left halfplane, that is, C~ C A, and it is conditionally stable otherwise.

Region of absolute stability of forward Euler method Im(kA)

B The forward Euler method uses u,,1+1 = Uy, + kAu,.

B Hence, with (kX)) = % = (1 4+ k\), the region of absolute stability is + Re(k)\)

A:{kAeC : \'r(k)\)\<1}:{k)\€(c : |1+k)\\<1}.

As a conclusion, the forward Euler method is conditionally stable. The time step k£ must be small
enough for k£ to lie within the unit circle with center at (—1, 0) for the forward Euler method to
furnish a numerical solution with the same asymptotic behavior as the exact solution.
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Absolute stability

Region of absolute stability of trapezoidal method Im(k\)
B The trapezoidal method uses U, 11 = uy, + g()\un + AUpi1).

kX
B Hence, with 7(k)\) = =2+t = 2" the region of absolute stability is

Un 1=

5> Re(k )

A= {m cC : |r(kN)] < 1} —C .

As a conclusion, because the region of absolute stability contains the entire left halfplane, the
trapezoidal method is unconditionally stable.

Region of absolute stability of backward Euler method Im(kA)

B The backward Euler method uses un+1 = Uy + kK AUpiq.

B Hence, with 7(k)\) = =2+t = k}\,

Un

Re(k\)

A:{k)\ec : |r(k)\)|<1}:{k)\€<C : |1—k)\|>1}.

As a conclusion, because the region of absolute stability contains the entire left halfplane, the
backward Euler method is unconditionally stable.
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Advanced time-marching methods

Aforementioned time-marching methods

B Forward Euler method: explicit, convergent with order 1, conditionally stable.
B Trapezoidal method: implicit, convergent with order 2, unconditionally stable.

B Backward Euler method: implicit, convergent with order 1, unconditionally stable.

Advanced time-marching methods

B Improved time-marching methods (higher order, better stability properties,...) can be obtained by
using more function evaluations (e.g. Runge-Kutta) or by using information from previous time steps
(e.g. Adams-Bashforth and Adams-Moulton multistep methods).

Stiff ODEs

m Stiff ODE problems involve slow and fast time scales simultaneously, and they may therefore risk
requiring excessively small time steps over long time intervals.

B Stiff ODE problems require special attention, and dedicated time-marching methods must be used.
Implicit methods are often used because they are often unconditionally stable.
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Finite difference method for Laplace/Poisson equation
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Finite difference method

Notion of finite difference approximation

o L du (.
B Several finite difference approximations of ﬁ(m)

slope d_u(T)

slope 2% ()

slope dou(Z)
slope du(T)

w(T + h) — u(T) uw(T+h) —u(x® — h) |

dyu(T)= d_u(Z) = ? , dou(T) =

h ’ 2h

B Similar finite difference approximations can be defined for higher order derivatives, for example,
d*u uw(® —h) —2u(T) + u(xT + h)
dx? h?2

B Similar finite difference approximations can be defined for partial derivatives in PDEs.

(T) ~ dau(T) =
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Finite difference method

A simple finite difference method for Laplace/Poisson equation
B Let us consider the Dirichlet problem
d*u
@(l‘) = f(x) for0<z <1,

u(0) =u(l)=0 atx=0andzxz =1.

B Letgrid points g, x1, 2, ..., x,, beintroduced as follows:
@ @ & @ L
i) T T2 Lpp—1 LTy
< e > <
h h h
The grid spacing is denoted by h; thus, x; = jhforj =0, ..., up with pp, = 1/h.
B A simple finite difference method is then obtained by computing approximations ug, ..., u,, at
the grid points xg, ..., x,, by requiring that
Ui — 2U; + Uit ,
J hQJ I = f(zy) forj=1,...,un—1,
ug = Uy, =0 atro =0and x,, = 1.
This corresponds to replacing %(xj) by its finite difference approximation dju(x;) in the PDE.

B System of notation: numerical solution u; approximates exact solution u(:z:j) atzx;.
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Finite difference method

Notion of stencil

B The stencil is a graphical representation of the finite difference approximation being used.

B For the aforementioned finite difference method, we have the stencil

1 -2 1
L L L
Tj—2 Tj-1  Tj  Tjt1 Tj42

Linear problem defined by aforementioned finite difference method

B The linear problem provided by the aforementioned finite difference method can be written as

—2 1 U1 f(z1)
1 1 -2 1 Us f(x2)
I =2 1 Upp, —2 f(x,uh_2>
i L =2 |uu,—1]  [f(Tu,—1)]
) uh 7
hence, more compactly,
[Alu" = f
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Finite difference method

Properties of linear problem that must be solved in aforementioned finite difference method

B The matrix [A] obtained in the aforementioned finite difference method is negative definite,

1 ph—1 pn—1
v [A]v" = 73 Z (—2)v7 +2 Z ViV
J=1 J=2
1 pn—1
=73 | - Y (=)=} —vf,
j=2

<0 forallv" #£ 0,
so that [A] is invertible; hence, the numerical solution exists and is unique.

B The matrix [A] is sparse and symmetric. See MATHO0471 “Multiphysics integrated computational
project” (R. Boman and C. Geuzaine) for details on appropriate storage and solution algorithms.

B The matrix [A] can be large and ill-conditioned, especially if h is small. See INFO0939 “High-
performance scientific computing” (C. Geuzaine) for details on appropriate solution algorithms.
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Consistency, stability, convergence

Notions of consistency and convergence

B The local truncation error 7; at x; is obtained by inserting the exact solution into the finite
difference equation and determining by how much it fails to satisfy this finite difference equation.

B A finite difference method is consistent if

lim( max ’Tj’):().
h—0 \1<j<pup—1

B A finite difference method is convergent if

I ( ) — -): .
hs0 1§jnéi}§—1|u(%) us|) =0

B A finite difference method is convergent with order p if
max |u(xz;) —u;| = O(h?).
max fu(zg) —ug] = O(R?)
B We note that other ways of gauging the magnitude of the local truncation and the global error can
also be considered. For example, instead of using the “max-norm” ||v" || o = maxj<;j<,, -1 |v;
consistency and convergence can also be defined by using the “1-norm” or the “2-norm.”

B Asinthe case of ODEs, consistency is relevant to the local truncation error, and convergence is
relevant to the global error between the exact and the numerical solution.

B Asinthe case of ODEs, consistency is typically established by using Taylor series, and the
connection between consistency and convergence is typically made by using some form of stability.
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Consistency, stability, convergence

Consistency of aforementioned finite difference method

B The aforementioned finite difference method is consistent.

Proof of consistency of aforementioned finite difference method:

B The local truncation error 7; at x; is obtained as

7= g (1) = 2ule) + uleg) - fz).

2
B Because the exact solution satisfies the PDE 4% (z) = f(x), we obtain

= o (1) — 2u(e;) + ulag0)) — g ().

B If the exact solution u is sufficiently regular, the remainder in its degree—3 Taylor series satisfies

du 1 d?u d>u

(1) = ulay + ) = ul) +h G ag) + 50 () + ¢ B ) + O(hY,
du 1 d?u 1 d3u

(g 1) = ey = ) = uley) = h 5 () + 5 2 g ) — 5 18 S ag) + O(Y),

B Hence, by combining these results, we find
Tj = O(hQ)
As a conclusion, the aforementioned finite difference method is consistent, as asserted.
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Consistency, stability, convergence

Stability of aforementioned finite difference method

B The aforementioned finite difference method is stable in that there exists a grid spacing hg and a
constant ¢ > 0 such that for all grid spacings i smaller than h, with c independent of A, we have

max |u(z;) —u;| <c¢ max |7l
1<j<pn—1 1<j<pn—1

Proof of stability of aforementioned finite difference method:

B With reference to the definition of the local truncation error, the exact solution satisfies
1 .
5 (u(ri) = 2u(e)) +ulwj)) = flag) + 75, 1<j<pn—1,
and the numerical solution satisfies

1 :
ﬁ(uj—l —2uj +ujp) = fwg), 1<j<pu—1

B Subtracting these equations from each other, we obtain

% <(u(=’1?j—1) —uj_1) = 2(u(r;) —uy) + (w(@jt1) — Uj+1)) =75 1<j=<pn—1

We can observe that the global error satisfies a system of equations that has exactly the same form
as the original system except that the right-hand side is given by the local truncation error.
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Consistency, stability, convergence

Proof of stability of aforementioned finite difference method (continued):

1
h?
B After solving
—2 1
1 -2 1
1 .
1

[ —2 1
1 —2 1
1 =2
i 1
- — gi -
g2
—2 1 géh—z
1 _2_ _guh—l_

In fact, the previous system of equations can be written equivalently as

we can establish the superposition formula

ULg, Liege, Belgium

u(ry) — uy
u(z2) — us

U( Ty —2) = Upy —2
U(Tpy, —1) — Upy, —1_

C u(xy) —ur ]
u(xg)——uQ
U(xuh—2) Upp, —2
_u(xuh—l) Upp, —1_

[—2 1
1 —2 1
1 N

’ ) ﬁ "

1
— g]]: -

92

. + o T, -1
géh—2
_g,uh—l_
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Consistency, stability, convergence

Proof of stability of aforementioned finite difference method (continued):

B |t can be readily verified that
CEj(ZIZi—l) ifj SZ,
ilfi(ZEj — 1) ifj > ?:,

where G is the Green’s function for the Dirichlet problem on |0, 1] introduced in Lecture 2.

g;- = hG(x;,x;), where G(zj,z;) = {

B Using the aforementioned superposition formula, we thus obtain
pn—1

u(z;) —uj| = > 1ihGlxj, z;)
1=1

A
VR
=
Qo
P4

—
)
~—
>
2
8
<
3

Hence, with ¢ = %, we have maxi<;j<u, —1 ’u(a:j) — uj‘ < cmaxi<j<pu,—1 ‘Tj‘, as asserted.
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Consistency, stability, convergence

Proof of stability of aforementioned finite difference method (continued):

B In going from the second to the third line, we used the partial sum formula Z; [ m= @ as
pr—1 pn—1
Z G( xj,a:z|—Z|G T, x;)| + Z G (x5, ;)]
z 7+1

N -~

J . —1
_%H)f%(l %3 =3 my (1=as)
L(1—z;) _ =Gtz o
5 (1—z;)

Convergence of aforementioned finite difference method

B The aforementioned finite difference method is convergent with order 2.

Proof of convergence of aforementioned finite difference method:

B ltfollows from 7; = O(h?), 1 < j < pj, — 1 and the stability property that
) —uj| = O(h?).
1§%%3§_1 ‘u(a:]) uj’ O(h7)

B Observe that the properties of consistency and stability collectively imply convergence.
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Conclusion

B Key properties of a numerical method:

¢ Convergence.

€ It may also be desirable that certain properties (existence, uniqueness, maximum property,. . .)
of the exact solution are preserved in the numerical solution.

B A finite difference method is obtained by replacing one or more partial derivatives in a PDE by finite
difference approximations. By doing this for a grid of points, a system of equations is obtained,
whose solution provides an approximation to the exact solution at the grid points.

B A convergence analysis of a finite difference method typically begins by examining the local
one-step/truncation error by using Taylor series. Then, some form of stability is used to relate the
local one-step/truncation error to the global error and establish convergence.

B Working through numerical examples is very helpful towards understanding this material. Please do
not hesitate to come up with examples yourself to try things out using small Matlab codes.
lllustrative numerical examples will also be included in the homework.
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