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This is not a lecture but rather a summary of key elements of ODEs. For a more complete treatment of

ODEs, please refer to MATH0002 “Analyse Mathématique” (E. Delhez).
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Notion of Lipschitz continuity

■ Much of the theory of ODEs and many numerical methods for ODEs exploit in an essential manner

the notion of Lipschitz continuity. We will therefore begin by taking a closer look at it.

■ A function f from R
n into R

n is Lipschitz continuous over a domain

D = {u ∈ R
n : ‖u− u0‖ ≤ a}

if there exists a constant L ≥ 0 such that

‖f(u)− f(v)‖ ≤ L‖u− v‖, ∀u,v ∈ D.

■ blanc

u0 − a u0 u0 + au v

|u− v|

≤ L|u− v|

The function f(u) = u2 is Lipschitz continu-

ous over any finite interval |u − u0| ≤ a, with

L = 2(u0 + a) if u0 ≥ 0.

u v

?

The function f(u) =
√
u is not Lipschitz con-

tinuous near u0 = 0 because ∂uf(u) =
1/(2

√
u) → +∞ as u → 0.
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Notion of initial-value problem (IVP)

■ An initial-value problem (IVP) is an ODE completed by an initial condition specified at an initial

time. An IVP takes in general the form






du

dt
(t) = f

(
t,u(t)

)
for t > t0,

u(t0) = u0 at t = t0,

where it is often assumed that t0 = 0 for the sake of simplicity.

Well-posedness of IVPs

■ A local existence, uniqueness, and stability of a solution to an IVP can be established provided that

the function f(t,u) is continuous with respect to its first argument t and Lipschitz continuous with

respect to its second argument u. The details and the proofs are outside the scope of this course.

■ As an example of ill-posedness that may arise if the function on the right-hand side is not Lipschitz

continuous, consider the IVP






du

dt
(t) =

√

u(t) for t > 0,

u(0) = 0 at t = 0.

The function f is not Lipschitz continuous near u = 0. As a result, the IVP need not have a unique

solution. In fact, it has two solutions u(t) = 0 and u(t) = 1
4 t

2.
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IVP involving n-th order linear ODE with constant coefficients

■ First, we consider an IVP involving an n-th order linear ODE with constant coefficients:






an
dnu

dtn
(t) + . . .+ a1

du

dt
(t) + a0u = b(t), for t > t0, an, . . . , a0 ∈ C,

dn−1u

dtn−1
(t0) = un−1, . . . ,

du

dt
(t0) = u1, u(t0) = u0, at t = t0.

Equivalent system of first-order linear ODEs with constant coefficients

■ The ODE involved in the aforementioned IVP can be written equivalently as a system of first-order

linear ODEs with constant constant coefficients as follows:
du

dt
(t) = [A]u(t) + b(t),

in which u(t), [A], and b(t) are given by

u(t) =










u(t)
du
dt
(t)
...

dn−2u
dtn−2 (t)
dn−1u
dtn−1 (t)










, [A] =










0 1 0 . . . 0
0 0 1 . . . 0
...

...
...

...

0 0 0 . . . 1
− a0

an
− a1

an
− a2

an
. . . −an−1

an










, b(t) =










0
0
...

0
b(t)
an










.
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Notion of homogeneous solution

■ A so-called homogeneous solution uh to the ODE involved in the aforementioned IVP is a solution

to this ODE when the right-hand side is set to zero, that is,

an
dnuh

dtn
(t) + . . .+ a1

duh

dt
(t) + a0uh = 0, for t > t0, an, . . . , a0 ∈ C.

■ Owing to the aforementioned results for well-posedness of IVPs, this homogeneous solution is not

unique; rather, it can be represented in general as a linear combination of n elementary solutions.

■ These elementary solutions can be determined from the characteristic polynomial

p(λ) = anλ
n + . . .+ a1λ+ a0,

which, owing to the “fundamental theorem of algebra,” can be factored into linear factors as

p(λ) = an

s∏

j=1

(λ− λj)
nj .

where n1, . . . , ns are the multiplicities of the distinct roots λ1, . . . , λs with n1 + . . .+ ns = n.

■ The homogeneous solution uh can then be represented as a linear combination

uh(t) =

s∑

j=1

nj∑

q=1

αj,quj,q(t), αj,q ∈ C,

of the linearly independent elementary solutions

uj,q(t) = tq−1 exp(λjt), 1 ≤ q ≤ nj , 1 ≤ j ≤ s.
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Notion of homogeneous solution (continued)

■ If the coefficients are real, that is, an, . . . , a0 ∈ R, complex roots must occur in complex conjugate

pairs so that the elementary solutions tq−1 exp((λR ± λIi)t) for λ = λR ± λIi can be replaced

with the equivalent elementary solutions tq−1 exp(λRt) cos(λIt) and tq−1 exp(λRt) sin(λIt).

Example: linear oscillator

■ Let us consider the linear oscillator with mass m, damping c, and stiffness k:

m
d2u

dt2
(t) + c

du

dt
(t) + ku(t) = f(t), for t > t0, m, c, k ∈ R

+
0 .

■ The characteristic polynomial reads as

p(λ) = mλ2 + cλ+ k.

■ If c2 − 4mk > 0, there are two distinct real roots λ1,2 = −c±
√
c2−4mk
2m ; hence,

uh(t) = α1 exp(λ1t) + α2 exp(λ2t).

■ If c2 − 4mk = 0, there is a repeated real root λ = −c
2m ; hence,

uh(t) = α1,0 exp(λt) + α1,1t exp(λt).

■ If c2 − 4mk < 0, there are two complex conjugate roots λR ± λIi =
−c
2m ±

√
4mk−c2

2m i; hence,

uh(t) = α1 exp(λRt) cos(λIt) + α2 exp(λRt) sin(λIt).
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Notion of particular solution

■ A so-called particular solution up to the ODE involved in the aforementioned IVP is a solution to

this ODE which may, but need not, satisfy the initial conditions, that is,

am
dnup

dtn
(t) + . . .+ a1

dup

dt
(t) + a0up = b(t), for t > t0, am, . . . , a0 ∈ C.

■ Such a particular solution up can be determined by looking for a solution of the form

up(t) =
s∑

j=1

nj∑

q=1

βj,q(t)uj,q(t), (variation of constants).

■ The coefficients βj,q(t) can be determined by solving the following system for their derivatives:






s∑

j=1

nj∑

q=1

dβj,q

dt
(t)uj,q(t) = 0

. . .

s∑

j=1

nj∑

q=1

dβj,q

dt
(t)

dn−2uj,q

dtn−2
(t) = 0

s∑

j=1

nj∑

q=1

dβj,q

dt
(t)

dn−1uj,q

dtn−1
(t) =

1

an
b(t)

,

and then determining the coefficients βj,q(t) therefrom by integration.
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Notion of particular solution (continued)

■ Indeed, we then have:

dup

dt
(t) =

s∑

j=1

nj∑

q=1

dβj,q

dt
(t)uj,q(t)

︸ ︷︷ ︸

=0

+

s∑

j=1

nj∑

q=1

βj,q(t)
duj,q

dt
(t),

. . .

dnup

dtn
(t) =

s∑

j=1

nj∑

q=1

dβj,q

dt
(t)

dn−1uj,q

dtn−1
(t)

︸ ︷︷ ︸

= 1
an

b(t)

+
s∑

j=1

nj∑

q=1

βj,q(t)
dnuj,q

dtn
(t)

︸ ︷︷ ︸

=(−
an−1
an

) dn−1up

dtn−1 (t)+...+(− a0
an
)up(t)

■ We will encounter these equations again, although written in a more easily understandable form,

when reviewing the Duhamel formula later.

Solution to IVP involving n-th order linear ODE with constant coefficients

■ The solution to the aforementioned IVP can be written as

u(t) = up(t) +
s∑

j=1

nj∑

q=1

αj,quj,q(t),

where the coefficients αj,q must be determined such that the initial conditions are fulfilled.
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IVP involving system of linear ODEs with constant coefficients

■ Next, we consider an IVP involving a system of linear ODEs with constant coefficients:






du

dt
(t) = [A]u(t) + b(t), for t > t0, [A] ∈ Mn(R),

u(t0) = u0.

Matrix exponential

■ The matrix exponential of a square n-dimensional matrix [A] is the matrix exp([A]) such that

exp([A]) =
+∞∑

j=0

1

j!
[A]j .

■ The matrix exponential has the property that d
dt

exp([A]t) = [A] exp([A]t) = exp([A]t)[A].

■ If [A] can be diagonalised by using eigendecomposition, that is, if [A] can be written as

[A] = [V ][D][V ]−1, where [V ] = [v1| . . . |vn] and [D] = [Diag(λ1, . . . , λn)] collect the

eigenvectors and eigenvalues of [A]vj = λjvj , j = 1, . . . , n, the matrix exponential exp([A]) is

exp([A]) = [V ] exp([D])[V ]−1 with exp([D]) = [Diag(exp(λ1), . . . , exp(λn))].

■ One way of generalizing this method of obtaining the matrix exponential to nondiagonalisable

matrices involves resorting to the Jordan decomposition.
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Solution to IVP involving homogeneous system of linear ODEs with constant coefficients

■ If b = 0, then the ODE involved in the aforementioned IVP is homogeneous. The solution to the

homogeneous system du
dt
(t) = [A]u(t) with initial condition u(t0) = u0 is

u(t) = exp
(
[A](t− t0)

)
u0.

Solution to IVP with inhomogeneous system of linear ODEs with constant coefficients

■ If b is not identically zero, then the solution to the inhomogeneous system du
dt
(t) = [A]u(t) + b(t)

with initial condition u(t0) = u0 can be written as

u(t) = exp
(
[A](t− t0)

)
u0 +

∫ t

t0

exp
(
[A](t− s)

)
b(s)ds.

This is known as Duhamel’s formula.

■ Indeed, if a particular solution is sought of the form up(t)=exp([A]t)v(t) (var. of constants),
dup

dt
(t) = [A]up(t) + exp([A]t)dv

dt
(t); hence, exp([A]t)dv

dt
(t) = b(t); thus,

v(t) =
∫ t

t0
exp(−[A]s)b(s)ds.
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Model IVP

■ Let us consider numerical methods for the approximation of the solution to the IVP






du

dt
(t) = f

(
t, u(t)

)
for t ∈]t0, t0 + τ [,

u(t0) = u0 at t = t0.

Forward Euler method

■ There are two pieces of information: the value u(t0) = u0 of the solution at the initial time and,

given the function f , the slope of the solution at the initial time from the ODE.

■ The purpose of the time-marching method being to approximate the value of the solution at a later

time, say t1, the most elementary approach is to use linear extrapolation, that is,

u(t1) = u(t0) +

∫ t1

t0

f
(
s, u(s)

)
ds ≈ u0 + (t1 − t0)

︸ ︷︷ ︸

k = time step

f
(
t0, u(t0)

)
.

■ The forward Euler method uses this linear extrapolation to march forward in time, computing

approximations u0, u1, u2, . . . , uνk
at successive times t0, t1, t2, . . . , tνk

as follows:

un+1 = un + k f(tn, un).

The time step is denoted by k; thus, tn = nk for n = 0, . . . , νk with νk = τ/k.

■ System of notation: numerical solution un approximates exact solution u(tn) at tn.
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Forward Euler method (continued)

t

u

t0 t1 t2 tνk

•
•

•

•

•

•

u0
u1
•

•
•

•

•

u2

uνk

u(t0)
u(t1)

u(t2)

u(tνk
)

numerical solution

exact solution

Model IVP






du

dt
(t) = f

(
t, u(t)

)
for t ∈]t0, t0 + τ [,

u(t0) = u0 at t = t0.

Forward Euler method
{

un+1 = un + k f(tn, un) for tn = t0, . . . , tνk
,

u0 = u0 at t0.
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Trapezoidal method (Crank-Nicolson)

■ The linear extrapolation method may not be very good, and it may make more sense to make the

approximation of the derivative equal to the average of its values at the endpoints:

u(t1) = u(t0) +

∫ t1

t0

f
(
s, u(s)

)
ds ≈ u0 + (t1 − t0)

1

2

(

f
(
t0, u(t0)

)
+ f

(
t1, u(t1)

))

.

■ This is the motivation behind the trapezoidal method (Crank-Nicolson):

un+1 = un +
k

2

(
f(tn, un) + f(tn+1, un+1)

)
.

Backward Euler method

■ The backward Euler method uses

un+1 = un + k f(tn+1, un+1).

Notion of explicit and implicit time-marching methods

■ Because the trapezoidal and the backward Euler method give an implicit equation that must be

solved for un+1, they are implicit methods, whereas the forward Euler method is explicit.
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Introduction to consistency, zero-stability, and convergence

■ The notions of consistency, zero-stability, and convergence are concerned with how good a

time-marching method is in approximating the solution to an IVP.

t

u

t0 t1 t2 t3 t4

•
•

•

•

•

u0
u1
•

•
•

•

•
•

•

•

u2

u3

u4

ǫ1

ǫ2

ǫ3

ǫ4

numerical solution

exact solution

■ blanc
Local one-step error

✤

✤

✤

mm

zero-stability

11 Global error

✤

✤

✤

Consistency Convergence
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Notions of consistency and convergence

■ The local one-step error ǫn is the error committed in the n-th step of the time-marching method

assuming that no errors were made in the previous steps.

■ A time-marching method is consistent if

max
1≤n≤νk

|ǫn| = o(k).

■ A time-marching method is of order p if

max
1≤n≤νk

|ǫn| = O(kp+1).

■ A time-marching method is convergent if

lim
k→0

(

max
1≤n≤νk

|u(tn)− un|
)

= 0.

■ A time-marching method is convergent with order p if

max
1≤n≤νk

|u(tn)− un| = O(kp).

■ Whereas the notion of consistency is relevant to the local one-step error, the notion of convergence

is relevant to the global error between the exact and the numerical solution.

■ Consistency is typically established by using Taylor series, and the connection between consistency

and convergence is typically made by using zero-stability, as described next.
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Taylor series

■ The Taylor series of a sufficiently regular function g from R into R about t in R is the power series

g(t+ k) = g(t) + k
dg

dt
(t) +

1

2
k2

d2g

dt2
(t) +

1

6
k3

d3g

dt3
(t) + . . .

that is, more compactly,

g(t+ k) =
+∞∑

j=0

1

j!
kj

djg

dtj
(
t
)
.

■ If g is sufficiently regular, the remainder in the Taylor series truncated at degree p satisfies

g(t+ k) =

p
∑

j=0

1

j!
kj

djg

dtj
(
t
)
+O(kp+1)

︸ ︷︷ ︸

remainder

.
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Consistency and order of forward Euler method

■ The forward Euler method is consistent and of order 1.

Proof of consistency and order of forward Euler method:

■ Assuming that no errors were made in the previous steps, the one-step error ǫn+1 made in the

(n+ 1)-th step of the forward Euler method is obtained as

ǫn+1 = u(tn+1)−
(

u(tn) + k f
(
tn, u(tn)

))

.

■ Because the exact solution satisfies the ODE du
dt
(t) = f(t, u(t)), we obtain

ǫn+1 = u(tn+1)−
(

u(tn) + k
du

dt
(tn)

)

.

■ If the exact solution u is sufficiently regular, the remainder in its degree-1 Taylor series satisfies

u(tn+1) = u(tn + k) = u(tn) + k
du

dt
(tn) +O(k2).

■ Hence,

ǫn+1 = O(k2).

As a conclusion, the forward Euler method is consistent and of order 1, as asserted.
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Notion of zero-stability

■ Loosely speaking, a time-marching method is zero-stable if the global error incurred by this

time-marching method can be bounded in terms of the sizes of the local one-step errors.

Zero-stability of forward Euler method

■ If the function f (the right-hand side in the ODE in the aforementioned IVP) is globally Lipschitz

continuous with respect to its second argument,

∃L > 0, ∀(t, u), (t, v) ∈ [t0, t0 + τ ]× R :
∣
∣f(t, u)− f(t, v)

∣
∣ ≤ L|u− v|,

then the forward Euler method is zero-stable in that there exists a time step k0 and a constant

c > 0 such that for all time steps k smaller than k0, with c independent of k, we have

max
1≤n≤νk

|u(tn)− un| ≤ c

νk∑

n=1

|ǫn|.

Proof of zero-stability of forward Euler method:

■ With reference to the definition of the local one-step error, the exact solution satisfies

u(tn) = u(tn−1) + k f
(
tn−1, u(tn−1)

)
+ ǫn, n = 1, . . . νk,

and the numerical solution satisfies

un = un−1 + k f(tn−1, un−1), n = 1, . . . νk.
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Proof of zero-stability of forward Euler method (continued):

■ Subtracting these equations from each other, we obtain

u(tn)− un = u(tn−1)− un−1 + k f
(
tn−1, u(tn−1)

)
− k f(tn−1, un−1) + ǫn.

■ Using the triangle inequality and the global Lipschitz continuity of f , we obtain

|u(tn)− un| ≤ |u(tn−1)− un−1|+ k
∣
∣
∣f
(
tn−1, u(tn−1)

)
− f(tn−1, un−1)

∣
∣
∣+ |ǫn|

≤ (1 + kL)|u(tn−1)− un−1|+ |ǫn|
≤

∑

1≤j≤n

(1 + kL)n−j |ǫj |

■ Because (1 + kL) ≤ exp(kL), we obtain
∣
∣u(tn)− un

∣
∣ ≤

∑

1≤j≤n

exp
(
(n− j)kL

)
|ǫj |.

■ Hence, with νk = τ/k, we conclude that

max
1≤n≤νk

∣
∣u(tn)− un

∣
∣ ≤ c

νk∑

n=1

|ǫn| with c = exp(τL).

■ The local one-step-error ǫncontributes the term (1 + kL)νk−n|ǫn| to the (majorant of the) global

error. Because (1 + kL)νk−n ≤ exp(τL) remains bounded as k → 0, each contribution to the

(majorant of the) global error can be bounded in terms of its original size.



Consistency, zero-stability, convergence

ULg, Liège, Belgium MATH0024 – Lecture 3 24 / 41

Convergence of forward Euler method

■ If the function f(t, u) (the right-hand side in the ODE in the IVP) is globally Lipschitz continuous

w.r.t. its second argument u, the forward Euler method is convergent with order 1.

Proof of convergence of forward Euler method:

■ Using the zero-stability of the forward Euler method, we obtain

max
1≤n≤νk

|u(tn)− un| ≤ exp(τL)

νk∑

n=1

|ǫn| ≤ exp(τL) νk k
︸︷︷︸

=τ

max
1≤n≤νk

|ǫn|
k

.

■ Using the consistency of the forward Euler method, we obtain

lim
k→0

(

max
1≤n≤νk

|u(tn)− un|
)

= 0.

As a conclusion, the forward Euler method is convergent, as asserted.

■ Using the fact that the forward Euler method is of order 1, we obtain

max
1≤n≤νk

|u(tn)− un| = O(k).

As a conclusion, the forward Euler method is convergent with order 1, as asserted.

■ Observe that the properties of consistency and zero-stability collectively imply convergence.
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Introduction

■ Previously, we dealt with behavior over bounded intervals in the limit as k tended to zero.

■ By contrast, the notion of absolute stability is concerned with asymptotic behavior of the solution as

the independent variable tends to infinity for noninfinitesimal time steps.

Model IVP used to define the notion of absolute stability

■ Absolute stability is concerned with the approximation of the solution to the IVP






du

dt
(t) = λu(t) for t > 0, λ ∈ C,

u(0) = 1 at t = 0.

■ The asymptotic behavior of the exact solution, that is, u(t) = exp(λt), is such that

lim
t→+∞

|u(t)| = 0 if Re(λ) < 0.

Notion of absolute stability

■ A time-marching method is absolutely stable for a time step k if its application to this model IVP

leads for this time step k to a numerical solution with the same asymptotic behavior, that is,

lim
n→+∞

|un| = 0 if Re(λ) < 0.
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Notion of region of absolute stability

■ If the application of a time-marching method to the aforementioned IVP with parameter λ leads for a

time step k to a numerical solution that decays to zero, then the product kλ is said to lie in the

region of absolute stability for this time-marching method:

A =
{

kλ ∈ C : lim
n→+∞

|un| = 0
}

.

A time-marching method is said to be unconditionally stable if its region of absolute stability

contains the entire left halfplane, that is, C− ⊂ A, and it is conditionally stable otherwise.

Region of absolute stability of forward Euler method

■ The forward Euler method uses un+1 = un + kλun.

■ Hence, with r(kλ) = un+1

un
= (1 + kλ), the region of absolute stability is

A =
{

kλ ∈ C : |r(kλ)| < 1
}

=
{

kλ ∈ C : |1 + kλ| < 1
}

.

As a conclusion, the forward Euler method is conditionally stable. The time step k must be small

enough for kλ to lie within the unit circle with center at (−1, 0) for the forward Euler method to

furnish a numerical solution with the same asymptotic behavior as the exact solution.

· Re(kλ)

Im(kλ)
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Region of absolute stability of trapezoidal method

■ The trapezoidal method uses un+1 = un + k
2 (λun + λun+1).

■ Hence, with r(kλ) = un+1

un
=

1+ kλ
2

1− kλ
2

, the region of absolute stability is

A =
{

kλ ∈ C : |r(kλ)| < 1
}

= C
−.

As a conclusion, because the region of absolute stability contains the entire left halfplane, the

trapezoidal method is unconditionally stable.

· Re(kλ)

Im(kλ)

Region of absolute stability of backward Euler method

■ The backward Euler method uses un+1 = un + k λun+1.

■ Hence, with r(kλ) = un+1

un
= 1

1−kλ
, the region of absolute stability is

A =
{

kλ ∈ C : |r(kλ)| < 1
}

=
{

kλ ∈ C : |1− kλ| > 1
}

.

As a conclusion, because the region of absolute stability contains the entire left halfplane, the

backward Euler method is unconditionally stable.

· Re(kλ)

Im(kλ)
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Aforementioned time-marching methods

■ Forward Euler method: explicit, convergent with order 1, conditionally stable.

■ Trapezoidal method: implicit, convergent with order 2, unconditionally stable.

■ Backward Euler method: implicit, convergent with order 1, unconditionally stable.

Advanced time-marching methods

■ Improved time-marching methods (higher order, better stability properties,. . . ) can be obtained by

using more function evaluations (e.g. Runge-Kutta) or by using information from previous time steps

(e.g. Adams-Bashforth and Adams-Moulton multistep methods).

Stiff ODEs

■ Stiff ODE problems involve slow and fast time scales simultaneously, and they may therefore risk

requiring excessively small time steps over long time intervals.

■ Stiff ODE problems require special attention, and dedicated time-marching methods must be used.

Implicit methods are often used because they are often unconditionally stable.
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Notion of finite difference approximation

■ Several finite difference approximations of du
dx
(x):

x

u

•
•

•

x− h x x+ h

slope du
dx
(x)

slope d−u(x)

slope d0u(x)

slope d+u(x)

d+u(x)=
u(x+ h)− u(x)

h
, d−u(x)=

u(x)− u(x− h)

h
, d0u(x)=

u(x+ h)− u(x− h)

2h
.

■ Similar finite difference approximations can be defined for higher order derivatives, for example,

d2u

dx2
(x) ≈ d20u(x) =

u(x− h)− 2u(x) + u(x+ h)

h2
.

■ Similar finite difference approximations can be defined for partial derivatives in PDEs.
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A simple finite difference method for Laplace/Poisson equation

■ Let us consider the Dirichlet problem






d2u

dx2
(x) = f(x) for 0 < x < 1,

u(0) = u(1) = 0 at x = 0 and x = 1.

■ Let grid points x0, x1, x2, . . . , xµh
be introduced as follows:

• • • • •x0 x1 x2 xµh−1 xµh

h h h

The grid spacing is denoted by h; thus, xj = jh for j = 0, . . . , µh with µh = 1/h.

■ A simple finite difference method is then obtained by computing approximations u0, . . . , uµh
at

the grid points x0, . . . , xµh
by requiring that







uj−1 − 2uj + uj+1

h2
= f(xj) for j = 1, . . . , µh − 1,

u0 = uµh
= 0 at x0 = 0 and xµh

= 1.

This corresponds to replacing d2u
dx2 (xj) by its finite difference approximation d20u(xj) in the PDE.

■ System of notation: numerical solution uj approximates exact solution u(xj) at xj .
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Notion of stencil

■ The stencil is a graphical representation of the finite difference approximation being used.

■ For the aforementioned finite difference method, we have the stencil

• • •
xj−2 xj−1 xj xj+1 xj+2

1 −2 1

Linear problem defined by aforementioned finite difference method

■ The linear problem provided by the aforementioned finite difference method can be written as

1

h2










−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2










︸ ︷︷ ︸

[A]










u1

u2

...

uµh−2

uµh−1










︸ ︷︷ ︸

uh

=










f(x1)
f(x2)

...

f(xµh−2)
f(xµh−1)










︸ ︷︷ ︸

f

;

hence, more compactly,

[A]uh = f .
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Properties of linear problem that must be solved in aforementioned finite difference method

■ The matrix [A] obtained in the aforementioned finite difference method is negative definite,

vh · [A]vh =
1

h2





µh−1
∑

j=1

(−2)v2j + 2

µh−1
∑

j=2

vjvj−1





=
1

h2



−
µh−1
∑

j=2

(vj − vj−1)
2 − v21 − v2µh−1





< 0 for all vh 6= 0,

so that [A] is invertible; hence, the numerical solution exists and is unique.

■ The matrix [A] is sparse and symmetric. See MATH0471 “Multiphysics integrated computational

project” (R. Boman and C. Geuzaine) for details on appropriate storage and solution algorithms.

■ The matrix [A] can be large and ill-conditioned, especially if h is small. See INFO0939 “High-

performance scientific computing” (C. Geuzaine) for details on appropriate solution algorithms.
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Notions of consistency and convergence

■ The local truncation error τj at xj is obtained by inserting the exact solution into the finite

difference equation and determining by how much it fails to satisfy this finite difference equation.

■ A finite difference method is consistent if

lim
h→0

(

max
1≤j≤µh−1

∣
∣τj

∣
∣

)

= 0.

■ A finite difference method is convergent if

lim
h→0

(

max
1≤j≤µh−1

∣
∣u(xj)− uj

∣
∣

)

= 0.

■ A finite difference method is convergent with order p if

max
1≤j≤µh−1

∣
∣u(xj)− uj

∣
∣ = O(hp).

■ We note that other ways of gauging the magnitude of the local truncation and the global error can

also be considered. For example, instead of using the “max-norm” ‖vh‖∞ = max1≤j≤µh−1 |vj |,
consistency and convergence can also be defined by using the “1-norm” or the “2-norm.”

■ As in the case of ODEs, consistency is relevant to the local truncation error, and convergence is

relevant to the global error between the exact and the numerical solution.

■ As in the case of ODEs, consistency is typically established by using Taylor series, and the

connection between consistency and convergence is typically made by using some form of stability.



Consistency, stability, convergence

ULg, Liège, Belgium MATH0024 – Lecture 3 35 / 41

Consistency of aforementioned finite difference method

■ The aforementioned finite difference method is consistent.

Proof of consistency of aforementioned finite difference method:

■ The local truncation error τj at xj is obtained as

τj =
1

h2

(
u(xj−1)− 2u(xj) + u(xj+1)

)
− f(xj).

■ Because the exact solution satisfies the PDE d2u
dx2 (x) = f(x), we obtain

τj =
1

h2

(
u(xj−1)− 2u(xj) + u(xj+1)

)
− d2u

dx2
(xj).

■ If the exact solution u is sufficiently regular, the remainder in its degree-3 Taylor series satisfies

u(xj+1) = u(xj + h) = u(xj) + h
du

dx
(xj) +

1

2
h2 d2u

dx2
(xj) +

1

6
h3 d3u

dx3
(xj) +O(h4),

u(xj−1) = u(xj − h) = u(xj)− h
du

dx
(xj) +

1

2
h2 d2u

dx2
(xj)−

1

6
h3 d3u

dx3
(xj) +O(h4),

■ Hence, by combining these results, we find

τj = O(h2).

As a conclusion, the aforementioned finite difference method is consistent, as asserted.
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Stability of aforementioned finite difference method

■ The aforementioned finite difference method is stable in that there exists a grid spacing h0 and a

constant c > 0 such that for all grid spacings h smaller than h0, with c independent of h, we have

max
1≤j≤µh−1

∣
∣u(xj)− uj

∣
∣ ≤ c max

1≤j≤µh−1

∣
∣τj

∣
∣.

Proof of stability of aforementioned finite difference method:

■ With reference to the definition of the local truncation error, the exact solution satisfies

1

h2

(
u(xj−1)− 2u(xj) + u(xj+1)

)
= f(xj) + τj , 1 ≤ j ≤ µh − 1,

and the numerical solution satisfies
1

h2
(uj−1 − 2uj + uj+1) = f(xj), 1 ≤ j ≤ µh − 1.

■ Subtracting these equations from each other, we obtain

1

h2

((
u(xj−1)− uj−1

)
− 2

(
u(xj)− uj

)
+
(
u(xj+1)− uj+1

))

= τj , 1 ≤ j ≤ µh − 1.

We can observe that the global error satisfies a system of equations that has exactly the same form

as the original system except that the right-hand side is given by the local truncation error.



Consistency, stability, convergence

ULg, Liège, Belgium MATH0024 – Lecture 3 37 / 41

Proof of stability of aforementioned finite difference method (continued):

■ In fact, the previous system of equations can be written equivalently as

1

h2















−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2





























u(x1)− u1

u(x2)− u2

.

.

.

u(xµh−2)− uµh−2

u(xµh−1)− uµh−1















=















τ1
τ2
.
.
.

τµh−2

τµh−1















■ After solving

1

h2















−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2





























g11
g12
.
.
.

g1µh−2

g1µh−1















=















1
0
.
.
.

0
0















, . . . ,
1

h2















−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2































g
µh−1

1

g
µh−1

2

.

.

.

g
µh−1

µh−2

g
µh−1

µh−1

















=















0
0
.
.
.

0
1















,

we can establish the superposition formula














u(x1)− u1

u(x2)− u2

.

.

.

u(xµh−2)− uµh−2

u(xµh−1)− uµh−1















= τ1















g11
g12
.
.
.

g1µh−2

g1µh−1















+ . . .+ τµh−1

















g
µh−1

1

g
µh−1

2

.

.

.

g
µh−1

µh−2

g
µh−1

µh−1

















.
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Proof of stability of aforementioned finite difference method (continued):

■ It can be readily verified that

gij = hG(xj , xi), where G(xj , xi) =

{

xj(xi − 1) if j ≤ i,

xi(xj − 1) if j ≥ i,

where G is the Green’s function for the Dirichlet problem on ]0, 1[ introduced in Lecture 2.

■ Using the aforementioned superposition formula, we thus obtain

|u(xj)− uj | =
µh−1
∑

i=1

τi hG(xj , xi)

≤
(

max
1≤i≤µh−1

|τi|
)

h

µh−1
∑

i=1

|G(xj , xi)|

≤
(

max
1≤i≤µh−1

|τi|
)

hµh
︸︷︷︸

=1

xj(1− xj)

2
︸ ︷︷ ︸

≤ 1
8 for 0 ≤ xj ≤ 1

Hence, with c = 1
8 , we have max1≤j≤µh−1

∣
∣u(xj)− uj

∣
∣ ≤ cmax1≤j≤µh−1

∣
∣τj

∣
∣, as asserted.
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Proof of stability of aforementioned finite difference method (continued):

■ In going from the second to the third line, we used the partial sum formula
∑n

m=1 m = n(n+1)
2 as

µh−1
∑

i=1

|G(xj , xi)| =
j

∑

i=1

|G(xj , xi)|
︸ ︷︷ ︸

=
∑j

i=1 xi(1−xj)

=
(j+1)xj

2 (1−xj)

+

µh−1
∑

i=j+1

|G(xj , xi)|
︸ ︷︷ ︸

=
∑µh−1

i=j+1 xj(1−xi)

=
(µh−(j+1))xj

2 (1−xj)

.

Convergence of aforementioned finite difference method

■ The aforementioned finite difference method is convergent with order 2.

Proof of convergence of aforementioned finite difference method:

■ It follows from τj = O(h2), 1 ≤ j ≤ µh − 1 and the stability property that

max
1≤j≤µh−1

∣
∣u(xj)− uj

∣
∣ = O(h2).

■ Observe that the properties of consistency and stability collectively imply convergence.
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■ Key properties of a numerical method:

◆ Convergence.

◆ It may also be desirable that certain properties (existence, uniqueness, maximum property,. . . )

of the exact solution are preserved in the numerical solution.

■ A finite difference method is obtained by replacing one or more partial derivatives in a PDE by finite

difference approximations. By doing this for a grid of points, a system of equations is obtained,

whose solution provides an approximation to the exact solution at the grid points.

■ A convergence analysis of a finite difference method typically begins by examining the local

one-step/truncation error by using Taylor series. Then, some form of stability is used to relate the

local one-step/truncation error to the global error and establish convergence.

■ Working through numerical examples is very helpful towards understanding this material. Please do

not hesitate to come up with examples yourself to try things out using small Matlab codes.

Illustrative numerical examples will also be included in the homework.
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