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Laplace operator

Laplace operator

Ny = diva;,,.
B Cartesian coordinates (m = 3): Agzu = 8:132 + 9
B Cylindrical coordinates (m = 3): Apu = 8 7 + i g;f —+ 7}2 o u 7 + azg

. . 2
B Spherical coordinates (m = 3): Agzu = 37,2 + z ?;f + (r Slnl(X))z 392 + 7}2 §X2 T 2 taln(x) 3;-

Laplace and Poisson equations

= Laplace equation Poisson equation

Ngu = 0. Ngpu = f.

The Laplace equation is called homogeneous because its right-hand side is zero. By contrast, if
f = 0, the Poisson equation is called inhomogeneous because its right-hand side is nonzero.

Areas of application in mechanics and physics

B The Laplace/Poisson equation is the mathematical prototype of equilibrium problems, such as
those arising in stationary Darcy flow, stationary heat conduction, electrostatics, elasticity, ...
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Physical examples

1D elasticity

B System of PDEs governing the static behavior of a linear elastic bar:

( d
—Ad—g = f (equilibrium equation) Ao ? do)
. o= Fe (constitutive equation) dah b f
du o _ _ i
€ = — (strain-displacement relationship)
\ dx Ao

Here, u is the displacement, € the strain, o the stress, A the cross section of the bar, F' the Young'’s
modulus, and f the external force per unit length.

B Inserting the constitutive equation into the equilibrium equation, we obtain

de
—BEA—-=.
Combining this result with the strain—displacement relatlonship, we obtain
d2
_EA de — f.
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Physical examples

3D elasticity

B System of PDEs governing the static behavior of a homogeneous isotropic linear elastic solid:

(diveo+ f, =0 (equilibrium equation) ( u: displacement,
o= Ar(e)I + 2pue (constitutive equation) < €: strain,
1 T ’ o . siress,
= — (D D train-displ t relationshi
€= 3 (Dzu +Dyu" ) (strain-displacement relationship) | . volume force.

Here, A and i are the Lamé parameters, which are related to the Young’s modulus £ and Poisson

- E E
coefficient v through A = (Hy)(’f_%) and 11 = SIGEmE

B Inserting the constitutive equation into the equilibrium equation, we obtain
divy, (Mr(e)I + 2ue) + f, = 0.
Using the properties div, (9 A) = A(V 3p) + odivy A and V  divya = div, (D a’) and the
definition div,a = tr(Dza) (Lecture 1 Part B), we obtain
div, (tr(e)I) = V(tr(e)) = Vadivyu and divye =
Combining these results, we obtain
— (A + 1)V gdiveu — pdiveDau = f.

(divw D,.u + deiku>.

DO | —
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Physical examples

Stationary heat conduction with heat source

B For an open bounded subset €2 of R3 with a sufficiently smooth boundary 0€?2, the stationary
conservation of energy reads as follows:

/ S 4 / P r: heat source ([r] =Jm °s™'),
JR— . /’a p— ,
o9 1 Q g: heatflux ([g] =Jm2s™1).

Owing to Stokes’s theorem (Lecture 1 Part B), we have, faQ q-dS = fQ div,,qdV’, hence,
—divpq +r = 0.

B Fourier’s law for heat conduction indicates that q is proportional to the gradient V .. T" but points
oppositely because the heat flux is from regions of higher to regions of lower temperature:

q=—kV T, k: the thermal conductivity ([k] =Jm~ 'K s™").

B Combining the aforementioned results, we obtain
—divg (kV,T) = .
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Laplace/Poisson equation on all of space
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Notion of fundamental solution

Motivating example: superposition formula for solution to linear problem

B Let us consider the linear problem

Ayjr A Ass I1 Y1
Aor Agy Aoz| 22| = |12
Azr Aszy Ass| |73 Y3

Let us assume that this linear problem is well posed in that [ A] is invertible.

B The solution is obtained as & = [A]~ly. Alternatively, after solving the linear problems
A A Az ||lw 1] [Ann Az Ail[w 0 A Aip Az ||wr 0
Ag1 Az Aog||ug|=|0|, [A21 Ao Ass||v2|=|1]|, |A21 Azx Aaz||wz|=|0
A3z1 Aszz Aszz||us| [0] |[As1 Aszzx Assz||vs]| |0 Aszr Aszz Ass||wsz| |1
the solution is also obtained as [ollows:

L1 (051 (O] w1
To| =Y1 |U2| +Y2 |V2| + Y3 |W2
X3 us U3 w3

Thus, we obtain a representation of the solution x to [A]x = y as a superposition of solutions
u, v, and w to the linear problems [A|u = 21, [A]v = 15, and [A]w = 23, where 21, 22, and i3
are unit vectors with 1 on the first row, the second row, and the third row, respectively.
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Notion of fundamental solution

Notion of fundamental solution of PDE

B Forlinear ODEs, the notion of impulse response function allows a superposition formula to be
established for determining a solution for a general right-hand side (cfr. L 1 Part B).

B For linear PDEs, a similar notion, although it is called fundamental solution in the case of PDEs,
is introduced to allow a superposition formula to be established for determining a solution for a
general right-hand side.

Superposition formula for solution to Poisson equation
B Let us consider the Poisson equation
Ngu = f, x € R™,

B After determining a fundamental solution £/, that is, a solution that solves the Poisson equation for a
Dirac impulse d centered at O on the right-hand side,

NgFE =0, x € R™,
a solution to the Poisson equation with general right-hand side f is obtained as follows:
u=FExf.

Thus, the fundamental solution allows a superposition formula to be established for determining a
solution for a general right-hand side.
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Notion of fundamental solution

Superposition formula for solution to Poisson equation (continued)

B Asinthe case of the solution of linear ODEs, one way of justifying this superposition formula is
through Fourier analysis. In fact, with the Fourier transform, which, for an integrable or

square-integrable function f from R into R, would read as

| expl-ig - @)f@)de

A

f(&) =Ff&) =

where we call £ the wavenumber if x is a spatial position, we have

Poisson equation

Ngu = f

Fundamental solution
N FE =90

Spatial-domain solution
u=FExf

ULg, Liége, Belgium

FT Algebraic equatAion
—[I€lI*a(€) = f(€)
E(€) = 1
inv FT ~
—I€I"E(€) =1
inv FT
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Notion of fundamental solution

Superposition formula for solution to Poisson equation (continued)
B However, mathematically, it is not so easy to make the previous justification fully rigorous:

¢ In1D (m = 1), the function ﬁ is not locally (square-)integrable near & = 0.

€ In2D (m = 2), the function ﬁ is not locally (square-)integrable near & = 0.

€ In 3D (m = 3), the function ﬁ is locally near & = 0, but not globally, (square-)integrable.
B Mathematicians have introduced a generalized notion of Fourier transform, in addition to

regularization techniques, which allows the previous justification to be made fully rigorous. However,
this generalized notion of Fourier transform is outside the scope of this theoretical lecture.

B [n the following, we will limit ourselves to looking at expressions of fundamental solutions in 1D, 2D,
and 3D and to providing some intuition for the particular form that these expressions take.
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Fundamental solution in 1D, 2D, and 3D

Expressions for fundamental solutions in 1D, 2D, and 3D

B In1D (m = 1), the function Eyp(x) = % |z is a fundamental solution.

B In2D (m = 2), the function Epp(x) = 5= log(||z||) is a fundamental solution.

B In3D (m = 3), the function Esp(x) = 7= = is a fundamental solution.

4r |||

Fiot

NSy
S0 %,

N
\Wo/d

|
OO OO

E, () [-]

B We can observe thatin 1D (m = 1), the first derivative of the fundamental solution Ep is
discontinuous at the origin. Further, in 2D (m = 2) and 3D (m = 3), the fundamental solutions
Esp and E5p are singular at the origin. Consequently, these fundamental solutions are not classical
solutions! Instead, these fundamental solutions are generalized solutions.
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Fundamental solution in 1D, 2D, and 3D

Dirac impulse and theory of distributions
B To clarify what is meant by “generalized solution,” we must take a closer look at the Dirac impulse.

B The Dirac impulse 9 is not a function in the usual sense but rather an idealization of a sharply

peaked function ®. that is nonzero only on an interval | — €, €[ near the origin and has the property
) €
/ ¢ (z)dr = / ¢ (z)dr = 1.
— O —€

For example, we may consider:

o, (2) 1/2¢ if —e <z <,
e\l) —
0 otherwise.

B The exact shape of ®. is not important, but . must attain a height that is O(1/¢) in order for the
integral to be 1. We can think of the Dirac impulse as a sort of limit of such functions as € — 0:

/1/26
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Fundamental solution in 1D, 2D, and 3D

Dirac impulse and theory of distributions (continued)

B Calculations (summation, multiplication by a function, convolution, differentiation, Fourier transform,
...) using Dirac impulses (and other generalized functions) can be made rigorous mathematically
by using the theory of distributions, of which we need to know only the following:

€ The theory of distributions provides mathematically rigorous definitions of generalized functions.
For example, the Dirac impulse is defined as follows (1m = 1):

/R 5(2)p(x)dz = p(0)

for all smooth functions ¢ : R — R

with closed and bounded support.

€ The theory of distributions makes it possible to differentiate certain functions whose derivatives
need not exist in the usual sense, as well as to take the Fourier transform of certain functions
whose Fourier transform need not exist in the usual sense. For example, differentiation is
defined using the formula of partial integration as follows (m = 1):

/R T'(2)p(x)de = — /R T(x)fl—i(x)d:v

for all smooth functions ¢ : R — R

with closed and bounded support.

B The theory of distributions provides a modern framework to define generalized solutions to PDEs
that need not admit solutions in the classical sense.
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Fundamental solution in 1D, 2D, and 3D

Justification of expression for fundamental solution in 1D
B Tojustify thatin 1D (m = 1), the function Eyp(z) = 3 |z| is a fundamental solution, we must show
for all smooth functions p : R — R

/R B (2)p(x)dz = / 5(2)p(x)dz = (0)

with closed and bounded support.

B For the first derivative of F/;p in the sense of the distributions, we obtain
/ E{p(z)p(z)dr = — / Em(az)d—@ x)dx (definition)
R dx
0 d 400 d
_ _/ E1D(w)£(w)dx—/ Ero(2) %2 (2)da
— 00 dx 0 dx

+o0
2 (@)p(a)dr ~ [Bro(2)p(@)]

0
— /_oo de;D (z)p(x)dx — [Ep(x)e(x)]° o _|_/0

In the partial integration going from the second to the third line, the boundary terms at infinity vanish
since  has bounded support and those at 0 vanish since F;p(0) = 0. For the continuous function
FEp, the derivative in the sense of the distributions coincides with the derivative in the usual sense,
namely, Fy(x) = 0, Fip(x) is equal to -1/2 if z < 0 and 1/2if x > 0.
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Fundamental solution in 1D, 2D, and 3D

Justification of expression for fundamental solution in 1D (continued)

B For the second derivative of Ep in the sense of the distributions, we obtain

/ B (x)o(x)dr = — / E{p (x)dx (definition)

:‘/_w%< 1>f;;< iz~ [ 505 (@)

1 1 - .
=5 ©(0) + 5 ©(0) (partial integration)

= /R(S(:c)gp(a:)d:c

For the discontinuous function E,, the derivative in the sense of the distributions is different from
the derivative in the usual sense, namely, Er(x) = §(x) versus 02 Ep(z) = 0if x < 0 and

x > 0. When a discontinuous function is differentiated in the sense of the distributions, a Dirac
impulse appears at the discontinuity.

/ !
Eipy E1D E1D
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Fundamental solution in 1D, 2D, and 3D

Justification of expressions for fundamental solutions in 2D and 3D

ULg, Liége, Belgium

By using the theory of distributions in a similar fashion, it can be shown that F>p and E5p are
fundamental solutions to the Poisson equation in 2D (m = 2) and 3D (m = 3).

However, these proofs are slightly complicated because of the singularity at 0. Here, we limit
ourselves to providing some intuition for the form of these fundamental solutions.

Let 7 = ||a||. Because of radial symmetry, it follows from the expressions of the Laplacian operator
in cylindrical and spherical coordinates, respectively, that the fundamental solutions must satisfy

_ 2 O’E
¢ in2D (m =2): G + ;972 =0, hence, 57

_ 2 O’E
¢ in3D(m = 3): ddf;D + % —dif") = 0, hence, —8:Ezz

By integrating, we obtain

= =1, forxz € R*\{0}.
= =2 forx € R*\{0}.

¢ in2D (m = 2): log(d,Esp) = —1log(r) + log(c), hence, &, Eop = cr™1, for x € R?\{0}.
& in3D (m = 3): log(d,FE3p) = —2log(r) + log(c), hence, &, Esp = cr 2, for x € R3\{0}.

Finally, by integrating once more, we obtain

& in2D (m = 2): Exp(r) = a+ blog(r) for x € R*\{0}.

¢ in3D (m =3): Exp(r) =a+br—1forxzecR3\{0}.

MATHO0024 — Lecture 2
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Fundamental solution in 1D, 2D, and 3D

Physical example relevant to 3D electrostatics

B Coulomb’s law for the force on a point charge ¢ at location @ due to a point charge ¢ at location x:

1 T —x
f=4 qq
Teg |

-z
B Coulomb’s law for the electric field at location & due to a charge density p over R3:

E(z) = — /Rsp(aa)ﬁ_‘i AV,

~ 4reg x — z|]?
B Because
Tr— T 1
= — —V <—~) 3
e — 2[|° “\lz — 2]
we obtain, with the definition of the electrical potential £ = —V ,, ®, that
1 1
(@) = Tres /R P Ve

B In a manner that is consistent with Gauss’s law from electrostatics,
Ng® = —p/ey, xR,
we can understand this electrical potential as a convolution between F3p and —,0/ €o, that is,

® = FEspx (—p/eg).

ULg, Liége, Belgium MATHO0024 — Lecture 2 19/32



Integral representation theorem

Integral representation theorem in 3D

B Let Q) be an open bounded subset of R? with a sufficiently smooth boundary.
Let u be a sufficiently regular function on €2 (specifically, let u be in C2()).
Then, at any location y in the interior of {2, we have the representation

u(y) = /8 ) (u(m)Vme(a:—y)—E3D(a:—y)un(a:)) S, + /Q Ean (@ —1) Agu(z)dVy,

Proof of integral representation theorem in 3D

B The challenge is the singularity of E5p at 0. This singularity is handled by excising a small ball
around the singularity and then considering a limit as this ball becomes smaller and smaller.

N
B The proof proceeds by applying the second Green’s identity (Lecture 1 Part B) with ¢ = u and

Y = E3p(- — y) in Q\Bc(y), where B.(y) = {x € R’ : ||z — y|| < €} is the closed ball
centered at y with radius ¢,

/ Eao (@ —y) Agu(x)dVe = / (EsD(w—y)Vmu(m) —u(ac)VwEgD(m—y)> dSs.
Q\Be(y) 8QUSB€('U)

Q
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Integral representation theorem

Proof of integral representation theorem in 3D (continued)

B We excise this small ball around the singularity because the second Green’s identity does not hold
for functions with singularities. Further, we require the boundary of €2 to be sufficiently smooth
because the second Green’s identity does not hold for domains with nonsmooth boundaries.

B Let n(x) denote the unit outward normal vector to the surface 92 U OB, (y) at x. Because u is in
C?(Q), we have that V u(x) - n(zx) is bounded. Further, the area of the surface B, (y) is
4mre?. Finally, Esp(x — y) is equal to —1/(4me) on the surface OB, (y). It follows that

lim Esp(x —y)Vu(x) - dS, = 0.
e—0 8Be(y)

B Wehavethat Vo FEsp(x — y) - n(x) = —1/(4ne?) on the surface B, (y). It follows that
1
lim (@)Y Esp (2 — y) - dS,y = lim — / w(@)dS, = —u(y).
OB (y)

e—0 OB. (y) e—0 47T€2

B Since uisin C%(Q), Agu(x) is bounded. Further, E5p (- — ) is locally integrable near . Thus,

lim Esxp(x — y)Dpu(x)dVy, = / Esp(x — y)Dzu(x)dVy.
70 J\B.(v) Q

B Finally, by letting e — 0 in the aforementioned Green’s identity and combining all the
aforementioned results, we find the integral representation theorem, as asserted.
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Properties of harmonic functions

Notion of harmonic function

B Let () be an open bounded subset of R™ with a sufficiently smooth boundary. Then, a sufficiently
regular function u on {2 is harmonic if it satisfies the Laplace equation A u = 0 in Q.

B The notion of fundamental solution and the integral representation theorem allow certain properties
of harmonic functions to be proved, some of which are listed below.

Mean-value property in 3D

B For a harmonic function « within an open bounded subset {2 of IR{S, we have, at any location y in
the interior of {2 and for any radius > 0 small enough so that B,.(y) is included in €2, the
representation

1
— d mo
o) = s | wta)as

B Thus, the mean-value property in 3D asserts that the value taken by u at y is equal to the average
of u over a sphere 0B,.(y) around y.

B The proof is outside the scope of this theoretical lecture.
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Properties of harmonic functions

Smoothness property (Laplacian is “regularizing”)

B For a harmonic function u within €2, all derivatives exist and are continuous.

B The interesting point is that the algebraic structure of the Laplace equation leads to the existence
and continuity of all derivatives of a harmonic function, even those that do not appear in the PDE.

B The proof is outside the scope of this theoretical lecture.

Maximum property

B Let () be a connected open bounded subset of R"* with a sufficiently smooth boundary. For a
harmonic function u within €2, we have that if max,cq u(x) = a < +0o0, then either u(x) < a for
all z in Q or u(x) = a for all  in €.

B Thus, the maximum property asserts that a harmonic function must attain its maximum on the
boundary and cannot attain its maximum in the interior of a connected set unless it is constant.

B For example, for a stationary heat conduction problem, this is physically obvious: the steady-state
temperature won’t exceed what is imposed at boundaries if there is no heat source.

B The proof is outside the scope of this theoretical lecture.
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Boundary value problems involving Laplace/Poisson equation
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Dirichlet and Neumann problems

Notion of boundary value problem

B So far, we assumed that our PDE was posed on the whole of space. We can also consider a PDE
posed on a subregion of space. Then, the PDE is typically completed by boundary conditions
specified on the boundary of this subregion of space, thus obtaining a boundary value problem.

Notion of “well-posed” problem
B A problem involving a PDE is called “well-posed” if

(i) the problem has a solution,
(if) this solution is unique,
(iii) the solution depends continuously on the data given in the problem.

B The last condition is particularly important in applications: it is desirable that the solution changes
only a little when the conditions specifying the problem change only a little.

B The choice of boundary conditions in a boundary value problem (BVP) is very important. Finding
which are good boundary conditions, that is, those that lead to a well-posed problem, is an
important aspect of the mathematical theory of PDEs.
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Dirichlet and Neumann problems

Dirichlet problem

B Let () be an open subset of R™. For given functions f on €2 and g on 0f2, the Dirichlet problem is
the BVP that consists in finding a function u on {2 satisfying

Ngu = f in€,
uU=g on 0.

B The interpretation of the Dirichlet boundary condition u = ¢ on 92 depends on the application.
E.g., in stationary heat conduction, it would impose the temperature on the boundary. And, in
electrostatics, it would impose the electrical potential on the boundary.

Neumann problem

W Let () be an open subset of R™. For given functions f on { and g on 0(2, the Neumann problem
is the BVP that consists in finding a function u on {2 satisfying

Ngu=f in €2,
Viu-n =g onofl.

B The interpretation of the Neumann boundary condition V ,u - n = ¢ on 0€2 depends on the
application. E.g., in stationary heat conduction, it imposes the heat flux through the boundary.
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Dirichlet and Neumann problems

Mixed problem

B Let () be an open subset of R™. For given functions f on €2, g on 0€)p, and h on OS2y, where 9{)p
and 9{ly form a partitioning of the boundary 9€2 such that 9{2p U 9€2y = 02 and 9{2p N Oy
— (), the mixed problem is the BVP that consists in finding a function u on §2 satisfying

(Ngu=f in €2,
LU=y on 0)p,
Viou-n=~h on0Sy.

\

Uniqueness of solution to Dirichlet problem

B Let () be an open bounded subset of R™ with sufficiently smooth boundary. Let f and g be sulffi-
ciently regular functions on €2 and 0€2. Then, there is at most one solution to Dirichlet’s problem.

B The proof follows immediately from the aforementioned maximum property. In fact, if w and v are
two solutions to the Dirichlet problem, then the function w = +(u — v) satisfies Agw = 0in €
and w = 0 on 9S2; hence, by the maximum property, w = 0 in {2, so that u = v.

B [t follows that Dirichlet and Neumann boundary conditions cannot in general be imposed
simultaneously everywhere on the boundary. In fact, if Dirichlet and Neumann boundary conditions
are imposed simultaneously everywhere on the boundary, they will in general be incompatible, so
that the resulting BVP will not have a solution.
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Notion of Green’s function

Green’s function

B Green’s function is for a BVP on a bounded subset of space the analogue of a fundamental solution
for a PDE on all of space.

B Because a BVP on a bounded domain is considered, translation invariance is lost; hence, it is no
longer sufficient to determine only the response to a Dirac impulse centered at the origin.

B Let () be anopen bounded subset of R™ with sufficiently smooth boundary. The Green’s function
is the function GG on {2 x {2 such that

NaGla,y) =z —y) nQ,
G(x,y) =0 on 012,

where (- — y) is the Dirac impulse centered at y.

Integral representation theorem using Green’s function

B Let () be an open bounded subset of R with sufficiently smooth boundary. Let u be a sufficiently
regular function on {). Then, at any location y in the interior of {2, we have the representation

u(y) = /8(2 u(x)VG(x,y) - dSy + /Q G(x,y)Agu(x)dVy.

B The proof is omitted. Instead, let us build some intuition using an example in 1D.
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Green’s function in 1D

Example of Green’s function in 1D

B The Green’s function for the open interval |0, 1] is the function G on [0, 1]x]0, 1] such that

G"(x,y) =0(x —y) in]0,1],
G(0,y) =G(1,y) =0, on{xr=0}and{x =1}.

B This Green’s function has the following expression:

G(r,y)=z(y—1) f0<z<y<l,
Glr,y)=ylz—1) if0<y<z<I.

B Indeed, G(0,y) =0(y —1) =0and G(1,y) = y(1 — 1) = 0; further, we have

v 4

ULg, Liege, Belgium

/01 G"(z,y)p(x)dr = — /Oy<y — 1) (z)dx — /yl v (z)dz

=—(y— Do(y) +ye(y)

e G”
|

y —>
I \
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Green’s function in 1D

Example of integral representation theorem in 1D

B Let us consider the Dirichlet problem
d?u _
2 f in |0, 1],
u(0) =u(l) =0 on{xr=0}and {x =1}.

B Based on calculus, we seek a solution of ’gche form
u(z) = a+ bx + / 9(y)dy, 9(y) = /y f(z)dz.
B Using partial integration, we obtain 0 O
/O 9(y)dy = :v/O f(y)dy — /Ox yf(y)dy = /Ox(fv —y)f(y)dy.

B We can determine the constants a and b by enforcing the boundar%/ conditions. The condition
u(0) = 0 implies that a = 0, and u(1) = O implies that b = — [ (1 — y) f(y)dy. Hence,

@)= [ oy~ Df @y + [ @) )
or, more compactly,

u(x) = / Gy, 2)f (y)dy,

as asserted by the integral representation theorem.
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Summary and conclusion

B A fundamental solution solves a PDE on all of space for a Dirac impulse on the right-hand side.

B For the Laplace/Poisson equation, we considered expressions of fundamental solutions in 1D, 2D,
and 3D. In 1D, the derivative of the fundamental solution E/p is discontinuous at the origin. In 2D
and 3D, the fundamental solutions Esp and E;53p have a singularity at the origin.

B A fundamental solution allows a superposition formula to be established for determining a solution
to a PDE on all of space for a general right-hand side.

B For the Laplace/Poisson equation, the notion of fundamental solution allowed us to prove interesting
theorems and properties of solutions, such as the integral representation theorem, the mean-value
property, the smoothness property, and the maximum property.

B Green’s function is for a BVP on a bounded subset of space the analogue of a fundamental solution
for a PDE on all of space.
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