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■ An important ingredient of a systematic theory of partial differential equations (PDEs) is a

classification scheme which identifies classes of equations with common properties. The “type” of

an equation determines the nature of boundary and initial conditions which may be imposed, the

type of physical phenomena that can be modeled by the equation, the nature of numerical methods

which can be used to approximate the solution, and so forth.

■ Common classification schemes include the following ones:

◆ Order.

◆ Linear, semilinear, quasilinear, versus fully nonlinear PDEs.

◆ Constant versus nonconstant coefficients.

◆ Scalar PDE versus system of PDEs.

◆ Area of application in mechanics and physics.

◆ Similarities with Laplace/Poisson, heat, transport, wave, and other model PDEs.

◆ Ellipticity.

◆ . . .
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■ A partial differential equation of order k is an equation of the form

f
(

x, {∂α

x
u}|α|≤k

)

= 0,

relating a function u of the variable x in R
m and its derivatives up to order k. Thus, the order of a

PDE is the order of the highest derivative appearing in the equation.

■ The PDE is called linear if f is a linear function of {∂α

x
u}|α|≤k, that is, if it can be written as

∑

|α|≤k

aα(x)∂
α

x
u = b(x).

■ More general than the linear PDEs are the quasilinear PDEs, that is, those wherein f is a linear

function of {∂α

x
u}|α|=k and which can therefore be written as

∑

|α|≤k

aα
(

x, {∂α

x
u}|α|≤k−1

)

∂α

x
u = bα

(

x, {∂α

x
u}|α|≤k−1

)

.

Thus, in quasilinear equations, the derivatives of the highest order appear only linearly, with

coefficients that may depend on lower-order derivatives. A PDE is called semilinear if it is

quasilinear and the coefficients of the highest order depend only on x, but not on the solution.

■ A nonlinear PDE that is not quasilinear is also called fully nonlinear.
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■ The transport equation is an example of a first-order linear PDE:

∂u

∂t
+ divx(au) = 0.

■ The Laplace/Poisson, heat, and wave equations are examples of second-order linear PDEs:

△xu = f,
∂u

∂t
−△xu = f,

∂2u

∂t2
−△xu = f.

■ The Burgers equation is an example of a first-order quasilinear PDE:

∂u

∂t
+ u

∂u

∂x
= 0.

■ An example of a first-order fully nonlinear PDE is given by
(

∂u

∂x1

)2

+

(

∂u

∂x2

)2

= f.
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■ Laplace/Poisson equation:

△xu = f.

■ Heat equation:

∂u

∂t
−△xu = f.

■ Transport equation:

∂u

∂t
+ divx(au) = 0.

■ Wave equation:

∂2u

∂t2
−△xu = f.

■ These PDEs are of fundamental importance not only because of their applications but also because

they serve as model problems in the study of PDEs.
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■ Laplace/Poisson equation:











△xφ = 0 in Ω,

Φ = Φ0 on ∂Ω,

Φ = 0 on ∂Ω.

Ω

∂Ω

∂Ω
✲✻

o

x2
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■ Heat equation:







∂u

∂t
− ∂2u

∂x2
= 0 in R× R,

u(x, 0) = u0(x) on R× {0}.
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■ Transport equation:







∂u

∂t
+

∂u

∂x
= 0 in R× R,

u(x, 0) = u0(x) on R× {0}.
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■ Wave equation:























∂2u

∂t2
− ∂2u

∂x2
= 0 in R× R,

u(x, 0) = u0(x) on R× {0},
∂u

∂t
(x, 0) = 0 on R× {0}.
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■ For a PDE of order k, we say that a solution is a classical solution if it is at least k times

continuously differentiable. For a classical solution, at least all the derivatives which appear in the

statement of the PDE exist and are continuous, although certain higher derivatives may not exist.

■ It is of interest to devise proper notions of generalized solution:

◆ By allowing for solutions that need not be continuously differentiable or continuous, a greater

range of physical phenomena can be studied. For example, the formation and propagation of

shocks can be studied by using generalized solutions of first-order nonlinear PDEs.

◆ As in the case of linear ODEs, generalized solutions allow certain linear PDEs to be viewed as

convolution filters and various interesting properties to be deduced therefrom.

◆ Variational formulation. Functional analysis. Finite element methods.

■ Much of the material in this course will be concerned with generalized solutions.
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■ A linear PDE with constant coefficients of order k is called elliptic if (i) the coefficients of the k-th

order partial derivatives do not vanish and (ii) there does not exist a “meaningful” linear coordinate

transformation that makes one or more coefficients of the k-th order partial derivatives vanish.

■ As an example, let us consider the Laplace/Poisson equation in 2D (m = 2):

∂2u

∂x2
+

∂2u

∂y2
= f.

◆ We can observe that the coefficients of ∂2
xxu and ∂2

yyu do not vanish.

◆ Let us consider a linear coordinate transformation
[

x

y

]

7→
[

x̃

ỹ

]

=

[

Ax̃x Ax̃y

Aỹx Aỹy

] [

x

y

]

.

Let us assume that this linear coordinate transformation is “meaningful” in that the matrix [A] is

nonsingular so that x̃, ỹ is a valid coordinate system in R
2. Then, by the chain rule, we have

(A2
x̃x +A2

x̃y)
∂2u

∂x̃2
+ (A2

ỹx +A2
ỹy)

∂2u

∂ỹ2
+ mixed and lower order terms = f.

We can observe that the coefficients of ∂2
x̃x̃u and ∂2

ỹỹu still do not vanish. Indeed, if Ax̃x and

Ax̃y , or, likewise, Aỹx and Aỹy , would vanish simultaneously, then the matrix of the coordinate

transformation would be singular, which would violate our assumption.

◆ As a conclusion, the Laplace/Poisson equation is an example of an elliptic PDE.
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■ For a linear PDE with constant coefficients of order k, a surface is called characteristic if the

normal to this surface is a direction in which one or more k-th order partial derivatives vanish. Thus,

an elliptic PDE is a PDE for which there exist no characteristic surfaces.

■ As an example, let us consider the heat equation in 1D (m = 1):

∂u

∂t
− ∂2u

∂x2
= f.

The heat equation is not elliptic because the coefficient of the partial derivative ∂2
ttu vanishes.

For the heat equation, the lines t = cte are characteristic lines.

x

t

characteristic line
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■ Let us consider the wave equation in 1D (m = 1):

∂2u

∂t2
− c2

∂2u

∂x2
= f.

◆ For a linear coordinate transformation
[

x

t

]

7→
[

x̃

t̃

]

=

[

Ax̃x Ax̃t

At̃x At̃t

] [

x

t

]

.

we have, by the chain rule,

(A2
x̃t − c2A2

x̃x)
∂2u

∂x̃2
+ (A2

t̃t
− c2A2

t̃x
)
∂2u

∂t̃2
+ mixed and lower order terms = f.

◆ The wave equation is not elliptic because a coordinate transformation with Ax̃t = ±cAx̃x

results in a zero coefficient of ∂2
x̃x̃u. If the coordinate transformation is orthogonal, the

condition Ax̃t = ±cAx̃x corresponds to the x̃-axis being along (x = x, t = ±c x).

The lines x = ±ct+ constant are characteristic lines.

x

t
characteristic linecharacteristic line

11
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■ It is a standard exercise in changes of bases to see that the condition Ax̃t = ±cAx̃x corresponds

to the x̃-axis being along (x = x, t = ±c x).

■ For this purpose, let us consider the orthogonal coordinate transformation
[

x̃

t̃

]

=
1√

1 + c2

[

1 ±c

∓c 1

] [

x

t

]

.

■ Let ix, it, ix̃, and it̃ be basis vectors along the x, t, x̃, and t̃ axes. Let them be related as
{

ix = Bxx̃ix̃ +Bxt̃it̃,

it = Btx̃ix̃ +Btt̃it̃.

■ Injecting this relationship in xix+tit, we obtain xix+tit=(Bxx̃x+Btx̃t)ix̃+(Bxt̃x+Btt̃t)it̃;
hence, by the orthogonality of the coor. transf., x̃ = Bxx̃x+Btx̃t and t̃ = Bxt̃x+Btt̃t.

■ By identification, we obtain Bxx̃=
1√

1+c2
, Btx̃=

±c√
1+c2

, Bxt̃=
∓c√
1+c2

, and Btt̃=
1√

1+c2
; thus















ix =
1√

1 + c2
ix̃ +

∓c√
1 + c2

it̃,

it =
±c√
1 + c2

ix̃ +
1√

1 + c2
it̃,

and therefore















ix̃ =
1√

1 + c2
ix +

±c√
1 + c2

it,
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ix +
1√
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Suggested reading material

■ P. Olver. Introduction to Partial Differential Equations. Springer, 2014. Chapter 1.

Additional references also consulted to prepare this lecture

■ L. Evans. Partial differential equations. American Mathematical Society, 2010.

■ G. Folland. Introduction to partial differential equations. Princeton University Press, 1995.

■ M. Renardy and R. Rogers. An introduction to partial differential equations. Springer, 2004.
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