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General notations

■ A lowercase letter, for example, a, is a scalar.

■ A boldface lowercase letter, for example, a = (a1, . . . , am), is a vector.

■ A boldface uppercase letter, for example, A, is a linear mapping (“application linéaire” in French).

■ An uppercase letter between square brackets, for example, [A], is a matrix.

Notations for matrices

■ We denote by Aij the (i, j)-th entry of the matrix [A].

■ tr[A] = trace of the matrix [A].

■ det[A] = determinant of the matrix [A].

■ [A]T = transpose of the matrix [A].
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“Big-oh” and “little-oh” notation

■ If f(h) and g(h) are two functions of h, then we say that

f(h) = O
(
g(h)

)
as h→ 0

if there is a constant c such that

f(h)

g(h)
< c for all h sufficiently small.

This means that f(h) decays to zero at least as fast as the function g(h) does.

■ If f(h) and g(h) are two functions of h, then we say that

f(h) = o
(
g(h)

)
as h→ 0

if

f(h)

g(h)
→ 0 as h→ 0.

This is slightly stronger and means that f(h) decays to zero faster than g(h).

■ Examples:

2h3 = O(h2) as h→ 0 because
2h3

h2
= 2h < 1 for all h <

1

2
.

2h3 = o(h2) as h→ 0 because
2h3

h2
= 2h→ 0 as h→ 0.
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Notations for derivatives

■ Let f : Ω ⊂ Rm → R : x 7→ f(x) be a function from Ω ⊂ Rm into R.

■ We denote by
∂f
∂xj

(x) the j-th partial derivative of f evaluated at x.

■ We sometimes denote
∂f
∂xj

by fxj
or ∂xj

f .

■ Similarly,
∂2f

∂xi∂xj
= fxixj

= ∂xi
∂xj

f ,
∂3f

∂xi∂xj∂xk
= fxixjxk

= ∂xi
∂xj

∂xk
f , and so forth.

■ Multi-index notation:

◆ We call a vector α = (α1, . . . , αm), where each component αj is a nonnegative integer, a

multi-index of order |α| = α1 + . . .+ αm.

◆ For a multi-index α, we define

∂α
x
f =

∂|α|f

∂xα1

1 . . . ∂xαm
m

= ∂α1

x1
. . . ∂αm

xm
f.

◆ Example:

∂
(1,2,1)
(x1,x2,x3)

f =
∂4

∂x1∂x22∂x3
f.
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Notations for function spaces

■ Let Ω be an open subset of Rn. Let ∂Ω denote the boundary of Ω.

■ C(Ω) = {f : Ω → R : f is continuous} space of continuous functions.

■ C(Ω) = {f ∈ C(Ω) : f admits a continuous extension to Ω = Ω ∪ ∂Ω}.

x

y

a bΩ

f1(x) ∈ C(Ω)

f1(x) ∈ C(Ω̄)

x

y

a bΩ

f2(x) ∈ C(Ω)

f2(x) 6∈ C(Ω̄)
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Notations for function spaces (continued)

■ Ck(Ω) = {f : Ω → R : ∂α
x
f is continuous, |α| ≤ k} space of k times continuously

differentiable functions.

■ Ck(Ω) = {f ∈ Ck(Ω) : ∂α
x
f admits a continuous extension to Ω = Ω ∪ ∂Ω, |α| ≤ k}.

■ L1(Ω) = {f : Ω → R :
∫
Ω
|f(x)|dx < +∞} space of integrable functions.

■ L2(Ω) = {f : Ω → R :
∫
Ω
|f(x)|2dx < +∞} space of square-integrable functions.

■ Although we will avoid the use of these notations for function spaces as much as possible, we list

them here because they are encountered often in the literature.
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This is not a lecture but rather a summary of key elements of vector calculus. For a more complete

treatment of vector calculus, please refer to MATH0007 Analyse Mathématique II (F. Bastin).
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Vectors

■ Let us consider the m-dimensional Euclidean vector space Rm.

■ For two vectors a and b in Rm, the (Euclidean) inner product is the scalar denoted by a · b.

■ We denote by {e1, . . . , em} an orthonormal basis for Rm, that is, a basis such that

ei · ej = δij , 1 ≤ i, j ≤ m, where δij is the Kronecker delta equal to 1 if i = j and 0 otherwise.

■ Given an orthonormal basis {e1, . . . , em} for Rm, we have that

any vector a in Rm
can be represented by a column matrix



a1
...

am




of its components aj such that a =
∑m

j=1 ajej with aj = a · ej , 1 ≤ j ≤ m.

■ For two vectors a and b, the inner product a · b is the scalar a · b =
∑m

j=1 ajbj .

■ If m = 3, for two vectors a and b, the vector product a× b is the vector

a× b = (a2b3 − a3b2)e1 + (a3b1 − a1b3)e2 + (a1b2 − a2b1)e3.
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Linear mappings

■ A linear mapping A from Rm into Rm is a function that maps any vector a in Rm onto a vector

b = A(a) in Rm in a manner that satisfies additivity (A(a1 + a2) = A(a1) +A(a2),
∀a1,a2 ∈ Rm) and homogeneity (A(αa) = αA(a), ∀α ∈ R, ∀a ∈ Rm) properties.

■ Given an orthonormal basis {e1, . . . , em} for Rm, we have that

any linear mapping A from Rm
into Rm

can be represented by a matrix



a11 . . . a1m

...
...

am1 . . . amm




of its components aij such that aij = ei ·A(ej), 1 ≤ i, j ≤ m.

■ We have for two vectors a and b and a linear mapping A with b = A(a) that

b1
...

bm


 =



a11 . . . a1m

...
...

am1 . . . amm






a1
...

am


 .
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Linear mappings (continued)

■ The sum of two linear mappings A and B is the linear mapping C = A+B with components

cij = aij + bij , 1 ≤ i, j ≤ m.

■ We denote by A : B the inner product of two linear mappings A and B such that

A : B =
∑m

i,j=1 aijbij .

■ The composition of two linear mappings A and B is the linear mapping C such that

C(a) = A(B(a)), ∀a ∈ Rm.

■ The transpose of a linear mapping A is the linear mapping AT
such

that AT(a) · b = a ·A(b), ∀a, b ∈ Rm.

■ The inverse of a linear mapping A (if it exists) is the linear mapping A−1
such that a = A−1(b),

b = A(a), ∀a ∈ Rm. Thus, the inverse satisfies A−1A = I , where I is the identity linear

mapping.

■ The trace of a linear mapping tr(A) is defined by tr(A) = A : I =
∑m

j=1 ajj . We have that

tr(AB) = A : BT = AT : B.

■ The composition, transpose, inverse, and trace can be made explicit in terms of the components of

the linear mapping.
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Differential operators

■ We consider scalar-, vector-, and linear-mapping-valued functions ϕ, a, and A from Rm into R,

Rm, and the space of linear mappings from Rm into Rm, respectively, that is,

x 7→ ϕ(x), x 7→ a(x), x 7→ A(x).

■ The gradient of ϕ with respect to x at x (if it exists) is the vector ∇xϕ(x) such that

lim
h→0

ϕ(x+ hy)− ϕ(x)

h︸ ︷︷ ︸
directional derivative of ϕ at x in direction y

= ∇xϕ(x)︸ ︷︷ ︸
gradient of ϕ w.r.t. x at x

· y︸︷︷︸
direction y

, ∀y ∈ Rm.

■ The gradient of a with respect to x at x (if it exists) is the linear mapping Dxa(x) such that

lim
h→0

a(x+ hy)− a(x)

h︸ ︷︷ ︸
directional derivative of a at x in direction y

=
(
Dxa(x)

)
︸ ︷︷ ︸

gradient of a w.r.t. x at x

(y)︸︷︷︸
direction y

, ∀y ∈ Rm.

■ The divergence of a with respect to x (if it exists) is the scalar divxa such that

divxa = tr(Dxa).

■ The divergence of A with respect to x (if it exists) is the vector divxA such that

divxA · b = divx(A
T(b)), ∀b ∈ Rm.



Vector calculus

ULg, Liège, Belgium MATH0024 – Lecture 1 (part B) 14 / 28

Differential operators (continued)

■ The Curl of a with respect to x (if it exists) is the linear mapping Curlxa such that

Curlxa = Dxa− Dxa
T.

If m = 3, we can associate to Curlxa the vector curlxa such that

curlxa× b = Curlxa(b), ∀b ∈ Rm.

■ The Laplacian of ϕ with respect to x (if it exists) is the scalar △xϕ such that

△xϕ = divx∇xϕ.

Differential operators (properties)

■ curlx∇xϕ = 0.

■ divxcurlxa = 0.

■ divx(a× b) = b · curlxa− a · curlxb.

■ ∇xdivxa = divx(Dxa
T).

■ ∇xdivxa = divxDxa+ curlxcurlxa.

■ divx(A
T(a)) = A : Dxa+ a · divxA.

■ divx(ϕa) = a ·∇xϕ+ ϕdivxa.

■ divx(ϕA) = A(∇xϕ) + ϕdivxA.
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Coordinate system

■ We consider again scalar-, vector-, and linear-mapping-valued functions ϕ, a, and A from Rm into

R, Rm, and the space of linear mappings from Rm into Rm, respectively, that is,

x 7→ ϕ(x), x 7→ a(x), x 7→ A(x).

■ A coordinate system is a one-to-one correspondence between vectors x in Rm (“position”) and

m-tuples (ξ1, . . . , ξm) in Rm (“coordinates”):

(ξ1, . . . , ξm) 7→ x(ξ1, . . . , ξm).

■ If a Cartesian coordinate system is used, its basis vectors are most often reused for the

representation of vectors (a), linear mappings (A), and differential operators. However, if a

curvilinear coordinate system is used, basis vectors are sometimes redefined locally for use for the

representation of vectors (a), linear mappings (A), and differential operators.

■ A coordinate system also allows us to define volume, surface, and line integrals.
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Volume, surface, and line integrals

■ For a volume V parameterized as



x1 = x1(ξ1, . . . , ξm)

...

xm = xm(ξ1, . . . , ξm)

, ξm ≤ ξm ≤ ξm, . . . , ξ1 ≤ ξ1 ≤ ξ1,

the volume integral of a scalar-valued function ϕ over the volume V is given by

∫

V

ϕdV =

∫ ξm

ξm

. . .

∫ ξ1

ξ1

ϕ
(
x(ξ1, . . . , ξm)

)
∣∣∣∣∣∣∣

∂x1

∂ξ1
. . . ∂x1

∂ξm
...

...
∂xm

∂ξ1
. . . ∂xm

∂ξm

∣∣∣∣∣∣∣
dξ1 . . . dξm.

■ For a surface S parameterized as



x1 = x1(ξ1, . . . , ξm−1)

...

xm = xm(ξ1, . . . , ξm−1)

, ξm−1 ≤ ξm−1 ≤ ξm−1, . . . , ξ1 ≤ ξ1 ≤ ξ1,



Vector calculus

ULg, Liège, Belgium MATH0024 – Lecture 1 (part B) 17 / 28

Volume, surface, and line integrals (continued)

■ the surface integral of a vector-valued function a over the surface S is given by

∫

S

a · dS =

∫ ξm−1

ξm−1

. . .

∫ ξ1

ξ1

∣∣∣∣∣∣∣∣

∂x1

∂ξ1
. . . ∂x1

∂ξm−1

a1
(
x(ξ1, . . . , ξm−1)

)

...
...

...
∂xm

∂ξ1
. . . ∂xm

∂ξm−1

am
(
x(ξ1, . . . , ξm−1)

)

∣∣∣∣∣∣∣∣
dξ1 . . . dξm−1.

If m = 3, then the surface integral reads, equivalently, as follows:
∫

S

a · dS =

∫ ξ2

ξ2

∫ ξ1

ξ1

a
(
x(ξ1, . . . , ξm−1)

)
·

(
∂x

∂ξ1
×
∂x

∂ξ2

)
dξ1dξ2.

■ For a curve C parameterized as



x1 = x1(ξ)

...

xm = xm(ξ)

, ξ ≤ ξ ≤ ξ,

the line integral of a vector-valued function a over the curve C is given by
∫

C

a · dℓ =

∫ ξ

ξ

m∑

j=1

aj
(
x(ξ)

)dxj
dξ

dξ =

∫ ξ

ξ

a
(
x(ξ)

)
·
dx

dξ
dξ.
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Volume, surface, and line integrals (properties)

■ Stokes’s theorem for a volume: Let Ω be a bounded open subset of Rm with m ≥ 2 with a

sufficiently regular boundary ∂Ω. Let a be a sufficiently regular function from Ω into Rm

(specifically, let a be in C(Ω,Rm) ∩ C1(Ω,Rm)). Then, we have∫

Ω

divxa dV =

∫

∂Ω

a · dS.

■ Green’s identities: Let Ω be a bounded open subset of Rm with m ≥ 2 with a sufficiently regular

boundary ∂Ω. Let ϕ and ψ be a sufficiently regular function from Ω into R (specifically, let ϕ and ψ
be in C1(Ω) ∩ C2(Ω)). Then, we have




∫

∂Ω

ψ∇xϕ · dS =

∫

Ω

(ψ△xϕ+∇xψ ·∇xϕ)dV,

∫

∂Ω

(ψ∇xϕ− ϕ∇xψ) · dS =

∫

Ω

(ψ△xϕ− ϕ△xψ)dV.
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Cartesian coordinates

x

y

z

ix
iy

iz
x

■ x = xix + yiy + ziz .

Coordinates x, y, and z.

Orthonormal basis ix, iy , and iz .

■ a = axix + ayiy + aziz .

■ ∇xϕ = ∂ϕ
∂x ix + ∂ϕ

∂y iy +
∂ϕ
∂z iz .

■ divxa = ∂ax

∂x +
∂ay

∂y + ∂az

∂z .

■ curlxa =
(

∂az

∂y −
∂ay

∂z

)
ix +

(
∂ax

∂z − ∂az

∂x

)
iy +

(
∂ay

∂x − ∂ax

∂y

)
iz .

■ △xϕ = ∂2ϕ
∂x2 + ∂2ϕ

∂y2 + ∂2ϕ
∂z2 .

■ dV = dxdydz.
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Cylindrical coordinates

x

y

z

ix
iy

iz
x

θ

iz

ir

iθ

■ x = r cos(θ)ix + r sin(θ)iy + ziz .

Coordinates r, θ, and z.

Orthonormal basis ix, iy , and iz .

■ a = arir(θ) + aθiθ(θ) + aziz .

ir(θ) = cos(θ)ix + sin(θ)iy .

iθ(θ) = − sin(θ)ix + cos(θ)iy .

■ ∇xϕ = ∂ϕ
∂r ir(θ) +

1
r

∂ϕ
∂θ iθ(θ) +

∂ϕ
∂z iz .

■ divxa = ∂ar

∂r + ar

r + 1
r

∂aθ

∂θ + ∂az

∂z .

■ curlxa =
(
1
r

∂az

∂θ − ∂aθ

∂z

)
ir(θ) +

(
∂ar

∂z − ∂az

∂r

)
iθ(θ) +

(
∂aθ

∂r + aθ

r − 1
r

∂ar

∂θ

)
iz .

■ △xϕ = ∂2ϕ
∂r2 + 1

r
∂ϕ
∂r + 1

r2
∂2ϕ
∂θ2 + ∂2ϕ

∂z2 .

■ dV = rdrdθdz.
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Spherical coordinates

x

y

z

ix
iy

iz

x

θ

χ
iθ

ir

iχ

■ x = r sin(χ) cos(θ)ix + r sin(χ) sin(θ)iy + r cos(χ)iz .

Coordinates r, θ, and χ.

Orthonormal basis ix, iy , and iz .

■ a = arir(θ, χ) + aθiθ(θ) + aχiχ(θ, χ).
ir(θ, χ) = sin(χ) cos(θ)ix + sin(χ) sin(θ)iy + cos(χ)iz .

iθ(θ) = − sin(θ)ix + cos(θ)iy .

iχ(θ, χ) = cos(χ) cos(θ)ix + cos(χ) sin(θ)iy − sin(χ)iz .

■ ∇xϕ = ∂ϕ
∂r ir(θ, χ) +

1
r sin(χ)

∂ϕ
∂θ iθ(θ) +

1
r

∂ϕ
∂χ iχ.

■ divxa = ∂ar

∂r + 2ar

r + 1
r sin(χ)

∂aθ

∂θ + 1
r

∂aχ

∂χ + cot(χ)
r aχ.

■ curlxa =
(

1
r

∂aθ

∂χ + cot(χ)
r aθ −

1
r sin(χ)

∂aχ

∂θ

)
ir(θ, χ) +

(
∂aχ

∂r +
aχ

r − 1
r

∂ar

∂χ

)
iθ(θ)

+
(

1
r sin(χ)

∂ar

∂χ − ∂aθ

∂r − aθ

r

)
iχ(θ, χ).

■ △xϕ = 1
r2

∂
∂r

(
r2 ∂ϕ

∂r

)
+ 1

r2 sin(χ)2
∂2ϕ
∂θ2 + 1

r2 sin(χ)
∂
∂χ

(
sin(χ)∂ϕ∂χ

)
.

■ dV = r2 sin(χ)drdθdχ.
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This is not a lecture but rather a summary of key elements of Fourier analysis. For a more complete

treatment of Fourier analysis, please refer to MATH0007 Analyse Mathématique II (F. Bastin) and

SYST0002 Modélisation et analyse des systèmes (R. Sepulchre).
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■ This slide recalls the Fourier series of a periodic function.

■ Let f : R → R be a nonconstant periodic function that has period a and is square-integrable

on [−a/2, a/2], that is,
∫ a/2

−a/2
|f(t)|2dt < +∞. Then, the Fourier series of f reads as follows:





f(t) =
+∞∑

k=−∞

fk exp

(
ik

2π

a
t

)
,

fk =
1

a

∫ a/2

−a/2

f(t) exp

(
−ik

2π

a
t

)
dt.

■ It has the following approximation property:

lim
n→+∞

∫ a/2

−a/2

∣∣∣∣f(t)−
n∑

k=−n

fk exp

(
ik

2π

a
t

) ∣∣∣∣
2

dt = 0.

n = 1. n = 3. n = 5.
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■ This slide recalls the Fourier transform of a function (which need not be periodic).

■ Let f : R → R be an integrable function, that is,
∫
R
|f(t)|dt < +∞. Then, the Fourier

transform (FT) f̂ of f is the bounded, continuous function f̂ from R into C such that

f̂(ω) = Ff(ω) =

∫

R

exp(−iωt)f(t)dt.

The Fourier transform of an integrable function is not necessarily integrable itself.

■ Let f : R → R be a square-integrable function , that is,
∫
R
|f(t)|2dt < +∞. Then, the Fourier

transform f̂ of f is the square-integrable function f̂ from R into C such that



f̂(ω) = Ff(ω) =

∫

R

exp(−iωt)f(t)dt,

f(t) = F−1f̂(t) =
1

2π

∫

R

exp(iωt)f̂(ω)dω.
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■ This slide recalls properties of the Fourier transform of a function (which need not be periodic).

■ The Fourier transform interchanges differentiation and multiplication by a monomial:

dkf̂/dωk = ̂(−it)kf and ̂dkf/dtk = (iω)kf̂ .

■ The Fourier transform interchanges convolution and multiplication of functions. This means that if

(f ⋆ g)(t) =

∫

R

f(t− s)g(s)ds =

∫

R

f(s)g(t− s)ds,

where ⋆ denotes the convolution operation, then

f̂ ⋆ g(ω) = f̂(ω) ĝ(ω).
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■ Lastly, we recall the application of Fourier analysis to linear ordinary differential equations (ODEs).

■ Ordinary Differential Equation (ODE):
q∑

k=0

bk
dkuf
dtk

(t) = f(t), t ∈ R, bq 6= 0, q ≥ 1.

■ Algebraic equation obtained by FT (if it exists):
q∑

k=0

bk(iω)
kûf (ω) = f̂(ω), ω ∈ R.

■ Frequency Response Function (FRF):

ûf (ω) = ĥ(ω)f̂(ω) where ĥ(ω) =
1

p(iω)
=

1∑q
k=0 bk(iω)

k
.

If 1/p has no poles on the imaginary axis, ĥ : R → C is a bounded, square-integrable function.

■ Impulse response function:

h = F−1(ĥ).

If 1/p has no poles on the imaginary axis, h : R → R is an integrable, square-integrable, and

bounded function that decays rapidly at infinity and is continuous (except perhaps at the origin).

■ Generalized solution :

uf = h ⋆ f, that is, uf (t) =

∫

R

h(s)f(t− s)ds, (using convolution that makes sense).
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