MATH0024 - Modeling with PDEs

Notations and review of background Intrinsic formulations in physics and mechanics

Maarten Arnst and Romain Boman

September 20, 2017

Notations

Notations

General notations

- A lowercase letter, for example, a, is a scalar.
- A boldface lowercase letter, for example, $\boldsymbol{a}=\left(a_{1}, \ldots, a_{m}\right)$, is a vector.
- A boldface uppercase letter, for example, \boldsymbol{A}, is a linear mapping ("application linéaire" in French).
- An uppercase letter between square brackets, for example, $[A]$, is a matrix.

Notations for matrices

- We denote by $A_{i j}$ the (i, j)-th entry of the matrix $[A]$.
- $\operatorname{tr}[A]=$ trace of the matrix $[A]$.
- $\operatorname{det}[A]=$ determinant of the matrix $[A]$.
- $[A]^{\mathrm{T}}=$ transpose of the matrix $[A]$.

Notations

"Big-oh" and "little-oh" notation

- If $f(h)$ and $g(h)$ are two functions of h, then we say that

$$
f(h)=O(g(h)) \quad \text { as } h \rightarrow 0
$$

if there is a constant c such that

$$
\frac{f(h)}{g(h)}<c \quad \text { for all } h \text { sufficiently small. }
$$

This means that $f(h)$ decays to zero at least as fast as the function $g(h)$ does.

- If $f(h)$ and $g(h)$ are two functions of h, then we say that

$$
f(h)=o(g(h)) \quad \text { as } h \rightarrow 0
$$

if

$$
\frac{f(h)}{g(h)} \rightarrow 0 \quad \text { as } h \rightarrow 0
$$

This is slightly stronger and means that $f(h)$ decays to zero faster than $g(h)$.

- Examples:

$$
\begin{array}{lll}
2 h^{3}=O\left(h^{2}\right) & \text { as } h \rightarrow 0 & \text { because } \frac{2 h^{3}}{h^{2}}=2 h<1 \text { for all } h<\frac{1}{2} . \\
2 h^{3}=o\left(h^{2}\right) & \text { as } h \rightarrow 0 & \text { because } \frac{2 h^{3}}{h^{2}}=2 h \rightarrow 0 \text { as } h \rightarrow 0 .
\end{array}
$$

Notations

Notations for derivatives

■ Let $f: \Omega \subset \mathbb{R}^{m} \rightarrow \mathbb{R}: \boldsymbol{x} \mapsto f(\boldsymbol{x})$ be a function from $\Omega \subset \mathbb{R}^{m}$ into \mathbb{R}.
■ We denote by $\frac{\partial f}{\partial x_{j}}(\boldsymbol{x})$ the j-th partial derivative of f evaluated at \boldsymbol{x}.

- We sometimes denote $\frac{\partial f}{\partial x_{j}}$ by $f_{x_{j}}$ or $\partial_{x_{j}} f$.

■ Similarly, $\frac{\partial^{2} f}{\partial x_{i} \partial x_{j}}=f_{x_{i} x_{j}}=\partial_{x_{i}} \partial_{x_{j}} f, \frac{\partial^{3} f}{\partial x_{i} \partial x_{j} \partial x_{k}}=f_{x_{i} x_{j} x_{k}}=\partial_{x_{i}} \partial_{x_{j}} \partial_{x_{k}} f$, and so forth.

- Multi-index notation:
- We call a vector $\boldsymbol{\alpha}=\left(\alpha_{1}, \ldots, \alpha_{m}\right)$, where each component α_{j} is a nonnegative integer, a multi-index of order $|\boldsymbol{\alpha}|=\alpha_{1}+\ldots+\alpha_{m}$.
- For a multi-index $\boldsymbol{\alpha}$, we define

$$
\partial_{\boldsymbol{x}}^{\boldsymbol{\alpha}} f=\frac{\partial^{|\boldsymbol{\alpha}|} f}{\partial x_{1}^{\alpha_{1}} \ldots \partial x_{m}^{\alpha_{m}}}=\partial_{x_{1}}^{\alpha_{1}} \ldots \partial_{x_{m}}^{\alpha_{m}} f
$$

- Example:

$$
\partial_{\left(x_{1}, x_{2}, x_{3}\right)}^{(1,2,1)} f=\frac{\partial^{4}}{\partial x_{1} \partial x_{2}^{2} \partial x_{3}} f .
$$

Notations for function spaces

- Let Ω be an open subset of \mathbb{R}^{n}. Let $\partial \Omega$ denote the boundary of Ω.
- $C(\Omega)=\{f: \Omega \rightarrow \mathbb{R}: f$ is continuous $\}$ space of continuous functions.

■ $C(\bar{\Omega})=\{f \in C(\Omega): f$ admits a continuous extension to $\bar{\Omega}=\Omega \cup \partial \Omega\}$.

Notations

Notations for function spaces (continued)

■ $C^{k}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R}: \partial_{\boldsymbol{x}}^{\boldsymbol{\alpha}} f\right.$ is continuous, $\left.|\boldsymbol{\alpha}| \leq k\right\}$ space of k times continuously differentiable functions.

■ $C^{k}(\bar{\Omega})=\left\{f \in C^{k}(\Omega): \partial_{\boldsymbol{x}}^{\boldsymbol{\alpha}} f\right.$ admits a continuous extension to $\left.\bar{\Omega}=\Omega \cup \partial \Omega,|\boldsymbol{\alpha}| \leq k\right\}$.

■ $L^{1}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R}: \int_{\Omega}|f(\boldsymbol{x})| d \boldsymbol{x}<+\infty\right\}$ space of integrable functions.

■ $L^{2}(\Omega)=\left\{f: \Omega \rightarrow \mathbb{R}: \int_{\Omega}|f(\boldsymbol{x})|^{2} d \boldsymbol{x}<+\infty\right\}$ space of square-integrable functions.

- Although we will avoid the use of these notations for function spaces as much as possible, we list them here because they are encountered often in the literature.

Review of vector calculus

Vector calculus

This is not a lecture but rather a summary of key elements of vector calculus. For a more complete treatment of vector calculus, please refer to MATH0007 Analyse Mathématique II (F. Bastin).

Vector calculus

Vectors

■ Let us consider the m-dimensional Euclidean vector space \mathbb{R}^{m}.
■ For two vectors \boldsymbol{a} and \boldsymbol{b} in \mathbb{R}^{m}, the (Euclidean) inner product is the scalar denoted by $\boldsymbol{a} \cdot \boldsymbol{b}$.
■ We denote by $\left\{\boldsymbol{e}_{1}, \ldots, \boldsymbol{e}_{m}\right\}$ an orthonormal basis for \mathbb{R}^{m}, that is, a basis such that $\boldsymbol{e}_{i} \cdot \boldsymbol{e}_{j}=\delta_{i j}, 1 \leq i, j \leq m$, where $\delta_{i j}$ is the Kronecker delta equal to 1 if $i=j$ and 0 otherwise.

■ Given an orthonormal basis $\left\{\boldsymbol{e}_{1}, \ldots, e_{m}\right\}$ for \mathbb{R}^{m}, we have that

$$
\text { any vector } \boldsymbol{a} \text { in } \mathbb{R}^{m} \text { can be represented by a column matrix }\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{m}
\end{array}\right]
$$

of its components a_{j} such that $\boldsymbol{a}=\sum_{j=1}^{m} a_{j} \boldsymbol{e}_{j}$ with $a_{j}=\boldsymbol{a} \cdot \boldsymbol{e}_{j}, 1 \leq j \leq m$.

- For two vectors \boldsymbol{a} and \boldsymbol{b}, the inner product $\boldsymbol{a} \cdot \boldsymbol{b}$ is the scalar $\boldsymbol{a} \cdot \boldsymbol{b}=\sum_{j=1}^{m} a_{j} b_{j}$.
- If $m=3$, for two vectors \boldsymbol{a} and \boldsymbol{b}, the vector product $\boldsymbol{a} \times \boldsymbol{b}$ is the vector $\boldsymbol{a} \times \boldsymbol{b}=\left(a_{2} b_{3}-a_{3} b_{2}\right) \boldsymbol{e}_{1}+\left(a_{3} b_{1}-a_{1} b_{3}\right) \boldsymbol{e}_{2}+\left(a_{1} b_{2}-a_{2} b_{1}\right) \boldsymbol{e}_{3}$.

Vector calculus

Linear mappings

■ A linear mapping \boldsymbol{A} from \mathbb{R}^{m} into \mathbb{R}^{m} is a function that maps any vector \boldsymbol{a} in \mathbb{R}^{m} onto a vector $\boldsymbol{b}=\boldsymbol{A}(\boldsymbol{a})$ in \mathbb{R}^{m} in a manner that satisfies additivity $\left(\boldsymbol{A}\left(\boldsymbol{a}_{1}+\boldsymbol{a}_{2}\right)=\boldsymbol{A}\left(\boldsymbol{a}_{1}\right)+\boldsymbol{A}\left(\boldsymbol{a}_{2}\right)\right.$, $\left.\forall \boldsymbol{a}_{1}, \boldsymbol{a}_{2} \in \mathbb{R}^{m}\right)$ and homogeneity $\left(\boldsymbol{A}(\alpha \boldsymbol{a})=\alpha \boldsymbol{A}(\boldsymbol{a}), \forall \alpha \in \mathbb{R}, \forall \boldsymbol{a} \in \mathbb{R}^{m}\right)$ properties.

■ Given an orthonormal basis $\left\{e_{1}, \ldots, e_{m}\right\}$ for \mathbb{R}^{m}, we have that
any linear mapping \boldsymbol{A} from \mathbb{R}^{m} into \mathbb{R}^{m} can be represented by a matrix $\left[\begin{array}{ccc}a_{11} & \ldots & a_{1 m} \\ \vdots & & \vdots \\ a_{m 1} & \ldots & a_{m m}\end{array}\right]$ of its components $a_{i j}$ such that $a_{i j}=\boldsymbol{e}_{i} \cdot \boldsymbol{A}\left(\boldsymbol{e}_{j}\right), 1 \leq i, j \leq m$.

- We have for two vectors \boldsymbol{a} and \boldsymbol{b} and a linear mapping \boldsymbol{A} with $\boldsymbol{b}=\boldsymbol{A}(\boldsymbol{a})$ that

$$
\left[\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 m} \\
\vdots & & \vdots \\
a_{m 1} & \ldots & a_{m m}
\end{array}\right]\left[\begin{array}{c}
a_{1} \\
\vdots \\
a_{m}
\end{array}\right]
$$

Vector calculus

Linear mappings (continued)

- The sum of two linear mappings \boldsymbol{A} and \boldsymbol{B} is the linear mapping $\boldsymbol{C}=\boldsymbol{A}+\boldsymbol{B}$ with components $c_{i j}=a_{i j}+b_{i j}, 1 \leq i, j \leq m$.

■ We denote by $\boldsymbol{A}: \boldsymbol{B}$ the inner product of two linear mappings \boldsymbol{A} and \boldsymbol{B} such that $\boldsymbol{A}: \boldsymbol{B}=\sum_{i, j=1}^{m} a_{i j} b_{i j}$.

- The composition of two linear mappings \boldsymbol{A} and \boldsymbol{B} is the linear mapping \boldsymbol{C} such that $\boldsymbol{C}(\boldsymbol{a})=\boldsymbol{A}(\boldsymbol{B}(\boldsymbol{a})), \forall \boldsymbol{a} \in \mathbb{R}^{m}$.

■ The transpose of a linear mapping \boldsymbol{A} is the linear mapping $\boldsymbol{A}^{\mathrm{T}}$ such that $\boldsymbol{A}^{\mathrm{T}}(\boldsymbol{a}) \cdot \boldsymbol{b}=\boldsymbol{a} \cdot \boldsymbol{A}(\boldsymbol{b}), \forall \boldsymbol{a}, \boldsymbol{b} \in \mathbb{R}^{m}$.

- The inverse of a linear mapping \boldsymbol{A} (if it exists) is the linear mapping \boldsymbol{A}^{-1} such that $\boldsymbol{a}=\boldsymbol{A}^{-1}(\boldsymbol{b})$, $\boldsymbol{b}=\boldsymbol{A}(\boldsymbol{a}), \forall \boldsymbol{a} \in \mathbb{R}^{m}$. Thus, the inverse satisfies $\boldsymbol{A}^{-1} \boldsymbol{A}=\boldsymbol{I}$, where \boldsymbol{I} is the identity linear mapping.

■ The trace of a linear mapping $\operatorname{tr}(\boldsymbol{A})$ is defined by $\operatorname{tr}(\boldsymbol{A})=\boldsymbol{A}: \boldsymbol{I}=\sum_{j=1}^{m} a_{j j}$. We have that $\operatorname{tr}(\boldsymbol{A B})=\boldsymbol{A}: \boldsymbol{B}^{\mathrm{T}}=\boldsymbol{A}^{\mathrm{T}}: \boldsymbol{B}$.

■ The composition, transpose, inverse, and trace can be made explicit in terms of the components of the linear mapping.

Vector calculus

Differential operators

■ We consider scalar-, vector-, and linear-mapping-valued functions φ, \boldsymbol{a}, and \boldsymbol{A} from \mathbb{R}^{m} into \mathbb{R}, \mathbb{R}^{m}, and the space of linear mappings from \mathbb{R}^{m} into \mathbb{R}^{m}, respectively, that is,

$$
\boldsymbol{x} \mapsto \varphi(\boldsymbol{x}), \quad \boldsymbol{x} \mapsto \boldsymbol{a}(\boldsymbol{x}), \quad \boldsymbol{x} \mapsto \boldsymbol{A}(\boldsymbol{x})
$$

- The gradient of φ with respect to \boldsymbol{x} at \boldsymbol{x} (if it exists) is the vector $\boldsymbol{\nabla}_{\boldsymbol{x}} \varphi(\boldsymbol{x})$ such that

$$
\begin{aligned}
& \underbrace{\lim _{h \rightarrow 0} \frac{\varphi(\boldsymbol{x}+h \boldsymbol{y})-\varphi(\boldsymbol{x})}{h}}=\underbrace{\boldsymbol{\nabla}_{\boldsymbol{x} \varphi} \varphi(\boldsymbol{x})} \cdot \underbrace{\boldsymbol{y}}, \quad \forall \boldsymbol{y} \in \mathbb{R}^{m} . \\
& \text { directional derivative of } \varphi \text { at } \boldsymbol{x} \text { in direction } \boldsymbol{y} \quad \text { gradient of } \varphi \text { w.r.t. } \boldsymbol{x} \text { at } \boldsymbol{x} \text { direction } \boldsymbol{y}
\end{aligned}
$$

- The gradient of \boldsymbol{a} with respect to \boldsymbol{x} at \boldsymbol{x} (if it exists) is the linear mapping $\mathrm{D}_{\boldsymbol{x}} \boldsymbol{a}(\boldsymbol{x})$ such that

$$
\begin{aligned}
& \underbrace{\lim _{h \rightarrow 0} \frac{\boldsymbol{a}(\boldsymbol{x}+h \boldsymbol{y})-\boldsymbol{a}(\boldsymbol{x})}{h}}=\underbrace{\left(\mathbf{D}_{\boldsymbol{x}} \boldsymbol{a}(\boldsymbol{x})\right)} \underbrace{(\boldsymbol{y})}, \quad \forall \boldsymbol{y} \in \mathbb{R}^{m} . \\
& \text { directional derivative of } \boldsymbol{a} \text { at } \boldsymbol{x} \text { in direction } \boldsymbol{y} \quad \text { gradient of } \boldsymbol{a} \text { w.r.t. } \boldsymbol{x} \text { at } \boldsymbol{x} \text { direction } \boldsymbol{y}
\end{aligned}
$$

- The divergence of \boldsymbol{a} with respect to \boldsymbol{x} (if it exists) is the scalar $\operatorname{div}_{\boldsymbol{x}} \boldsymbol{a}$ such that

$$
\operatorname{div}_{\boldsymbol{x}} \boldsymbol{a}=\operatorname{tr}\left(\mathbf{D}_{x} \boldsymbol{a}\right)
$$

- The divergence of \boldsymbol{A} with respect to \boldsymbol{x} (if it exists) is the vector $\operatorname{div}_{\boldsymbol{x}} \boldsymbol{A}$ such that

$$
\operatorname{div}_{\boldsymbol{x}} \boldsymbol{A} \cdot \boldsymbol{b}=\operatorname{div}_{\boldsymbol{x}}\left(\boldsymbol{A}^{\mathrm{T}}(\boldsymbol{b})\right), \quad \forall \boldsymbol{b} \in \mathbb{R}^{m}
$$

Vector calculus

Differential operators (continued)

■ The Curl of \boldsymbol{a} with respect to \boldsymbol{x} (if it exists) is the linear mapping $\mathrm{Curl}_{\boldsymbol{x}} \boldsymbol{a}$ such that

$$
\operatorname{Curl}_{x} a=\mathbf{D}_{x} a-\mathbf{D}_{x} a^{\mathrm{T}} .
$$

If $m=3$, we can associate to $\operatorname{Curl}_{x} \boldsymbol{a}$ the vector $\operatorname{curl}_{x} \boldsymbol{a}$ such that

$$
\operatorname{curl}_{x} \boldsymbol{a} \times \boldsymbol{b}=\operatorname{Curl}_{x} \boldsymbol{a}(\boldsymbol{b}), \quad \forall \boldsymbol{b} \in \mathbb{R}^{m} .
$$

- The Laplacian of φ with respect to \boldsymbol{x} (if it exists) is the scalar $\triangle_{\boldsymbol{x}} \varphi$ such that

$$
\triangle_{x} \varphi=\operatorname{div}_{\boldsymbol{x}} \nabla_{\boldsymbol{x}} \varphi
$$

Differential operators (properties)

■ $\operatorname{curl}_{x} \nabla_{x} \varphi=0$.
■ $\operatorname{div}_{x} \operatorname{curl}_{x} \boldsymbol{a}=0$.
■ $\operatorname{div}_{\boldsymbol{x}}(\boldsymbol{a} \times \boldsymbol{b})=\boldsymbol{b} \cdot \operatorname{curl}_{x} \boldsymbol{a}-\boldsymbol{a} \cdot \operatorname{curl}_{\boldsymbol{x}} \boldsymbol{b}$.

- $\nabla_{x} \operatorname{div}_{x} a=\operatorname{div}_{x}\left(\mathrm{D}_{x} a^{\mathrm{T}}\right)$.
- $\nabla_{x} \operatorname{div}_{x} a=\operatorname{div}_{x} \mathrm{D}_{x} a+\operatorname{curl}_{x} \operatorname{curl}_{x} a$.

■ $\operatorname{div}_{\boldsymbol{x}}\left(\boldsymbol{A}^{\mathrm{T}}(\boldsymbol{a})\right)=\boldsymbol{A}: \mathrm{D}_{\boldsymbol{x}} \boldsymbol{a}+\boldsymbol{a} \cdot \operatorname{div}_{\boldsymbol{x}} \boldsymbol{A}$.
■ $\operatorname{div}_{\boldsymbol{x}}(\varphi \boldsymbol{a})=\boldsymbol{a} \cdot \boldsymbol{\nabla}_{\boldsymbol{x}} \varphi+\varphi \operatorname{div}_{\boldsymbol{x}} \boldsymbol{a}$.
■ $\operatorname{div}_{\boldsymbol{x}}(\varphi \boldsymbol{A})=\boldsymbol{A}\left(\boldsymbol{\nabla}_{\boldsymbol{x}} \varphi\right)+\varphi \operatorname{div}_{\boldsymbol{x}} \boldsymbol{A}$.

Vector calculus

Coordinate system

■ We consider again scalar-, vector-, and linear-mapping-valued functions φ, \boldsymbol{a}, and \boldsymbol{A} from \mathbb{R}^{m} into $\mathbb{R}, \mathbb{R}^{m}$, and the space of linear mappings from \mathbb{R}^{m} into \mathbb{R}^{m}, respectively, that is,

$$
\boldsymbol{x} \mapsto \varphi(\boldsymbol{x}), \quad \boldsymbol{x} \mapsto \boldsymbol{a}(\boldsymbol{x}), \quad \boldsymbol{x} \mapsto \boldsymbol{A}(\boldsymbol{x}) .
$$

■ A coordinate system is a one-to-one correspondence between vectors \boldsymbol{x} in \mathbb{R}^{m} ("position") and m-tuples (ξ_{1}, \ldots, ξ_{m}) in \mathbb{R}^{m} ("coordinates"):

$$
\left(\xi_{1}, \ldots, \xi_{m}\right) \mapsto \boldsymbol{x}\left(\xi_{1}, \ldots, \xi_{m}\right)
$$

- If a Cartesian coordinate system is used, its basis vectors are most often reused for the representation of vectors (\boldsymbol{a}), linear mappings (\boldsymbol{A}), and differential operators. However, if a curvilinear coordinate system is used, basis vectors are sometimes redefined locally for use for the representation of vectors (\boldsymbol{a}), linear mappings (\boldsymbol{A}), and differential operators.
- A coordinate system also allows us to define volume, surface, and line integrals.

Vector calculus

Volume, surface, and line integrals

- For a volume V parameterized as

$$
\begin{cases}x_{1}=x_{1}\left(\xi_{1}, \ldots, \xi_{m}\right) \\ \vdots & , \quad \underline{\xi}_{m} \leq \xi_{m} \leq \bar{\xi}_{m}, \ldots, \underline{\xi}_{1} \leq \xi_{1} \leq \bar{\xi}_{1}\end{cases}
$$

the volume integral of a scalar-valued function φ over the volume V is given by

$$
\int_{V} \varphi d V=\int_{\underline{\xi}_{m}}^{\bar{\xi}_{m}} \cdots \int_{\underline{\xi}_{1}}^{\bar{\xi}_{1}} \varphi\left(\boldsymbol{x}\left(\xi_{1}, \ldots, \xi_{m}\right)\right)\left|\begin{array}{ccc}
\frac{\partial x_{1}}{\partial \xi_{1}} & \ldots & \frac{\partial x_{1}}{\partial \xi_{m}} \\
\vdots & & \vdots \\
\frac{\partial x_{m}}{\partial \xi_{1}} & \ldots & \frac{\partial x_{m}}{\partial \xi_{m}}
\end{array}\right| d \xi_{1} \ldots d \xi_{m}
$$

■ For a surface S parameterized as

$$
\left\{\begin{array}{l}
x_{1}=x_{1}\left(\xi_{1}, \ldots, \xi_{m-1}\right) \\
\vdots \\
x_{m}=x_{m}\left(\xi_{1}, \ldots, \xi_{m-1}\right)
\end{array}, \quad, \quad \underline{\xi}_{m-1} \leq \xi_{m-1} \leq \bar{\xi}_{m-1}, \ldots, \underline{\xi}_{1} \leq \xi_{1} \leq \bar{\xi}_{1}\right.
$$

Vector calculus

Volume, surface, and line integrals (continued)

■ the surface integral of a vector-valued function \boldsymbol{a} over the surface S is given by

$$
\int_{S} \boldsymbol{a} \cdot d \boldsymbol{S}=\int_{\underline{\xi}_{m-1}}^{\bar{\xi}_{m-1}} \cdots \int_{\underline{\xi}_{1}}^{\bar{\xi}_{1}}\left|\begin{array}{cccc}
\frac{\partial x_{1}}{\partial \xi_{1}} & \cdots & \frac{\partial x_{1}}{\partial \xi_{m-1}} & a_{1}\left(\boldsymbol{x}\left(\xi_{1}, \ldots, \xi_{m-1}\right)\right) \\
\vdots & & \vdots & \vdots \\
\frac{\partial x_{m}}{\partial \xi_{1}} & \cdots & \frac{\partial x_{m}}{\partial \xi_{m-1}} & a_{m}\left(\boldsymbol{x}\left(\xi_{1}, \ldots, \xi_{m-1}\right)\right)
\end{array}\right| d \xi_{1} \ldots d \xi_{m-1} .
$$

If $m=3$, then the surface integral reads, equivalently, as follows:

$$
\int_{S} \boldsymbol{a} \cdot d \boldsymbol{S}=\int_{\underline{\xi}_{2}}^{\bar{\xi}_{2}} \int_{\underline{\xi}_{1}}^{\bar{\xi}_{1}} \boldsymbol{a}\left(\boldsymbol{x}\left(\xi_{1}, \ldots, \xi_{m-1}\right)\right) \cdot\left(\frac{\partial \boldsymbol{x}}{\partial \xi_{1}} \times \frac{\partial \boldsymbol{x}}{\partial \xi_{2}}\right) d \xi_{1} d \xi_{2} .
$$

- For a curve C parameterized as

$$
\left\{\begin{array}{l}
x_{1}=x_{1}(\xi) \\
\vdots \\
x_{m}=x_{m}(\xi)
\end{array}, \quad \underline{\xi} \leq \xi \leq \bar{\xi},\right.
$$

the line integral of a vector-valued function \boldsymbol{a} over the curve C is given by

$$
\int_{C} \boldsymbol{a} \cdot d \boldsymbol{\ell}=\int_{\underline{\xi}}^{\bar{\xi}} \sum_{j=1}^{m} a_{j}(\boldsymbol{x}(\xi)) \frac{d x_{j}}{d \xi} d \xi=\int_{\underline{\xi}}^{\bar{\xi}} \boldsymbol{a}(\boldsymbol{x}(\xi)) \cdot \frac{d \boldsymbol{x}}{d \xi} d \xi .
$$

Vector calculus

Volume, surface, and line integrals (properties)

■ Stokes's theorem for a volume: Let Ω be a bounded open subset of \mathbb{R}^{m} with $m \geq 2$ with a sufficiently regular boundary $\partial \Omega$. Let \boldsymbol{a} be a sufficiently regular function from Ω into \mathbb{R}^{m} (specifically, let \boldsymbol{a} be in $C\left(\bar{\Omega}, \mathbb{R}^{m}\right) \cap C^{1}\left(\Omega, \mathbb{R}^{m}\right)$). Then, we have

$$
\int_{\Omega} \operatorname{div}_{\boldsymbol{x}} \boldsymbol{a} d V=\int_{\partial \Omega} \boldsymbol{a} \cdot d \boldsymbol{S} .
$$

■ Green's identities: Let Ω be a bounded open subset of \mathbb{R}^{m} with $m \geq 2$ with a sufficiently regular boundary $\partial \Omega$. Let φ and ψ be a sufficiently regular function from Ω into \mathbb{R} (specifically, let φ and ψ be in $C^{1}(\bar{\Omega}) \cap C^{2}(\Omega)$). Then, we have

$$
\left\{\begin{array}{l}
\int_{\partial \Omega} \psi \boldsymbol{\nabla}_{\boldsymbol{x}} \varphi \cdot d \boldsymbol{S}=\int_{\Omega}\left(\psi \triangle_{\boldsymbol{x}} \varphi+\boldsymbol{\nabla}_{\boldsymbol{x}} \psi \cdot \boldsymbol{\nabla}_{\boldsymbol{x}} \varphi\right) d V \\
\int_{\partial \Omega}\left(\psi \boldsymbol{\nabla}_{\boldsymbol{x}} \varphi-\varphi \boldsymbol{\nabla}_{\boldsymbol{x}} \psi\right) \cdot d \boldsymbol{S}=\int_{\Omega}\left(\psi \triangle_{\boldsymbol{x}} \varphi-\varphi \triangle_{\boldsymbol{x}} \psi\right) d V
\end{array}\right.
$$

Vector calculus

Cartesian coordinates

■ $\boldsymbol{x}=x \boldsymbol{i}_{x}+y \boldsymbol{i}_{y}+z \boldsymbol{i}_{z}$.
Coordinates x, y, and z.
Orthonormal basis $\boldsymbol{i}_{x}, \boldsymbol{i}_{y}$, and \boldsymbol{i}_{z}.

■ $\boldsymbol{a}=a_{x} \boldsymbol{i}_{x}+a_{y} \boldsymbol{i}_{y}+a_{z} \boldsymbol{i}_{z}$.

■ $\boldsymbol{\nabla}_{\boldsymbol{x}} \varphi=\frac{\partial \varphi}{\partial x} \boldsymbol{i}_{x}+\frac{\partial \varphi}{\partial y} \boldsymbol{i}_{y}+\frac{\partial \varphi}{\partial z} \boldsymbol{i}_{z}$.
■ $\operatorname{div}_{\boldsymbol{x}} \boldsymbol{a}=\frac{\partial a_{x}}{\partial x}+\frac{\partial a_{y}}{\partial y}+\frac{\partial a_{z}}{\partial z}$.

■ $\operatorname{curl}_{x} \boldsymbol{a}=\left(\frac{\partial a_{z}}{\partial y}-\frac{\partial a_{y}}{\partial z}\right) \boldsymbol{i}_{x}+\left(\frac{\partial a_{x}}{\partial z}-\frac{\partial a_{z}}{\partial x}\right) \boldsymbol{i}_{y}+\left(\frac{\partial a_{y}}{\partial x}-\frac{\partial a_{x}}{\partial y}\right) \boldsymbol{i}_{z}$.

■ $\triangle_{\boldsymbol{x}} \varphi=\frac{\partial^{2} \varphi}{\partial x^{2}}+\frac{\partial^{2} \varphi}{\partial y^{2}}+\frac{\partial^{2} \varphi}{\partial z^{2}}$.
■ $d V=d x d y d z$.

Vector calculus

Cylindrical coordinates

■ $\boldsymbol{x}=r \cos (\theta) \boldsymbol{i}_{x}+r \sin (\theta) \boldsymbol{i}_{y}+z \boldsymbol{i}_{z}$.
Coordinates r, θ, and z.
Orthonormal basis $\boldsymbol{i}_{x}, \boldsymbol{i}_{y}$, and \boldsymbol{i}_{z}.

■ $\boldsymbol{a}=a_{r} \boldsymbol{i}_{r}(\theta)+a_{\theta} \boldsymbol{i}_{\theta}(\theta)+a_{z} \boldsymbol{i}_{z}$.
$\boldsymbol{i}_{r}(\theta)=\cos (\theta) \boldsymbol{i}_{x}+\sin (\theta) \boldsymbol{i}_{y}$.
$\boldsymbol{i}_{\theta}(\theta)=-\sin (\theta) \boldsymbol{i}_{x}+\cos (\theta) \boldsymbol{i}_{y}$.

■ $\nabla_{\boldsymbol{x}} \varphi=\frac{\partial \varphi}{\partial r} \boldsymbol{i}_{r}(\theta)+\frac{1}{r} \frac{\partial \varphi}{\partial \theta} \boldsymbol{i}_{\theta}(\theta)+\frac{\partial \varphi}{\partial z} \boldsymbol{i}_{z}$.

■ $\operatorname{div}_{\boldsymbol{x}} \boldsymbol{a}=\frac{\partial a_{r}}{\partial r}+\frac{a_{r}}{r}+\frac{1}{r} \frac{\partial a_{\theta}}{\partial \theta}+\frac{\partial a_{z}}{\partial z}$.

■ $\operatorname{curl}_{\boldsymbol{x}} \boldsymbol{a}=\left(\frac{1}{r} \frac{\partial a_{z}}{\partial \theta}-\frac{\partial a_{\theta}}{\partial z}\right) \boldsymbol{i}_{r}(\theta)+\left(\frac{\partial a_{r}}{\partial z}-\frac{\partial a_{z}}{\partial r}\right) \boldsymbol{i}_{\theta}(\theta)+\left(\frac{\partial a_{\theta}}{\partial r}+\frac{a_{\theta}}{r}-\frac{1}{r} \frac{\partial a_{r}}{\partial \theta}\right) \boldsymbol{i}_{z}$.

■ $\triangle_{\boldsymbol{x}} \varphi=\frac{\partial^{2} \varphi}{\partial r^{2}}+\frac{1}{r} \frac{\partial \varphi}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}}+\frac{\partial^{2} \varphi}{\partial z^{2}}$.

■ $d V=r d r d \theta d z$.

Vector calculus

Spherical coordinates

■ $\boldsymbol{x}=r \sin (\chi) \cos (\theta) \boldsymbol{i}_{x}+r \sin (\chi) \sin (\theta) \boldsymbol{i}_{y}+r \cos (\chi) \boldsymbol{i}_{z}$.
Coordinates r, θ, and χ.
Orthonormal basis $\boldsymbol{i}_{x}, \boldsymbol{i}_{y}$, and \boldsymbol{i}_{z}.
■ $\boldsymbol{a}=a_{r} \boldsymbol{i}_{r}(\theta, \chi)+a_{\theta} \boldsymbol{i}_{\theta}(\theta)+a_{\chi} \boldsymbol{i}_{\chi}(\theta, \chi)$.
$\boldsymbol{i}_{r}(\theta, \chi)=\sin (\chi) \cos (\theta) \boldsymbol{i}_{x}+\sin (\chi) \sin (\theta) \boldsymbol{i}_{y}+\cos (\chi) \boldsymbol{i}_{z}$.
$\boldsymbol{i}_{\theta}(\theta)=-\sin (\theta) \boldsymbol{i}_{x}+\cos (\theta) \boldsymbol{i}_{y}$.
$\boldsymbol{i}_{\chi}(\theta, \chi)=\cos (\chi) \cos (\theta) \boldsymbol{i}_{x}+\cos (\chi) \sin (\theta) \boldsymbol{i}_{y}-\sin (\chi) \boldsymbol{i}_{z}$.

- $\boldsymbol{\nabla}_{\boldsymbol{x}} \varphi=\frac{\partial \varphi}{\partial r} \boldsymbol{i}_{r}(\theta, \chi)+\frac{1}{r \sin (\chi)} \frac{\partial \varphi}{\partial \theta} \boldsymbol{i}_{\theta}(\theta)+\frac{1}{r} \frac{\partial \varphi}{\partial \chi} \boldsymbol{i}_{\chi}$.

■ $\operatorname{div}_{\boldsymbol{x}} \boldsymbol{a}=\frac{\partial a_{r}}{\partial r}+2 \frac{a_{r}}{r}+\frac{1}{r \sin (\chi)} \frac{\partial a_{\theta}}{\partial \theta}+\frac{1}{r} \frac{\partial a_{\chi}}{\partial \chi}+\frac{\cot (\chi)}{r} a_{\chi}$.
■ $\operatorname{curl}_{\boldsymbol{x}} \boldsymbol{a}=\left(\frac{1}{r} \frac{\partial a_{\theta}}{\partial \chi}+\frac{\cot (\chi)}{r} a_{\theta}-\frac{1}{r \sin (\chi)} \frac{\partial a_{\chi}}{\partial \theta}\right) \boldsymbol{i}_{r}(\theta, \chi)+\left(\frac{\partial a_{\chi}}{\partial r}+\frac{a_{\chi}}{r}-\frac{1}{r} \frac{\partial a_{r}}{\partial \chi}\right) \boldsymbol{i}_{\theta}(\theta)$
$+\left(\frac{1}{r \sin (\chi)} \frac{\partial a_{r}}{\partial \chi}-\frac{\partial a_{\theta}}{\partial r}-\frac{a_{\theta}}{r}\right) \boldsymbol{i}_{\chi}(\theta, \chi)$.
■ $\triangle_{\boldsymbol{x}} \varphi=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial \varphi}{\partial r}\right)+\frac{1}{r^{2} \sin (\chi)^{2}} \frac{\partial^{2} \varphi}{\partial \theta^{2}}+\frac{1}{r^{2} \sin (\chi)} \frac{\partial}{\partial \chi}\left(\sin (\chi) \frac{\partial \varphi}{\partial \chi}\right)$.
■ $d V=r^{2} \sin (\chi) d r d \theta d \chi$.

Review of Fourier analysis

Fourier analysis

This is not a lecture but rather a summary of key elements of Fourier analysis. For a more complete treatment of Fourier analysis, please refer to MATH0007 Analyse Mathématique II (F. Bastin) and SYST0002 Modélisation et analyse des systèmes (R. Sepulchre).

Fourier analysis

■ This slide recalls the Fourier series of a periodic function.
■ Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a nonconstant periodic function that has period a and is square-integrable on $[-a / 2, a / 2]$, that is, $\int_{-a / 2}^{a / 2}|f(t)|^{2} d t<+\infty$. Then, the Fourier series of f reads as follows:

$$
\left\{\begin{array}{l}
f(t)=\sum_{k=-\infty}^{+\infty} f_{k} \exp \left(i k \frac{2 \pi}{a} t\right), \\
f_{k}=\frac{1}{a} \int_{-a / 2}^{a / 2} f(t) \exp \left(-i k \frac{2 \pi}{a} t\right) d t
\end{array}\right.
$$

- It has the following approximation property:

$$
\lim _{n \rightarrow+\infty} \int_{-a / 2}^{a / 2}\left|f(t)-\sum_{k=-n}^{n} f_{k} \exp \left(i k \frac{2 \pi}{a} t\right)\right|^{2} d t=0
$$

$n=1$.

$n=3$.

$n=5$.

Fourier analysis

- This slide recalls the Fourier transform of a function (which need not be periodic).
- Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be an integrable function, that is, $\int_{\mathbb{R}}|f(t)| d t<+\infty$. Then, the Fourier transform (FT) \hat{f} of f is the bounded, continuous function \hat{f} from \mathbb{R} into \mathbb{C} such that

$$
\hat{f}(\omega)=\mathcal{F} f(\omega)=\int_{\mathbb{R}} \exp (-i \omega t) f(t) d t
$$

The Fourier transform of an integrable function is not necessarily integrable itself.
\square Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a square-integrable function, that is, $\int_{\mathbb{R}}|f(t)|^{2} d t<+\infty$. Then, the Fourier transform \hat{f} of f is the square-integrable function \hat{f} from \mathbb{R} into \mathbb{C} such that

$$
\left\{\begin{array}{l}
\hat{f}(\omega)=\mathcal{F} f(\omega)=\int_{\mathbb{R}} \exp (-i \omega t) f(t) d t \\
f(t)=\mathcal{F}^{-1} \hat{f}(t)=\frac{1}{2 \pi} \int_{\mathbb{R}} \exp (i \omega t) \hat{f}(\omega) d \omega
\end{array}\right.
$$

Fourier analysis

- This slide recalls properties of the Fourier transform of a function (which need not be periodic).
- The Fourier transform interchanges differentiation and multiplication by a monomial:

$$
d^{k} \hat{f} / d \omega^{k}=\widehat{(-i t)^{k}} f \quad \text { and } \quad d^{k} f / d t^{k}=(i \omega)^{k} \widehat{f}
$$

- The Fourier transform interchanges convolution and multiplication of functions. This means that if

$$
(f \star g)(t)=\int_{\mathbb{R}} f(t-s) g(s) d s=\int_{\mathbb{R}} f(s) g(t-s) d s
$$

where \star denotes the convolution operation, then

$$
\widehat{f \star g}(\omega)=\hat{f}(\omega) \hat{g}(\omega)
$$

Fourier analysis

- Lastly, we recall the application of Fourier analysis to linear ordinary differential equations (ODEs).

■ Ordinary Differential Equation (ODE):

$$
\sum_{k=0}^{q} b_{k} \frac{d^{k} u_{f}}{d t^{k}}(t)=f(t), \quad t \in \mathbb{R}, \quad b_{q} \neq 0, \quad q \geq 1
$$

■ Algebraic equation obtained by FT (if it exists):

$$
\sum_{k=0}^{q} b_{k}(i \omega)^{k} \hat{u}_{f}(\omega)=\hat{f}(\omega), \quad \omega \in \mathbb{R}
$$

■ Frequency Response Function (FRF):

$$
\hat{u}_{f}(\omega)=\hat{h}(\omega) \hat{f}(\omega) \quad \text { where } \quad \hat{h}(\omega)=\frac{1}{p(i \omega)}=\frac{1}{\sum_{k=0}^{q} b_{k}(i \omega)^{k}}
$$

If $1 / p$ has no poles on the imaginary axis, $\hat{h}: \mathbb{R} \rightarrow \mathbb{C}$ is a bounded, square-integrable function.

- Impulse response function:

$$
h=\mathcal{F}^{-1}(\hat{h}) .
$$

If $1 / p$ has no poles on the imaginary axis, $h: \mathbb{R} \rightarrow \mathbb{R}$ is an integrable, square-integrable, and bounded function that decays rapidly at infinity and is continuous (except perhaps at the origin).

- Generalized solution :

$$
u_{f}=h \star f, \quad \text { that is, } \quad u_{f}(t)=\int_{\mathbb{R}} h(s) f(t-s) d s, \quad \text { (using convolution that makes sense). }
$$

References

Suggested reading material

■ F. Bastin. MATH0007 Analyse Mathématique II. ULg. Lecture notes.
■ E. Delhez. MATH0002 Analyse Mathématique. ULg. Lecture notes.
■ E. Delhez. MATH0013 Algèbre. ULg. Lecture notes.
■ R. Sepulchre. SYST0002 Modélisation et analyse des systèmes. ULg. Lecture notes.

Additional references also consulted to prepare this review

■ D. Aubry. Mécanique des milieux continus. Ecole Centrale Paris. Lecture notes.
■ C. Gasquet and P. Witomski. Analyse de Fourier et applications. Masson, 1990.

- J. Hladik and P. Hladik. Le calcul tensoriel en physique. Dunod, 1999.

■ R. LeVeque. Finite-difference methods for ordinary and partial differential equations. SIAM, 2007.
■ A. Lichnerowicz. Elements of tensor calculus. John Wiley \& Sons, 1962.
■ C. Semay and B. Silvestre-Brac. Introduction au calcul tensoriel. Dunod, 2009.

