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Model problem

■ Let us consider the numerical approximation of the solution to the initial-boundary value problem



∂u

∂t
− ∂2u

∂x2
= 0, 0 < x < 1, 0 < t < τ,

u(0, t) = u(1, t) = 0, 0 < t < τ, (boundary conditions),

u(x, 0) = g(x), 0 < x < 1, (initial condition).

■ In the spatial domain, let grid points x0, x1, x2, . . . , xµh
be introduced as follows:

• • • • •x0 x1 x2 xµh−1 xµh

h h h

The grid spacing is denoted by h; thus, xj = jh for j = 0, . . . , µh with µh = 1/h.

■ In the time domain, let approximations be computed at successive times t0, t1, t2, . . . , tνk
. The

time step is denoted by k; thus, tn = nk for n = 0, . . . , νk with νk = τ/k.

■ System of notation: numerical solution un
j approximates exact solution u(xj , tn) at (xj , tn).
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Centered-in-space forward-in-time method

■ The centered-in-space forward-in-time method is obtained by requiring that



un+1
j − un

j

k
−

un
j−1 − 2un

j + un
j+1

h2
= 0, 1 ≤ j ≤ µh − 1, 0 ≤ n ≤ νk − 1,

un
0 = un

µh
= 0, 0 ≤ n ≤ νk − 1,

u0
j = g(xj), 1 ≤ j ≤ µh − 1.

This corresponds to replacing ∂2u
∂x2 (xj , tn) by its centered difference approximation and ∂u

∂t (xj , tn)
by its forward difference approximation in the PDE.

■ This system of fully discrete equations can be written equivalently as



un+1
j = un

j + k
un
j−1 − 2un

j + un
j+1

h2
, 0 ≤ j ≤ µh − 1, 0 ≤ n ≤ νk − 1,

un
0 = un

µh
= 0, 0 ≤ n ≤ νk − 1,

u0
j = g(xj), 1 ≤ j ≤ µh − 1.
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Centered-in-space forward-in-time method (continued)

■ The aforementioned system of fully discrete equations can be written equivalently as






un+1
1

un+1
2
...

un+1
µh−2

un+1
µh−1




︸ ︷︷ ︸
uhk(tn+1)

=




un
1

un
2
...

un
µh−2

un
µh−1




︸ ︷︷ ︸
uhk(tn)

+k
1

h2




−2 1
1 −2 1

. . .
. . .

. . .

1 −2 1
1 −2




︸ ︷︷ ︸
[A]




un
1

un
2
...

un
µh−2

un
µh−1




︸ ︷︷ ︸
uhk(tn)

, 0 ≤ n ≤ νk − 1,




u0
1

u0
2
...

u0
µh−2

u0
µh−1




︸ ︷︷ ︸
uhk(t0)

=




g(x1)
g(x2)

...

g(xµh−2)
g(xµh−1)




︸ ︷︷ ︸
g

.

■ Hence, more compactly,{
uhk(tn+1) = [I + kA]uhk(tn), 0 ≤ n ≤ νk − 1,

uhk(t0) = g.
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Centered-in-space trapezoidal-in-time method

■ The centered-in-space trapezoidal-in-time method is obtained by requiring that






















un+1

j −un
j

k
−

1

2

(

un
j−1−2un

j +un
j+1

h2
+

un+1

j−1 −2un+1

j +un+1

j+1

h2

)

=0, 1≤ j≤µh−1, 0≤n≤νk−1,

u
n
0 =u

n
µh

=0, 0≤n≤νk−1,

u
0
j =g(xj), 1≤ j≤µh−1,

that is,
[
I − k

2A
]
uhk(tn+1) =

[
I + k

2A
]
uhk(tn), 0 ≤ n ≤ νk − 1, with uhk(t0) = g.

Centered-in-space backward-in-time method

■ The centered-in-space backward-in-time method is obtained by requiring that


















un+1

j − un
j

k
−

un+1

j−1 − 2un+1

j + un+1

j+1

h2
= 0, 1 ≤ j ≤ µh − 1, 0 ≤ n ≤ νk − 1,

u
n
0 = u

n
µh

= 0, 0 ≤ n ≤ νk − 1,

u
0
j = g(xj), 1 ≤ j ≤ µh − 1,

that is, [I − kA]uhk(tn+1) = uhk(tn), 0 ≤ n ≤ νk − 1, with uhk(t0) = g.
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Stencils

■ The aforementioned finite difference methods have the following graphical representations:

• • •
•

un
j−1 un

j un
j+1

un+1
j

Centered in space

forward in time.

• • •
• • •

un
j−1 un

j un
j+1

un+1
j−1 un+1

j un+1
j+1

Centered in space

trapezoidal in time.

• • •
•

un+1
j−1 un+1

j un+1
j+1

un
j

Centered in space

backward in time.

Explicit versus implicit methods

■ Because the centered-in-space trapezoidal-in-time and backward-in-time methods give implicit

equations that must be solved for uhk(tn+1), they are implicit methods, whereas the

centered-in-space forward-in-time method is explicit.
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Notions of consistency, stability, and convergence

■ Notions of consistency, stability, and convergence are introduced to evaluate how good a finite dif-

ference method is in approximating the solution:

Local truncation error

✤

✤

✤

mm

stability

11 Global error

✤

✤

✤

Consistency Convergence

■ The important point is that for an IBVP, we cannot let the grid spacing h and the time step k go to

zero at independent rates and necessarily expect the resulting numerical solution to converge.

Thus, a key aspect of studying consistency, stability, and convergence of finite difference methods

for IBVPs is in understanding whether some proper relation must hold between h and k.

It is often useful to think of such a relation as indicating how to properly balance approximation

errors between the discretization of space and that of time. Clearly, this is of great practical

importance because of the guidance it provides for properly refining a numerical solution.

Conversely, much effort in numerical mathematics has been expended to conceive numerical

methods that allow h and k to be refined at the same rate and/or entirely avoid any restriction.
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Consistency of centered-in-space forward-in-time method

■ The local truncation error τn+1
j at (xj , tn+1) is obtained by inserting the exact solution into the

finite difference equation and determining by how much it fails to satisfy this equation.

■ For the centered-in-space forward-in-time method, τn+1
j is obtained as

τn+1
j =

u(xj , tn+1)− u(xj , tn)

k
− u(xj−1, tn)− 2u(xj , tn) + u(xj+1, tn)

h2
.

If the exact solution is sufficiently regular, we can use the “Big-oh” characterization of the remainder

in a Taylor series to obtain “Big-oh” characterizations of the finite difference approximations:

u(xj , tn+1)− u(xj , tn)

k
=

∂u

∂t
(xj , tn) +

1

2
k
∂2u

∂t2
(xj , tn) +O(k2),

u(xj−1, tn)− 2u(xj , tn) + u(xj+1, tn)

h2
=

∂2u

∂x2
(xj , tn) +

1

12
h2 ∂

4u

∂x4
(xj , tn) +O(h4).

Inserting these “Big-oh” characterizations of the finite difference approximations in the expression

for τn+1
j , we find that ∂tu(xj , tn) and ∂2

x(xj , tn) drop out because of the PDE, thus leading to

max
1≤n≤νk

|τnj | = O(h2 + k).

■ As a conclusion, the centered-in-space forward-in-time method is consistent. It is said to be of

order 2 in space and order 1 in time.
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Stability of centered-in-space forward-in-time method

■ The centered-in-space forward-in-time method is stable in that there exists for every time duration

τ , a constant c > 0 such that for all grid spacings h and time steps k that satisfy

k

h2
≤ 1

2
we have

max
1≤n≤νk

√√√√h

µh−1∑

j=1

(
u(xj , tn)− un

j

)2 ≤ c max
1≤n≤νk

√√√√h

µh−1∑

j=1

(
τnj

)2
,

with c independent of h and k.

■ Please note that whereas we used in Lecture 3 Part B the maxima max1≤j≤µh
|u(xj)− uj | and

max1≤j≤µh
|τj | to gauge the magnitude of the values u(x1)− u1, . . . , u(xµh−1)− uµh−1 and

τ1, . . . , τµh−1 relative to the grid points x1, . . . , xµh−1, we use here a 2-norm to gauge the

magnitude of the values u(x1, tn)− un
1 , . . . , u(xµh−1, tn)− un

µh−1 and τn1 , . . . , τ
n
µh−1.

In fact, finding an appropriate way of gauging the magnitude of the global error and the local

truncation error, in which some form of stability can subsequently be proven, is often a key

challenge in analyzing finite difference methods. The approach used to subsequently prove stability

will depend on the particular norm that is being considered. Here, we consider a 2-norm, and we

will see that that we can prove stability by explicitly computing the eigenvalues of [A].
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Proof of stability of centered-in-space forward-in-time method:

■ With reference to the definition of the local truncation error, the exact solution satisfies

u(tn) = [I + kA]u(tn−1) + kτhk(tn), n = 1, . . . , νk,

and the numerical solution satisfies

uhk(tn) = [I + kA]uhk(tn−1), n = 1, . . . , νk.

■ Subtracting these equations from each other, we obtain

u(tn)− uhk(tn) = [I + kA]
(
u(tn−1)− uhk(tn−1)

)
+ kτhk(tn).

and therefore

u(tn)− uhk(tn) =

n∑

m=1

[I + kA]n−mkτhk(tm).

■ Thus, to ensure that each contribution to the global error can be bounded in terms of its original size,

we must ensure that the magnitude of [I + kA]n−m remains bounded as h and k tend to zero.
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Proof of stability of centered-in-space forward-in-time method (continued):

■ Denoting the 2-norm of a vector v in Rµh−1 by ‖v‖ =
√
h
∑µh−1

j=1 v2j , we have

∥∥u(tn)− uhk(tn)
∥∥ =

∥∥∥∥
∑

1≤m≤n

[I + kA]n−mkτhk(tm)

∥∥∥∥.

■ Let ‖[I + kA]‖ be the induced matrix norm of [I + kA], that is,

‖[I + kA]‖ = max
v∈R

µh−1

v 6=0

‖[I + kA]v‖
‖v‖ ;

then, we have ∥∥u(tn)− uhk(tn)
∥∥ ≤

∑

1≤m≤n

‖[I + kA]‖n−mk‖τhk(tm)‖.

■ If ‖[I + kA]‖ ≤ 1, then we can conclude,

max
1≤n≤νk

∥∥u(tn)− uhk(tn)
∥∥ ≤ c max

1≤n≤νk

∥∥τhk(tn)
∥∥ with c = kνk = τ,

as asserted.



Consistency, stability, convergence

ULg, Liège, Belgium MATH0024 – Lecture 7 14 / 33

Proof of stability of centered-in-space forward-in-time method (continued):

■ It remains to be shown that if k
h2 ≤ 1

2 , then ‖[I + kA]‖ ≤ 1. Below, we show this property by

explicitly computing the eigenvalues of [A].

■ Because [I + kA] is symmetric, ‖[I + kA]‖ is equal to the spectral radius of [I + kA], that is,

‖[I + kA]‖ = max
1≤j≤µh−1

|1 + kλj |, [A]ϕj = λjϕj , 1 ≤ j ≤ µh − 1.

With ij the unit vector with 1 on the j-th row, the eigenvalues λj and eigenvectors ϕj read as

λj =
2

h2

(
cos(jπh)− 1

)
, ϕj · ii = sin(jπih), i = 1, . . . , µh − 1, j = 1, . . . , µh − 1.

Indeed, using the aforementioned expression for the matrix [A], we have

[A]ϕj · ii =
1

h2

(
sin(jπ(i− 1)h)− 2 sin(jπih) + sin(jπ(i+ 1)h)

)

=
1

h2

(
sin(jπih) cos(jπh)− cos(jπih) sin(jπh)− 2 sin(jπih)

+ sin(jπih) cos(jπh) + cos(jπih) sin(jπh)
)

=
2

h2

(
cos(jπh)− 1

)
sin(jπih).

Hence, − 4
h2 < λj < 0, so that, indeed, if k

h2 ≤ 1
2 , then ‖[I + kA]‖ ≤ 1, as asserted.
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Convergence of centered-in-space forward-in-time method

■ The centered-in-space forward-in-time method is convergent in that for a sequence of

progressively refined grid spacings and time steps for which the relation

k

h2
≤ 1

2
ultimately holds between each pair, we can expect the convergence

lim
h,k→0


 max

1≤n≤νk

√√√√h

µh−1∑

j=1

(
u(xj , tn)− un

j

)2

 = 0.

Proof of convergence of centered-in-space forward-in-time method:

■ It follows from the aforementioned consistency and stability properties that if k
h2 ≤ 1

2 , then we have

max
1≤n≤νk

√√√√h

µh−1∑

j=1

(
u(xj , tn)− un

j

)2
= O(h2 + k).

Thus, the method is convergent with order 2 in space and order 1 in time.
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Convergence of centered-in-space forward-in-time method (continued)

■ We found that we must require k
h2 ≤ 1

2 to ensure convergence. This is a severe restriction: the

time step k must decrease at doubly the rate of the grid spacing h as we refine the grid! This

restriction will force us to use an excessively small time step k of the order of h2 when h is small.

■ The stability restriction k
h2 ≤ 1

2 and the fact that we might want to take k = O(h2) anyway just to

get the same level of accuracy in both space an time are reasons for not wanting to use the

centered-in-space forward-in-time method in practice!

Aforementioned finite difference methods

■ Centered-in-space forward-in-time method: explicit, convergent with order 2 in space and order 1 in

time under the restriction k
h2 ≤ 1

2 imposed on the grid spacing and time step.

■ Centered-in-space trapezoidal-in-time method: implicit, unconditionally convergent with order 2 in

space and order 2 in time [Proof left as an excercise].

■ Centered-in-space backward-in-time method: implicit, unconditionally convergent with order 2 in

space and order 1 in time [Proof left as an excercise].
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Outlook to method of lines and Von Neumann stability analysis

■ We have seen that the analysis of consistency, stability, and convergence has practical relevance

because it provides guidance for choosing and refining a finite difference method. Still, carrying out

a comprehensive analysis of consistency, stability, and convergence can sometimes be hard.

■ As an alternative to such a comprehensive analysis, there exist also other approaches that can

sometimes give stability restrictions (relation that must hold between h and k, . . . ) more easily:

◆ The method of lines provides a bridge with time-marching methods for IVPs, thus allowing

stability by using theory for time-marching methods for IVPs.

◆ Von Neumann stability analysis provides a bridge between finite difference methods and

sampling theory, which allows stability to be studied by using Fourier analysis.

■ In the following, we highlight only the main ideas underlying the method of lines and Von Neumann

stability analysis. Please refer to the literature for more details about the exact relationships between

consistency, stability, and convergence, the method of lines, and Von Neumann stability analysis

(one form of stability being necessary or sufficient or both to ensure another form of stability, . . . ).
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Notion of method of lines

■ A method-of-lines discretization begins by discretizing in space alone. When a finite difference

method is used, this leads to a system of ODEs, often called system of semidiscrete equations, in

which each scalar equation is associated with the solution at some grid point. This system of ODEs

is then discretized in time by using a time-marching method.

■ For example, we may discretize the aforementioned IBVP in space by requiring that














duj

dt
(t)−

uj−1(t)− 2uj(t) + uj+1(t)

h2
= 0, 1 ≤ j ≤ µh − 1, 0 < t < τ,

u0(t) = uµh
(t) = 0, 0 < t < τ,

uj(0) = g(xj), 1 ≤ j ≤ µh − 1.

This system of semidiscrete equations can be written more compactly as






duh

dt
(t) = [A]uh(t), 0 < t < τ,

u
h(0) = g.

Using the forward Euler time-marching method, we obtain the system of fully discrete equations
{

u
hk(tn+1) = [I + kA]uhk(tn), 0 ≤ n ≤ νk − 1,

u
hk(t0) = g,

that is, we recover the centered-in-space forward-in-time method.
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Separation of variables

■ Eigenproblem: We begin by solving the following eigenproblem

[A]ϕj = λjϕj , 1 ≤ j ≤ µh − 1.

Because [A] is a real, symmetric, square (µh − 1)-dimensional matrix, the eigenvalues λ1, . . .,
λµh−1 are real and there exists an orthonormal basis consisting of eigenvectors ϕ1, . . ., ϕµh−1.

■ Function series: Given the eigenvectors ϕ1, . . . ,ϕµh−1, we seek a solution of the following form:

uh(t) =

µh−1∑

j=1

bj(t)ϕj .

■ System of uncoupled equations (“diagonalization”): Inserting this into the IVP, we obtain




dbj
dt

(t) = λjbj(t) for 0 < t < τ

bj(0) = gj = ϕj · g at t = 0
, where 1 ≤ j ≤ µh − 1.
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Link with absolute stability of time-marching methods

■ We have seen that the centered-in-space forward-in-time method corresponds to a method-of-lines

discretization that involves the application of the centered finite difference method for the

discretization of space followed by the application of the forward Euler method.

Now, with reference to the aforementioned system of uncoupled equations, we must require the

time step k to satisfy |1 + kλj | < 1 for 1 ≤ j ≤ µh − 1 in order for this forward Euler

time-marching method to be absolutely stable. For details, please refer to Lecture 3 Part B.

Because the eigenvalues are given by λj =
2
h2 (cos(jπh)− 1), hence, − 4

h2 < λj < 0, we

conclude that if k
h2 ≤ 1

2 , then the forward Euler time-marching method is absolutely stable.

We can observe that the restriction k
h2 ≤ 1

2 under which we were able previously to prove stability

of the centered-in-space forward-in-time method coincides with that under which the forward Euler

method in the method-of-lines discretization is absolutely stable.

■ The previous observation suggests that it is sometimes possible to bridge finite difference methods

for IBVPs with time-marching methods for IVPs and find stability restrictions for the former (relation

that must hold between h and k, . . . ) by using theory for the latter.
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This is not a lecture but rather a summary of key elements of sampling theory. For a more complete

treatment of sampling theory, please refer to MATH0007 Analyse Mathématique II (F. Bastin) and

SYST0002 Modélisation et analyse des systèmes (R. Sepulchre).



Review of sampling theory

ULg, Liège, Belgium MATH0024 – Lecture 7 22 / 33

■ For any y in R, let δ(· − y) be the Dirac impulse centered at y, which has the property that for any

smooth function u from R into R, we have

δ(· − y) such that

∫

R

u(x)δ(x− y)dx = u(y).

x

δ

■ For any h > 0, let ∆h be the Dirac comb with period h defined by

∆h =
+∞∑

j=−∞

δ(· − jh).

x

∆
h

■ Let u be a smooth function from R into R. The product of u and the Dirac comb ∆h provides a

representation of the sampling of u with period h, that is,

u∆h =
+∞∑

j=−∞

u(jh)δ(· − jh).

x

u
∆

h

■ Let u have a closed and bounded support. The convolution of u and the Dirac comb ∆h leads to

the periodic repetition of u with period h, that is,

(u ⋆∆h)(x) =
+∞∑

j=−∞

u(x− jh).

x

u
⋆

∆
h

■ The Fourier transform of the Dirac impulse and Dirac comb are as follows:

δ̂(· − jh)(ξ) = exp(−iξjh) and ∆̂h(ξ) =
2π

h
∆ 2π

h
(ξ).
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x

u

ξ

û

x

u
∆

h

ξ

û
∆

h

Sampling with spurious “aliasing” at a rate lower than the Nyquist rate: 1
h < ξL

π .

x

u
∆

h

ξ

û
∆

h

“Meaningful” sampling at a rate higher than the Nyquist rate: 1
h ≥ ξL

π .

−ξL ξL
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Poisson formula

■ Let u be a smooth function from R into R that is band-limited in that its Fourier transform, û(ξ) =∫
R
u(x) exp(−iξx)dx, has a closed and bounded support [−ξL, ξL]. Then, if we sample u at a

rate higher than the Nyquist rate, that is, 1
h ≥ ξL

π , then we have

û(ξ) = h

+∞∑

j=−∞

u(jh) exp(−iξjh), ξ ∈ [−ξL, ξL]

u(jh) =
1

2π

∫ π/h

−π/h

û(ξ) exp(iξjh)dξ, −j ∈ Z

(Poisson formula).

■ The Poisson formula can be proven by making rigorous (convergence,. . . ) the following scheme:

(
û ⋆∆ 2π

h

)
=

+∞∑

j=−∞

û
(
ξ − j

2π

h

)
= h

+∞∑

j=−∞

u(jh) exp(−iξjh),

↓F−1 ↑F

F−1
(
û ⋆∆ 2π

uh

)
= uF−1

(
∆ 2π

h

)
= uh∆h = h

+∞∑

j=−∞

u(jh)δ(· − jh)



Review of sampling theory

ULg, Liège, Belgium MATH0024 – Lecture 7 25 / 33

Shannon theorem and Parseval equality

■ Let u be a smooth function from R into R that is square-integrable and band-limited in that its

Fourier transform, û(ξ) =
∫
R
u(x) exp(−iξx)dx, has a closed and bounded support [−ξL, ξL].

Then, if we sample u at the Nyquist rate, that is, 1
h = ξL

π , then, we have

u(x) =
+∞∑

j=−∞

u(jh)
sin

(
ξL(x− jh)

)

ξL(x− jh)
(Shannon),

where convergence is in the sense of the norm of the square-integrable functions, and

‖u‖2 =
1

2π

∫ π/h

−π/h

|û(ξ)|2dξ = h

+∞∑

j=−∞

|u(jh)|2 (Parseval equality).

■ This can be proven by writing the Poisson formula and then making rigorous the following scheme:

1[−ξL,ξL](ξ)û(ξ) =
√
h

+∞∑

j=−∞

u(jh)
√
h 1[−ξL,ξL](ξ) exp(−iξjh),

↓F−1 ↓F−1

u(x) =
√
h

+∞∑

j=−∞

u(jh)
sin

(
ξL(x− jh)

)
√
πξLx

The Parseval equality follows by showing that the functions {sin(ξL(x− jh))/(
√
πξLx)}+∞

j=−∞

form an orthonormal basis for L2(R).
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Model problem

■ Von Neumann stability analysis is typically applied to problems defined on all of space, as required

for Fourier analysis. Hence, let us consider the initial value problem



∂u

∂t
− ∂2u

∂x2
= 0, −∞ < x < +∞, 0 < t < +∞,

u(x, 0) = g(x), −∞ < x < +∞, (initial condition).

■ In the spatial domain, let grid points be introduced as follows:

• • • • •x−2 x−1 x0 x1 x2

h h h h

The grid spacing is denoted by h; thus, xj = jh for j in Z.

■ In the time domain, let approximations be computed at successive times times t0, t1, t2, . . .. The

time step is denoted by k; thus, tn = nk for 0 ≤ n < +∞.

■ System of notation: numerical solution un
j approximates exact solution u(xj , tn) at (xj , tn).
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Notion of Von Neumann stability analysis

■ Provided that the values {un
j }+∞

j=−∞ can be considered to be a “meaningful” sampling of a function

un (specifically, provided that they can be considered as the sampling of a smooth band-limited

function at a rate higher than the Nyquist rate), we can use the Poisson formula to obtain

un
j =

1

2π

∫ π/h

−π/h

ûn(ξ) exp(iξjh)dξ, j ∈ Z,

that is, we obtain a representation of the numerical solution as a linear combination of Fourier

components exp(iξjh) (which capture spatial dependence through j) with coefficients ûn(ξ)
(which capture temporal dependence through n) with ξ in the range [−π

h ,
π
h ].

■ The Von Neumann stability condition is obtained by requiring that there may be no divergent

Fourier components, that is, by requiring that the amplitudes of the coefficients may not grow

indefinitely as the time step tends to infinity. Specifically, upon defining the amplification factor

γ(ξ) =
ûn+1(ξ)

ûn(ξ)
, −π

h
≤ ξ ≤ π

h
,

the Von Neumann stability condition is obtained by requiring that

|γ(ξ)| ≤ 1, −π

h
≤ ξ ≤ π

h
.
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Von Neumann stability analysis of centered-in-space forward-in-time method

■ For the centered-in-space forward-in-time method, we have

un+1
j =

1

2π

∫ π/h

−π/h

ûn(ξ) exp(iξjh)

(
1 +

k

h2

(
exp(−iξh)− 2 + exp (iξh)

))

︸ ︷︷ ︸
=γ(ξ)

dξ, j ∈ Z,

■ For this method, the amplification factor is as follows:

γ(ξ) = 1 + 2
k

h2

(
cos(ξh)− 1

)
.

Hence, we find that if k
h2 ≤ 1

2 , then the Von Neumann stability condition is fulfilled.

■ We can observe that the restriction k
h2 ≤ 1

2 under which we were able previously to prove stability

of the centered-in-space forward-in-time method coincides with that under which the Von Neumann

stability condition is fulfilled. This can be explained as follows. By the Parseval equality (if it applies),

we have ‖un+1‖2 = 1
2π

∫ π/h

−π/h
|ûn(ξ)|2|γ(ξ)|2dξ. Hence, if |γ(ξ)| ≤ 1, then ‖un+1‖ ≤ ‖un‖,

a property that resembles the requirement for the spectral radius to be smaller than or equal to one

in the previous analysis of the stability of the centered-in-space forward-in-time method.

■ The previous observation suggests that it is sometimes possible to bridge finite difference methods

with sampling theory and find stability restrictions for the former (relation that must hold between h
and k, . . . ) by using Fourier analysis.
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Model problem

■ Let us consider the numerical approximation of the solution to the initial-boundary value problem



∂u

∂t
− ∂2u

∂x2
= 0, 0 < x < 1, 0 < t < τ,

u(0, t) = u(1, t) = 0, 0 < t < τ, (boundary conditions),

u(x, 0) = g(x), 0 < x < 1, (initial condition).

Variational formulation

■ A variational formulation of this initial-boundary value problem:

Given a sufficiently regular space-dependent function g, find a sufficiently regular space- and time-

dependent function u with u(0, t) = u(1, t) = 0 for 0 < t < τ such that

∫ 1

0

∂u

∂t
(x, t)v(x)dx+

∫ 1

0

∂u

∂x
(x, t)

dv

dx
(x)dx = 0, 0 < t < τ,

for all sufficiently regular space-dependent functions v with v(0) = 0 and v(1) = 0

and the initial condition u(x, 0) = g(x) for 0 < x < 1 is fulfilled.
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Galerkin approximation

■ Let a finite number µh of basis functions ϕ1, . . . , ϕµh
be given. Let each basis function ϕj be a

sufficiently regular space-dependent function such that ϕj(0) = ϕj(1) = 0.

■ Then, the Galerkin approximation leads to the construction of an approximate solution uh of the

form of a linear combination of the basis functions, that is, uh(x, t) =
∑µh

j=1 uj(t)ϕj(x).

■ The coefficients u1(t), . . . , uµh
(t) are determined by requiring the equation in the variational

formulation to hold for all test functions that are linear combinations of the basis functions.

■ Written compactly, the Galerkin approximate problem thus obtained takes the following form:



[M ]
du

dt
(t) + [K]u(t) = 0 for 0 < t < τ,

u(0) = g at t = 0,

where [M ] and [K] are square µh-dimensional matrices with Mij =
∫ 1

0
ϕiϕjdx and

Kij =
∫ 1

0
dϕi

dx
dϕj

dx dx and g is a µh-dimensional vector whose components gj are such that

uh(x, 0) =
∑µh

j=1 gjϕj(x) is an appropriate approximation of g(x) for 0 < x < 1.

■ This initial-value problem can be discretized in time by using any appropriate time-marching method.

Finite element method

■ A finite element method is obtained when the basis functions in the Galerkin approximation are

constructed, after meshing the domain, as elementwise low-degree polynomials.
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■ The numerical approximation of the solution to an initial-boundary value problem requires the

discretization of space and time.

■ The discretization of space and time are not independent of each other. Often, a proper relation

must hold between them to ensure convergence as they are refined.

■ Consistency, stability, and convergence are analyzed to evaluate how good finite difference

methods are in approximating solutions to IBVPs. Such analyses provide guidance for choosing

and refining finite difference methods.

■ As an alternative to comprehensive analyses of consistency, stability, and convergence, there exist

also other approaches that can sometimes provide guidance more easily:

◆ The method of lines bridges finite difference methods for IBVPs with time-marching methods for

IVPs, thus allowing stability of the former to be studied by using theory for the latter.

◆ Von Neumann stability analysis provides a bridge between finite difference methods and

sampling theory, which allows stability to be studied by using Fourier analysis.

■ Variational formulation. Galerkin approximation. Finite element method.

■ Working through numerical examples is very helpful towards understanding this material. Please do

not hesitate to come up with examples yourself to try things out using small Matlab codes.
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