

Definition of hESCs cryopreservation conditions:

- 1. allowing recovery of live and biologically intact human embryonic cells (hESCs)
- 2. working in aseptic conditions (EC directive 2004/23/EC)
- 3. using chemically defined media without human & animal serum (mTeSR1®)
- 4. compatible with automation

Comparison of two methods of cryopreservation

« Conventional » Slow Freezing (SLF) in 1 ml cryotubes

• Aseptic vitrification (Vit) in french straws

All conditions have been validated on:

mouse embryos:

Submitted paper : (work performed on zygotes)

Vitrification succeeds with lower intracellular concentration of cryoprotectants (ICCP) as compared to slow freezing, despite exposure to higher concentrations of cryoprotectant solutions

Vanderzwalmen P, Connan D, Grobet L, Zech NH, Wirleitner B, Vanderzwalmen S, Nagy P, Ectors F.

mESCs

cf: BEST presentation @ Lisbon (6/12/2011)

Definition of the optimal cryopreservation procedure

Comparison of two methods of cryopreservation on hESCs

« Conventional » Slow Freezing (SLF) in 1 ml cryotubes

Aseptic vitrification (Vit) in 0.16 ml french straws

mTeSR1[®] Cryoprotectants

SLF as usually used for hESC

- □ ~ 10⁶ cells/ml
- 10% DMSO 40% KO-SR in mTeSR1®
- In cryotubes of 1 to 2 ml

□ Cooling rate: -1 to -2°C/min until -80°C, plunge in LN2

From the bench and from the literature: •Advantages:

- Easy !!!
- Universal
- •Drawbacks:
 - Leaky to liquid N2 (>< to EU Tissue and Cells Directive 2004/23/EC)
 - Poor control of supercooling \rightarrow impair cell viability

Vitrification of hESCs

- Vitrification = extreme increase of viscosity upon very high speed cooling & warming (~1200°C/min)
- Ultimately results in a solid amorphous state

From the bench and from the literature:Advantages

- No ice crystal formation
- No need of specific device for cooling & warming
- Drawbacks
 - Use of high extracellular concentrations of cryoprotectants (but low intracellular [CPs])

In defined & serum-free medium

hESCs cultured in defined serum-free medium: mTeSR1®

Aseptic

Sealed straw: no contact with LN2 (in compliance with EC recommendations)

Results: Post-vitrification hESCs characteristics

Morphology of colonies
Morphometric analysis
Karyotype
Immuno-histochemistry
Teratoma formation

Pictures taken from the center of the well

393.jpg (169%)	ŕ		-	1		- 0 X
Morphometric analysis						
		25	1		(B)	
*·)		A	В	С	D	E
	1	Picture 393	Area	Mean	Min	Max
	2	Colony #1	17829	150.905	28	210
	3	Colony # 2	2682	145.026	35	188
	4	Colony # 3	6015	147.390	46	198
	5	Colony #4	23678	148.143	20	201
	6	Colony # 5	16811	153.879	24	209
	7	Colony # 6	12988	154.634	31	206
	8	Colony # 7	3118	155.810	22	206
	9	Colony # 8	817	157.228	12	192
January Contraction of the second	10	Colony # 9	910	157.710	52	203
	11	Colony #10	18047	156.041	31	212
	12	Colony #11	4230	158.116	32	200
	13	Colony #12	1176	149.924	65	169
Seco No - and	14	Total picture area	307200	154.120	12	212
	15	Sum of occupied area	108301			
	16	Relative cells area	0,35254232			
Vitrified hESCs, d5, x40	17	1/2 well; Vit, d5				
Picture taken from the ce	٩	ter of the wel				

hESCs proliferation curves after SF or V

Morphometric analysis:

Proliferation curves after warming of slow frozen vs vitrified cells ¹/₄ well of a 6-well plate

hESCs proliferation curves after SF or V

Morphometric analysis:

Proliferation curves after warming of slow frozen vs vitrified cells ¹/₄ well of a 6-well plate

Karyotype analysis post-vitrification: 46XX

Immuno-histochemistry hESCs RCM1: p11 after vitrification (x10)

Teratoma formation post-vitrification (x20)

 Aseptic vitrification of hESCs in defined media w/o animal / human serum

Vitrified RCM1 cells maintain their stem state

Multiple steps of vitrification

Method should be tested on other hES cell lines

□ Thanks to:

- Pierre Vanderzwalmen
- Joëlle Piret
- Nadine Antoine

Thank you for your attention