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Abstract

Lightweight and flexible robots have a high potential in
today tendency to use collaborative automation. Thanks
to their reduced weight and increased compliance, such
systems benefit from an intrinsic safety that reduce the
risk of injury in case of unexpected collision. How-
ever, the controller of such system has to be carefully
designed to deal properly with the flexible behavior of
the links and joints.
This work focuses on the control of the flexible behavior
in general 3D robotic manipulators. In particular, an in-
novative feedforward control command is developed to
reduce vibrations in the robot during its motion. First,
a finite element model of the robot is built using rigid
bodies, flexible beam elements and kinematic joints el-
ements [1]. Based on it, the inverse dynamics is solved
using so-called stable inversion techniques [2]. These
methods can deal with the non-minimum phase nature,
i.e. unstable nature, of such flexible and nonlinear sys-
tems. Here, a constrained optimization formulation, in-
troduced in [3] for 2D systems and extended here to 3D
systems, is used to solve the inverse dynamics problem.
In future work, this method could be implemented on a
robotic testbed with a flexible end-link to test its perfor-
mances.

1 Introduction

Robot manipulators are evolving in order to meet cur-
rent needs regarding accuracy and safety. To improve
the latter, lighweight and collaborative robot can be a
good alternative. However, controlling lightweight and
flexible structures is not an easy task as they can be sub-
jected to vibration and elastic deformation issues. Such
flexible manipulators are said to be underactuated since
they potentially have an infinite number of degrees of
freedom (dof) and a finite number of actuators. To re-
duce such flexibility issues, the controller of such ma-
nipulator has to be designed carefully. Feedback action
can be implemented to compensate for vibrations see,
e.g., [4]. A second possibility is to model such flexible

multibody system (MBS) in order to compute an input
feedforward control signal that results in a vibration-free
motion of the robot. Both the feedforward and the feed-
back control methods can be combined to achieve robust
performances as presented in [5, 6].
To perform an end-effector trajectory tracking task, an
example of feedforward commands for the manipula-
tor would be the torques of each of its joints. To find
those inputs, the inverse dynamics of the MBS needs
to be solved. In the case of a flexible system, some
internal dynamics remains when the output trajectory
is prescribed. The system is said to be non-minimum
phase when this internal dynamics is unstable. If the
inverse dynamics of a non-minimum phase system is
simply solved using time integration algorithms or com-
puted torques methods, the resulting input control can
be unbounded. In order to obtain a bounded solution, a
non-causal solution can be considered. A time domain
inverse dynamics method is presented and tested for a
linear system in [7]. For flexible nonlinear systems, a
stable inversion method is presented in [2] and is ap-
plied in [8, 9]. An optimal control approach is proposed
in [3] for 2D multibody systems. The present work ex-
tends this last method to solve the inverse dynamics of
flexible 3D systems. The flexible MBS is modeled us-
ing nonlinear beam finite elements [10], rigid bodies and
kinematic joints [1] formulated on the special Euclidean
group SE(3). The inverse dynamics is then stated as
an optimization problem where the amplitude of the in-
ternal dynamics has to be minimized. The prescribed
end-effector trajectory is defined as an additional servo
constraint of the optimization problem.
Please note that the present paper is a summary of refer-
ences [11, 12], please see the latter for more details.

2 Dynamic model of the flexible multi-
body system

The finite element formalism can be used to model the
dynamics of flexible MBS including rigid and flexible
bodies interconnected by kinematic joints [1, 10]. With



the special Euclidean group SE(3) formalism, the po-
sition and orientation of each element composing the
finite element mesh is represented as a 4×4 homoge-
neous transformation matrix HI with a rotation RI ∈
SO(3) and a position pI ∈ R3 component.

HI =

(
RI pI

0 1

)
∈ SE(3)

This representation leads to a local frame representation
that reduces the non-linearity of the equations of motion
and allows a representation of the rotations without sin-
gularity issues.
The configuration H can then be represented as a bloc
diagonal matrix that gathers each so-called nodal vari-
able described above.

H = diag(H1, ...,HN)

Thanks to r control inputs u = [u1, ...,ur], the end-
effector position ye f f of the MBS follows a prescribed
trajectory ypresc(t). The latter is evolving in time and is
defined by r scalar components. If such MBS is defined
using N nodal variables HI , the equations that govern
the dynamics of such MBS are

ḢI = HI ṽI with I = 1, ...,N (1)

Mv̇+g(H,v)+BT
λλλ = Au (2)

ΦΦΦ(H) = 0 (3)

ye f f (H)−ypresc(t) = 0 (4)

where M is the system symmetric mass matrix, v =
(vT

1 , ...,vT
N)

T is the vector of nodal velocities, g is the
vector of internal and complementary inertia forces, B
is the gradient of the kinematic constraints ΦΦΦ, which are
used to represent the connections imposed by the kine-
matic joints. The matrix A is a boolean matrix that ap-
plies the controls u on the system. The m dimensional
vector λλλ is Lagrange multipliers related to the m kine-
matic constraints ΦΦΦ. The last equation is called the servo
constraint [13] and fixes a part of the motion. It assures
that the end-effector position ye f f follows the prescribed
trajectory ypresc(t).
In the case of an underactuated 3D system, 6N−m−r >
0 is the dimension of the internal dynamics i.e., the flex-
ible dynamics, which is represented by Eqs. (1)-(4).
The trajectory would be completely specified if some
initial conditions were provided for the internal dynam-
ics. However, if the internal dynamics is unstable, the
forward propagation of the initial condition would lead
to an unbounded solution requiring very large control ef-
forts u, as represented in Fig. 1. A bounded solution can
be defined using an optimization formulation, in which
the initial conditions on the dynamics are left free.

Fig. 1: Unbounded solution of the inverse dynamics when the internal dy-
namics is unstable.

3 Optimization problem

Based on the model of the flexible manipulator, the in-
verse dynamics problem is formulated as a constrained
optimization problem where the internal dynamics is to
be minimized. Considering that the internal dynamics
can be represented using a function φ(H) depending on
the nodal configurations, the optimization problem is the
minimization of the objective function J on the time lap
T = t f − ti.
Mathematically,

min
H

J = min
H

1
2T

∫ t f

ti
‖φ(H)‖2dt (5)

subjected to the equality constraints defined by the equa-
tion of motion of the flexible MBS Eqs. (1)-(4) for
t ∈ [ti, t f ]. One may observe that, in this fomulation, no
initial and final values of H and v are defined. They are
determined by the optimization algorithm itself.

3.1 Optimization process

To start the optimization process, an initial guess of the
trajectory H(t) is required. To compute it, we can solve
the inverse dynamics of an equivalent rigid manipulator
which is a purely algebraic problem, since there is no
internal dynamics in this case. Let this initial trajectory
have a hat •̂ e.g., Ĥ(t). The optimization is then carried
out using a direct transcription method, i.e. the time in-
terval is first discretized in s time steps tk (k = 1, ...,s) so
that the optimization problem is reformulated as a dis-
crete Nonlinear Programming (NLP) problem. Eventu-
ally, after a few iterations, the optimized trajectory is
found as (H1, ...,Hs). Fig. 2 illustrates the process.
In the discrete settings, the minimization of the objec-
tive function, previously given by Eq. (5), can therefore
be written in its discrete form

J =
1

2T

s

∑
k=1

[
‖φ(Hk)‖2

]
h (6)



Fig. 2: Direct transcription method: optimization starting from the initial
guess (Ĥ1, ...,Ĥs) that leads to the optimal trajectory (H1, ...,Hs).

subjected to the discrete constraints at each time step tk

Ḣk
I −Hk

I ṽk
I = 0 (7)

Mkv̇k +g(Hk,vk)+Bk,T
λλλ

k−Auk = 0 (8)

ΦΦΦ(Hk) = 0 (9)

ye f f (Hk)−ypresc(tk) = 0 (10)

where h is the time step size, I = 1, ...,N and k = 1, ...,s.
Additional time integration constraints are required to
connect the discrete nodal configurations, velocities and
accelerations.

3.2 Optimization variables

After discretization, the unknown variables of the opti-
mization problem are

(H1,v1, v̇1,a1,λλλ 1,u1, ...,Hs,vs, v̇s,as,λλλ s,us)

with Hk = diag(Hk
1, ...,H

k
N) and each Hk

I ∈ SE(3). Ob-
viously, some components of this set of variables belong
to the SE(3) group and are represented as matrices, for
k = 1, ...,s. Classical optimization methods are not able
to solve problems formulated with such matrix represen-
tation and dedicated methods are needed. Alternatively,
in order to solve this problem using classical techniques,
a reformulation based on a vectorial incremental vari-
ables is thus proposed.
We introduce the vector of incremental variables ∆qT =
(∆qT

1 , ...,∆qT
N), which determines the change between

the initial guess Ĥ and their current value H.
At time step k, the relation between the configuration
Hk = diag(Hk

1, ...,H
k
N) and the incremental variables

∆qk,T = (∆qk,T
1 , ...,∆qk,T

N ) is

Hk
I = Ĥk

I expSE(3)(∆̃qk
I ) (11)

where Ĥk
I represents the position and orientation of node

I at time step k for the initial guess.
The actual design variables x are thus

x = (∆q1,v1, v̇1,a1,λλλ 1,u1, ...,∆qs,vs, v̇s,as,λλλ s,us)

The optimization problem has now vectorial design vari-
ables and can be solved using a classical NLP algorithm.
For consistency, the configurations Hk and Hk+1 at two
consecutive time steps are also related through another
exponantial mapping and a time related incremental
variable ∆Qk. The relation between the relevant vari-
ables is illustrated in Fig. 3. Each arrow represents an
exponential mapping expSE(3)(•̃) with either time incre-
mental or configuration incremental arguments, i.e. ∆Qk

and ∆qk respectively.

Fig. 3: Relation between variables ∆qk , ∆Qk and Hk .

4 3D serial example

The inverse dynamics of a flexible 3D system is now
solved using the proposed approach. A serial 3 dof ma-
nipulator, as shown in Fig. 4, is considered. It is com-
posed of two links: an upper arm and a forearm. The
end-effector is modeled as a point mass mend at the tip
of the forearm. The upper arm and the forearm both
have length l and a tubular square cross section. The up-
per arm has a side length a1 and an edge thickness e1.
The forearm has a side length a2 and an edge thickness
e2. While the former has a greater cross section and is
considered as a rigid body element, the forearm is con-
sidered flexible and is modeled using 4 beam elements.
The description of the beam formulation on SE(3) can
be found in [10]. The upper arm connects the first two
hinge joints, controlled using inputs u1 and u2, to the
third one, controlled using input u3. The outputs of the
system are the x, y and z components of the end-effector
position ye f f . The first hinge joint has its axis along
axis z. The second and the third hinge joints initially
have their axis along axis y. In the initial position, each
link makes a 45◦ angle with respect to the x axis. By
analysing the poles of the serial system, we find that the
first unstable pole is located at the frequency of 13 Hz.
The trajectory the end-effector has to follow is a pla-
nar circular arc in the yz plane. The motion profile is
built using a seventh order polynomial in order to insure
continuity of the position, velocities, accelerations and



jerks over time. The end-effector starts from position
[2l cos(45◦) 0 0] and goes to position [2l cos(45◦) l 0].
The radius of the circular arc is thus l/2 m. The trajec-
tory is covered in 1.1 s and the pre- and postactuation
phases both last 0.2 s: the total simulation time is 1.5 s.
The material parameters and dimensions of the 3D flex-
ible arm can be found in Table 1.

Fig. 4: Serial 3D arm system with one rigid body and 4 beam elements.

Tab. 1: Parameters of the serial arm system.

Upper arm
l = 1 m a1 = 0.05 m e1 = 0.01 m

ρ = 2700 kg/m3

Forearm
l = 1 m a2 = 0.0075 m e2 = 0.0015 m
E = 70 GPa ν = 0.3 ρ = 2700 kg/m3

End-eff. mend = 0.1 kg

The convergence of the optimization process is quite
sensitive to the initial guess of the problem. To compute
it, a complete rigid system is considered. The beams
of the forearm are replaced with a rigid body with the
same geometrical and material properties. When grav-
ity is acting on the robotic arm, it is important to correct
the initial guess with the static deflection of the actual
flexible arm. Regarding the numerical parameters of the
generalized-α method, a spectral radius of ρ∞ = 0.01
is considered (β = 0.98, γ = 1.48, αm = −0.97 and
α f = 0.01). In order to best capture the system’s dynam-
ics, the system is discretized into s = 150 steps. This
means that the time step size h is 0.01 s, which is about
a tenth of the first unstable frequency.
Using the default tolerances of the FMINCON solver
in Matlab R©, the optimization is completed after 5 itera-
tions and lasts 4 minutes (using a x64 bits i7-4600u CPU
with 16 Gb RAM memory). The command inputs u and
urigid , with and without flexibility considerations respec-
tively, are compared in Fig. 5. Some visible differences
can be observed but the pre- and post-actuation in the in-
put commands are hardly visible. These pre- and post-
actuation phases can be observed by looking at the ve-
locity profile of the three joints in Fig. 6. One can see
that after 1.3 s, the velocity of the third joint is still vary-
ing. Although the torque u3 is nearly zero in the post-
actuation phase, it still results in some internal motion in
the arm. It is important to point out that although some
motion is present in the joints, the end-effector does not

actually move during the post-actuation.
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Fig. 5: Resulting joint velocity of a flexible 3D arm.
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Fig. 6: Velocity of the three joint of a flexible 3D arm.

In order to verify the computed optimal inputs u, both
inputs u and urigid are applied to the flexible system and
a direct dynamic analysis is performed. These inputs
lead to end-effector trajectories shown in Fig. 7. The
relative tracking error resulting from both direct simula-
tions can be calculated at each time step tk using (12).

ek =
‖ypresc−ye f f ‖
‖ypresc‖

(12)

where ‖•‖ is the classical Euclidean norm or L2 norm.
The relative rms error is then calculated as

erms =

√
1
s

s

∑
k=1

(ek)2 (13)

The relative rms error erms is equal to 1.1% when urigid
is used as input and drops down to erms = 0.3% when u
is used.

5 Conclusion

In this work, the inverse dynamics of 3D flexible robotic
arm is successfully solved using an constrained opti-
mization formulation. The MBS is first modeled us-
ing finite elements formulated on the special euclidean
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Fig. 7: End-effector trajectory of a flexible 3D arm using u and urigid .

group SE(3). Based on it, the inverse dynamics prob-
lem is defined as an optimization problem where the
internal dynamics of the MBS is minimized. A direct
transcription method is used to discretize the continuous
optimization problem into a discrete optimization prob-
lem. In order to use classical optimization solvers, vec-
torial incremental variable are introduced to avoid opti-
mization variables defined on SE(3). The input com-
mands computed using such methods manage to im-
prove the tracking precision of the 3D flexible manip-
ulator, as shown by the serial example. In further work,
with the design of a suitable feedback loop, this method
will be applied for off-line computation of the feedfor-
ward command of an experimental testbed.
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