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Sensitivity analysis of parametric uncertainties and modeling errors in multiple components

in the context of nonparametric probabilistic modeling.
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■ Characterization of uncertainty:

◆ Two statistically independent sources of uncertainty modeled as two statistically independent

random variables X and Y with probability distributions PX and PY :

(X,Y ) ∼ PX ⊗ PY .

■ Propagation of uncertainty:

◆ We assume that the relationship between the sources of uncertainty and the predictions is

represented by a nonlinear function g:

Sources of uncertainty

(X,Y )
→

Problem

Z = g(X,Y )
→

Prediction

Z

◆ The probability distribution PZ of the prediction is obtained as the image of the probability

distribution PX ⊗ PY of the sources of uncertainty under the function g:

Z ∼ PZ = (PX ⊗ PY ) ◦ g
−1.

■ Sensitivity analysis:

◆ Is either X and Y most significant in inducing uncertainty in Z?
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■ Least-squares-best approximation of function g with function of only one input:

◆ Assessment of the significance of the source of uncertainty X :

g∗X = argmin
f∗

X

∫∫
∣
∣g(x, y)− f∗X(x)

∣
∣
2
PX(dx)PY (dy).

◆ By means of the calculus of variations, it can be readily shown that the solution is given by

g∗X =

∫

g(·, y)PY (dy).

◆ In the geometry of the space of PX ⊗ PY -square-integrable functions, g∗X is the orthogonal

projection of function g of x and y onto the subspace of functions of only x:

• E{Z|X}

Z

X
L2
X
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■ Expansion of function g in terms of main effects and interaction effects:

◆ Extension to assessment of significance of both sources of uncertainty X and Y :

g(x, y) = g0 + gX(x)
︸ ︷︷ ︸

main effect of X

+ gY (y)
︸ ︷︷ ︸

main effect of Y

+ g(X,Y )(x, y)
︸ ︷︷ ︸

interaction effect of X and Y

,

where

g0 =

∫∫

g(x, y)PX(dx)PY (dy),

gX(x) = g∗X(x)− g0 =

∫

g(x, y)PY (dy)− g0,

gY (y) = g∗Y (y)− g0 =

∫

g(x, y)PX(dx)− g0.

◆ Because they are obtained via orthogonal projection, the functions g0, gX , gY , and g(X,Y ) are

orthogonal functions.

◆ The property that g0, gX , gY , and g(X,Y ) are orthogonal provides a link with other expansions,

such as the polynomial chaos expansion.
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■ Sensitivity indices = mean-square values of main effects and interaction effects:

◆ Quantitative insight into the significance of X and Y in inducing uncertainty in Z :
∫∫

∣
∣g(x, y)− g0|

2PX(dx)PY (dy)

︸ ︷︷ ︸

=σ2
Z

=

∫
∣
∣gX(x)

∣
∣
2
PX(dx)

︸ ︷︷ ︸

=sX

+

∫
∣
∣gY (y)

∣
∣
2
PY (dy)

︸ ︷︷ ︸

=sY

+

∫∫
∣
∣g(X,Y )(x, y)

∣
∣
2
PX(dx)PY (dy)

︸ ︷︷ ︸

=s(X,Y )

.

◆ Because gX , gY , and g(X,Y ) are orthogonal, there are no double product terms.

◆ Thus, the expansion of g (geometry) reflects a partitioning of the variance of Z into terms

that are the variances of the main and interaction effects of X and Y (statistics), where:

sX = portion of the variance of Z that is explained as stemming from X ,

sY = portion of the variance of Z that is explained as stemming from Y .
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■ Computation by means of a stochastic expansion method:

sX ≈
∑

α 6=0

c2(α,0),

sY ≈
∑

β 6=0

c2(0,β),
with g(x, y) =

∑

(α,β)

c(α,β)ϕα(x)ψβ(y).

■ Computation by means of deterministic numerical integration:

sX ≈ QX

(
|QY g −QXQY g|

2
)
,

sY ≈ QY

(
|QXg −QXQY g|

2
)
.

■ Computation by means of Monte Carlo integration:

sX ≈
1

ν

ν∑

ℓ=1

(

g(xℓ, yℓ)−
1

ν

ν∑

k=1

g(xk, yk)

)(

g(xℓ, ỹℓ)−
1

ν

ν∑

k=1

g(xk, ỹk)

)

,

sY ≈
1

ν

ν∑

ℓ=1

(

g(xℓ, yℓ)−
1

ν

ν∑

k=1

g(xk, yk)

)(

g(x̃ℓ, yℓ)−
1

ν

ν∑

k=1

g(x̃k, yk)

)

.

■ References: [B. Sudret. Reliab. Eng. Syst. Safe., 2008], [Crestaux et al. Reliab. Eng. Syst. Safe.,

2009], [I. Sobol. Math. Comput. Simulat., 2001], and [A. Owen. ACM T. Model. Comput. S., 2013].
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■ C. Soize. “Nonparametric model of random uncertainties for reduced matrix models in structural

dynamics.” In: Probabilistic Engineering Mechanics 15, pp. 277–294, 2000.

C. Soize and H. Chebli. “Random Uncertainties Model in Dynamic Substructuring Using a

Nonparametric Probabilistic Model.” In: Journal of Engineering Mechanics 129, pp. 449–457, 2003.

■ Baseline starting point = FE model of linear dynamical behavior of dissipative structure:

[M ]ü(t) + [D]u̇(t) + [K]u(t) = f(t),

where

u = (u1, . . . , um) is the (generalized) displacement vector,

f the (generalized) external forces vector,

and [M ], [D], and [K] the mass, damping, and stiffness matrices.
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■ Step 1: Associate with the deterministic model a reduced-order model:

[Mn]q̈(t) + [Dn]q̇(t) + [Kn]q(t) = fn(t),

un(t) = [Φ]q(t),

where

[Mn], [Dn], and [Kn] are the reduced mass, damping, and stiffness matrices,

and [Φ] the matrix collecting in its columns the reduction basis ϕ1, ϕ2, . . ., ϕn.

Such a reduced-order probabilistic model can be obtained, for instance, by solving the eigenvalue

problem associated with the mass and stiffness matrices of the deterministic model,

[K]ϕj = λj [M ]ϕj ;

in which case the reduced matrices of the reduced-order model are given by

[Mn]ij = δij , [Dn]ij = ϕi · [D]ϕj , [Kn]ij = λiδij .
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■ Step 2: represent the reduced matrices by using random matrices:

[Mn]Q̈(t) + [Dn]Q̇(t) + [Kn]Q(t) = fn(t),

Un(t) = [Φ]Q(t),

To accommodate in the reduced matrices a probabilistic representation of parametric uncertainties

and modeling errors, the nonparametric probabilistic approach represents them as follows:

[Mn] = [LM ][YM ][LM ]T,

[Dn] = [LD][YD][LD]T,

[Kn] = [LK ][YK ][LK ]T,

with [LM ], [LD], and [LK ] the Cholesky factors of [Mn], [Dn], and [Kn].
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■ To assign a suitable probability distribution to the random matrices [YM ], [YD], and [YK ], the

nonparametric probabilistic approach uses the maximum entropy principle.

The probability distribution thus obtained is such that the mean values of [YM ], [YD], and [YK ] are

all equal to the identity matrix, that is,

E{[YM ]} = [In],

E{[YD]} = [In],

E{[YK ]} = [In],

and the amount of uncertainty expressed in [YM ], [YD], and [YK ] is tunable by free dispersion

parameters δM , δD , and δK , respectively, defined by

δM =
√

E{‖[YM ]− [In]‖2F}/‖[In]‖
2
F ,

δD =
√

E{‖[YD]− [In]‖2F}/‖[In]‖
2
F ,

δK =
√

E{‖[YK ]− [In]‖2F}/‖[In]‖
2
F .

■ The dispersion parameters must be calibrated such that the uncertainty in [YM ], [YD], and

[YK ] reflects the significance of the parametric uncertainties and modeling errors.
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■ Extension to structures with multiple components = dynamic substructuring approach.

■ Step 1: Associate with the deterministic model a reduced-order model:





[M1
i ] [0] [M1

c ]
[0] [M2

i ] [M2
c ]

[M1
c ]

T [M2
c ]

T [M1
Σ] + [M2

Σ]









q̈1(t)
q̈2(t)
üΣ(t)



+





[D1
i ] [0] [D1

c ]
[0] [D2

i ] [D2
c ]

[D1
c ]

T [D2
c ]

T [D1
Σ] + [D2

Σ]









q̇1(t)
q̇2(t)
u̇Σ(t)





+





[K1
i ] [0] [K1

c ]
[0] [K2

i ] [K2
c ]

[K1
c ]

T [K2
c ]

T [K1
Σ] + [K2

Σ]









q1(t)
q2(t)
uΣ(t)



 =





f1(t)

f2(t)
fΣ(t)



 ,

[
u1(t)
uΣ(t)

]

=

[
[Φ1] −[K1

i ]
−1[K1

c ]
[0] [I]

] [
q1(t)
uΣ(t)

]

,

[
u2(t)
uΣ(t)

]

=

[
[Φ2] −[K2

i ]
−1[K2

c ]
[0] [I]

] [
q2(t)
uΣ(t)

]

.
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■ Step 2: Represent the reduced matrices by using random matrices:




[M1
i ] [0] [M1

c ]

[0] [M2
i ] [M2

c ]
[M1

c ]
T [M2

c ]
T [M1

Σ] + [M2
Σ]









Q̈1(t)

Q̈2(t)

Q̈Σ(t)



+





[D1
i ] [0] [D1

c ]

[0] [D2
i ] [D2

c ]
[D1

c ]
T [D2

c ]
T [D1

Σ] + [D2
Σ]









Q̇1(t)

Q̇2(t)

Q̇Σ(t)





+





[K1
i ] [0] [K1

c ]
[0] [K2

i ] [K2
c ]

[K1
c ]

T [K2
c ]

T [K1
Σ] + [K2

Σ]









Q1(t)
Q2(t)
QΣ(t)



 =





f1(t)

f2(t)
fΣ(t)



 ,

[
U1(t)
UΣ(t)

]

=

[
[Φ1] −[K1

i ]
−1[K1

c ]
[0] [I]

] [
Q1(t)
UΣ(t)

]

,

[
U2(t)
UΣ(t)

]

=

[
[Φ2] −[K2

i ]
−1[K2

c ]
[0] [I]

] [
Q2(t)
UΣ(t)

]

.

[M1] =

[
[M1

i ] [M1
c ]

[M1
c ]

T [M1
Σ]

]

, [D1] =

[
[D1

i ] [D1
c ]

[D1
c ]

T [D1
Σ]

]

, [K1] =

[
[K1

i ] [K1
c ]

[K1
c ]

T [K1
Σ]

]

[M1] = [L1
M ][Y 1

M ][L1
M ]T, [D1] = [L1

D][Y 1
D][L1

D]T, [K1] = [L1
K ][Y 1

K ][L1
K ]T,

[M2] =

[
[M2

i ] [M2
c ]

[M2
c ]

T [M2
Σ]

]

, [D2] =

[
[D2

i ] [D2
c ]

[D2
c ]

T [D2
Σ]

]

, [K2] =

[
[K2

i ] [K2
c ]

[K2
c ]

T [K2
Σ]

]

[M2] = [L2
M ][Y 2

M ][L2
M ]T, [D2] = [L2

D][Y 2
D][L2

D]T, [K2] = [L2
K ][Y 2

K ][L2
K ]T.
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Stiffened panel with a hole.

δM = δD = δK = 0.05
δM = δD = δK = 0.05
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First few dynamical eigenmodes.

Mode 1 at 124.88 Hz.
Mode 2 at 302.82 Hz.

δM = δD = δK = 0.05
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After a component mode synthesis, we used the nonparametric probabilistic approach to introduce

uncertainties in the submodels of the main panel and the stiffeners.
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PDFs of the first and second eigenfrequencies.

δM = δD = δK = 0.05
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Main panel Stiffeners
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First eigenfrequency.

δM = δD = δK = 0.05
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Second eigenfrequency.

δM = δD = δK = 0.05
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■ Global sensitivity analysis methods can help ascertain which sources of uncertainty are most

significant in inducing uncertainty in predictions.

■ Although most applications in the literature involve scalar-valued sources of uncertainty, the

concepts and methods of global sensitivity analysis are valid and useful more broadly for stochastic

process, random fields, random matrices, and other sources of uncertainty.

■ When combined with sub structuring approaches, nonparametric probabilistic modeling approaches

allow to separately represent parametric uncertainties and modeling errors in separate structural

components.

■ We discussed global sensitivity analysis of such nonparametric probabilistic models and

demonstrated its application in an illustration from structural dynamics.
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■ This presentation can be downloaded from our institutional repository:

http://orbi.ulg.ac.be.

■ Other references:

◆ M. Arnst and J.-P. Ponthot. An overview of nonintrusive characterization, propagation, and

sensitivity analysis of uncertainties in computational mechanics. International Journal for

Uncertainty Quantification, 4:387–421, 2014.

◆ M. Arnst and K. Goyal. Sensitivity analysis of parametric uncertainties and modeling errors in

computational-mechanics models by using a generalized probabilistic modeling approach.

Reliability Engineering and System Safety, 167:394–405, 2017.

■ Support of the University of Liège through a starting grant is gratefully acknowledged.
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