ICOSSAR 2017 International Conference on Structural Safety \& Reliability
Guiding model improvement in dynamic substructuring:
sensitivity analysis and nonparametric probabilistic modeling approach

Maarten Arnst

August 10, 2017

Motivation

Sensitivity analysis of parametric uncertainties and modeling errors in multiple components in the context of nonparametric probabilistic modeling.

Outline

- Motivation.
- Outline.
- Sensitivity analysis.
- Nonparametric probabilistic modeling.
- Illustration.
- Conclusion.

Sensitivity analysis

- Characterization of uncertainty:
- Two statistically independent sources of uncertainty modeled as two statistically independent random variables X and Y with probability distributions P_{X} and P_{Y} :

$$
(X, Y) \sim P_{X} \otimes P_{Y}
$$

- Propagation of uncertainty:
- We assume that the relationship between the sources of uncertainty and the predictions is represented by a nonlinear function g :

Sources of uncertainty
(X, Y)

$$
\begin{gathered}
\text { Problem } \\
Z=g(X, Y)
\end{gathered}
$$

Prediction
Z

- The probability distribution P_{Z} of the prediction is obtained as the image of the probability distribution $P_{X} \otimes P_{Y}$ of the sources of uncertainty under the function g :

$$
Z \sim P_{Z}=\left(P_{X} \otimes P_{Y}\right) \circ g^{-1}
$$

- Sensitivity analysis:
- Is either X and Y most significant in inducing uncertainty in Z ?

Sensitivity analysis

- Least-squares-best approximation of function g with function of only one input:
- Assessment of the significance of the source of uncertainty X :

$$
g_{X}^{*}=\arg \min _{f_{X}^{*}} \iint\left|g(x, y)-f_{X}^{*}(x)\right|^{2} P_{X}(d x) P_{Y}(d y)
$$

- By means of the calculus of variations, it can be readily shown that the solution is given by

$$
g_{X}^{*}=\int g(\cdot, y) P_{Y}(d y)
$$

- In the geometry of the space of $P_{X} \otimes P_{Y}$-square-integrable functions, g_{X}^{*} is the orthogonal projection of function g of x and y onto the subspace of functions of only x :

Sensitivity analysis

- Expansion of function g in terms of main effects and interaction effects:
- Extension to assessment of significance of both sources of uncertainty X and Y :

$$
g(x, y)=g_{0}+\underbrace{g_{X}(x)}_{\text {main effect of } X}+\underbrace{g_{Y}(y)}_{\text {main effect of } Y}+\underbrace{g_{(X, Y)}(x, y)}_{\text {interaction effect of } X \text { and } Y}
$$

where

$$
\begin{aligned}
g_{0} & =\iint g(x, y) P_{X}(d x) P_{Y}(d y), \\
g_{X}(x) & =g_{X}^{*}(x)-g_{0}=\int g(x, y) P_{Y}(d y)-g_{0}, \\
g_{Y}(y) & =g_{Y}^{*}(y)-g_{0}=\int g(x, y) P_{X}(d x)-g_{0} .
\end{aligned}
$$

- Because they are obtained via orthogonal projection, the functions g_{0}, g_{X}, g_{Y}, and $g_{(X, Y)}$ are orthogonal functions.
- The property that g_{0}, g_{X}, g_{Y}, and $g_{(X, Y)}$ are orthogonal provides a link with other expansions, such as the polynomial chaos expansion.

Sensitivity analysis

- Sensitivity indices = mean-square values of main effects and interaction effects:
- Quantitative insight into the significance of X and Y in inducing uncertainty in Z :

$$
\begin{aligned}
& \underbrace{\iint\left|g(x, y)-g_{0}\right|^{2} P_{X}(d x) P_{Y}(d y)}_{=\sigma_{Z}^{2}} \\
& =\underbrace{\int\left|g_{X}(x)\right|^{2} P_{X}(d x)}_{=s_{X}}+\underbrace{\int\left|g_{Y}(y)\right|^{2} P_{Y}(d y)}_{=s_{Y}}+\underbrace{\iint\left|g_{(X, Y)}(x, y)\right|^{2} P_{X}(d x) P_{Y}(d y)}_{=s_{(X, Y)}}
\end{aligned}
$$

- Because g_{X}, g_{Y}, and $g_{(X, Y)}$ are orthogonal, there are no double product terms.
- Thus, the expansion of g (geometry) reflects a partitioning of the variance of Z into terms that are the variances of the main and interaction effects of X and Y (statistics), where:
$s_{X}=$ portion of the variance of Z that is explained as stemming from X,
$s_{Y}=$ portion of the variance of Z that is explained as stemming from Y.

Sensitivity analysis

- Computation by means of a stochastic expansion method:

$$
\begin{aligned}
s_{X} & \approx \sum_{\alpha \neq 0} c_{(\alpha, 0)}^{2}, \\
s_{Y} & \approx \sum_{\beta \neq 0} c_{(0, \beta)}^{2},
\end{aligned} \text { with } g(x, y)=\sum_{(\alpha, \beta)} c_{(\alpha, \beta)} \varphi_{\alpha}(x) \psi_{\beta}(y)
$$

- Computation by means of deterministic numerical integration:

$$
\begin{aligned}
s_{X} & \approx Q_{X}\left(\left|Q_{Y} g-Q_{X} Q_{Y} g\right|^{2}\right), \\
s_{Y} & \approx Q_{Y}\left(\left|Q_{X} g-Q_{X} Q_{Y} g\right|^{2}\right) .
\end{aligned}
$$

- Computation by means of Monte Carlo integration:

$$
\begin{aligned}
s_{X} & \approx \frac{1}{\nu} \sum_{\ell=1}^{\nu}\left(g\left(x_{\ell}, y_{\ell}\right)-\frac{1}{\nu} \sum_{k=1}^{\nu} g\left(x_{k}, y_{k}\right)\right)\left(g\left(x_{\ell}, \tilde{y}_{\ell}\right)-\frac{1}{\nu} \sum_{k=1}^{\nu} g\left(x_{k}, \tilde{y}_{k}\right)\right), \\
s_{Y} & \approx \frac{1}{\nu} \sum_{\ell=1}^{\nu}\left(g\left(x_{\ell}, y_{\ell}\right)-\frac{1}{\nu} \sum_{k=1}^{\nu} g\left(x_{k}, y_{k}\right)\right)\left(g\left(\tilde{x}_{\ell}, y_{\ell}\right)-\frac{1}{\nu} \sum_{k=1}^{\nu} g\left(\tilde{x}_{k}, y_{k}\right)\right) .
\end{aligned}
$$

■ References: [B. Sudret. Reliab. Eng. Syst. Safe., 2008], [Crestaux et al. Reliab. Eng. Syst. Safe., 2009], [I. Sobol. Math. Comput. Simulat., 2001], and [A. Owen. ACM T. Model. Comput. S., 2013].

Nonparametric probabilistic modeling

■ C. Soize. "Nonparametric model of random uncertainties for reduced matrix models in structural dynamics." In: Probabilistic Engineering Mechanics 15, pp. 277-294, 2000.
C. Soize and H. Chebli. "Random Uncertainties Model in Dynamic Substructuring Using a Nonparametric Probabilistic Model." In: Journal of Engineering Mechanics 129, pp. 449-457, 2003.

■ Baseline starting point = FE model of linear dynamical behavior of dissipative structure:

$$
[M] \ddot{\boldsymbol{u}}(t)+[D] \dot{\boldsymbol{u}}(t)+[K] \boldsymbol{u}(t)=\boldsymbol{f}(t),
$$

where
$\boldsymbol{u}=\left(u_{1}, \ldots, u_{m}\right)$ is the (generalized) displacement vector,
f the (generalized) external forces vector,
and $[M],[D]$, and $[K]$ the mass, damping, and stiffness matrices.

Nonparametric probabilistic modeling

- Step 1: Associate with the deterministic model a reduced-order model:

$$
\begin{aligned}
& {\left[M_{n}\right] \ddot{\boldsymbol{q}}(t)+\left[D_{n}\right] \dot{\boldsymbol{q}}(t)+\left[K_{n}\right] \boldsymbol{q}(t)=\boldsymbol{f}^{n}(t),} \\
& \boldsymbol{u}^{n}(t)=[\Phi] \boldsymbol{q}(t),
\end{aligned}
$$

where
$\left[M_{n}\right],\left[D_{n}\right]$, and $\left[K_{n}\right]$ are the reduced mass, damping, and stiffness matrices, and $[\Phi]$ the matrix collecting in its columns the reduction basis $\varphi_{1}, \varphi_{2}, \ldots, \boldsymbol{\varphi}_{n}$.

Such a reduced-order probabilistic model can be obtained, for instance, by solving the eigenvalue problem associated with the mass and stiffness matrices of the deterministic model,

$$
[K] \boldsymbol{\varphi}_{j}=\lambda_{j}[M] \boldsymbol{\varphi}_{j}
$$

in which case the reduced matrices of the reduced-order model are given by

$$
\left[M_{n}\right]_{i j}=\delta_{i j}, \quad\left[D_{n}\right]_{i j}=\boldsymbol{\varphi}_{i} \cdot[D] \boldsymbol{\varphi}_{j}, \quad\left[K_{n}\right]_{i j}=\lambda_{i} \delta_{i j}
$$

Nonparametric probabilistic modeling

- Step 2: represent the reduced matrices by using random matrices:

$$
\begin{aligned}
& {\left[\boldsymbol{M}_{n}\right] \ddot{\boldsymbol{Q}}(t)+\left[\boldsymbol{D}_{n}\right] \dot{\boldsymbol{Q}}(t)+\left[\boldsymbol{K}_{n}\right] \boldsymbol{Q}(t)=\boldsymbol{f}^{n}(t),} \\
& \boldsymbol{U}^{n}(t)=[\Phi] \boldsymbol{Q}(t),
\end{aligned}
$$

To accommodate in the reduced matrices a probabilistic representation of parametric uncertainties and modeling errors, the nonparametric probabilistic approach represents them as follows:

$$
\begin{aligned}
& {\left[\boldsymbol{M}_{n}\right]=\left[L_{M}\right]\left[\boldsymbol{Y}_{M}\right]\left[L_{M}\right]^{\mathrm{T}},} \\
& {\left[\boldsymbol{D}_{n}\right]=\left[L_{D}\right]\left[\boldsymbol{Y}_{D}\right]\left[L_{D}\right]^{\mathrm{T}},} \\
& {\left[\boldsymbol{K}_{n}\right]=\left[L_{K}\right]\left[\boldsymbol{Y}_{K}\right]\left[L_{K}\right]^{\mathrm{T}},}
\end{aligned}
$$

with $\left[L_{M}\right],\left[L_{D}\right]$, and $\left[L_{K}\right]$ the Cholesky factors of $\left[M_{n}\right],\left[D_{n}\right]$, and $\left[K_{n}\right]$.

Nonparametric probabilistic modeling

- To assign a suitable probability distribution to the random matrices $\left[\boldsymbol{Y}_{M}\right],\left[\boldsymbol{Y}_{D}\right]$, and $\left[\boldsymbol{Y}_{K}\right]$, the nonparametric probabilistic approach uses the maximum entropy principle.

The probability distribution thus obtained is such that the mean values of $\left[\boldsymbol{Y}_{M}\right],\left[\boldsymbol{Y}_{D}\right]$, and $\left[\boldsymbol{Y}_{K}\right]$ are all equal to the identity matrix, that is,

$$
\begin{aligned}
& E\left\{\left[\boldsymbol{Y}_{M}\right]\right\}=\left[I_{n}\right], \\
& E\left\{\left[\boldsymbol{Y}_{D}\right]\right\}=\left[I_{n}\right], \\
& E\left\{\left[\boldsymbol{Y}_{K}\right]\right\}=\left[I_{n}\right],
\end{aligned}
$$

and the amount of uncertainty expressed in $\left[\boldsymbol{Y}_{M}\right],\left[\boldsymbol{Y}_{D}\right]$, and $\left[\boldsymbol{Y}_{K}\right]$ is tunable by free dispersion parameters δ_{M}, δ_{D}, and δ_{K}, respectively, defined by

$$
\begin{aligned}
\delta_{M} & =\sqrt{E\left\{\left\|\left[\boldsymbol{Y}_{M}\right]-\left[I_{n}\right]\right\|_{\mathrm{F}}^{2}\right\} /\left\|\left[I_{n}\right]\right\|_{\mathrm{F}}^{2}}, \\
\delta_{D} & =\sqrt{E\left\{\left\|\left[\boldsymbol{Y}_{D}\right]-\left[I_{n}\right]\right\|_{\mathrm{F}}^{2}\right\} /\left\|\left[I_{n}\right]\right\|_{\mathrm{F}}^{2}}, \\
\delta_{K} & =\sqrt{E\left\{\left\|\left[\boldsymbol{Y}_{K}\right]-\left[I_{n}\right]\right\|_{\mathrm{F}}^{2}\right\} /\left\|\left[I_{n}\right]\right\|_{\mathrm{F}}^{2}}
\end{aligned}
$$

- The dispersion parameters must be calibrated such that the uncertainty in $\left[\boldsymbol{Y}_{M}\right],\left[\boldsymbol{Y}_{D}\right]$, and $\left[\boldsymbol{Y}_{K}\right]$ reflects the significance of the parametric uncertainties and modeling errors.

Nonparametric probabilistic modeling

- Extension to structures with multiple components = dynamic substructuring approach.
- Step 1: Associate with the deterministic model a reduced-order model:

$$
\left.\begin{array}{l}
{\left[\begin{array}{ccc}
{\left[\mathcal{M}_{\mathrm{i}}^{1}\right]} & {[0]} & {\left[M_{\mathrm{c}}^{1}\right]} \\
{[0]} & {\left[\mathcal{M}_{\mathrm{i}}^{2}\right]} & {\left[M_{\mathrm{c}}^{2}\right]} \\
{\left[M_{\mathrm{c}}^{1}\right]^{\mathrm{T}}} & {\left[M_{\mathrm{c}}^{2}\right]^{\mathrm{T}}} & {\left[M_{\Sigma}^{1}\right]+\left[M_{\Sigma}^{2}\right]}
\end{array}\right]\left[\begin{array}{c}
\ddot{\boldsymbol{q}}^{1}(t) \\
\ddot{\boldsymbol{q}}^{2}(t) \\
\ddot{\boldsymbol{u}}_{\Sigma}(t)
\end{array}\right]+\left[\begin{array}{cc}
{\left[\mathcal{D}_{\mathrm{i}}^{1}\right]} & {[0]} \\
{[0]} & {\left[D_{\mathrm{c}}^{1}\right]} \\
{\left[D_{\mathrm{c}}^{1}\right]^{\mathrm{T}}} & {\left[D_{\mathrm{c}}^{2}\right]^{\mathrm{T}}}
\end{array}\right]\left[D_{\Sigma}^{1}\right]+\left[D_{\Sigma}^{2}\right]}
\end{array}\right]\left[\begin{array}{c}
\dot{\boldsymbol{q}}^{1}(t) \\
\dot{\boldsymbol{q}}^{2}(t) \\
\dot{\boldsymbol{u}}_{\Sigma}(t)
\end{array}\right] .
$$

Nonparametric probabilistic modeling

- Step 2: Represent the reduced matrices by using random matrices:

$$
\left[\boldsymbol{M}^{1}\right]=\left[L_{M}^{1}\right]\left[\boldsymbol{Y}_{M}^{1}\right]\left[L_{M}^{1}\right]^{\mathrm{T}}, \quad\left[\boldsymbol{D}^{1}\right]=\left[L_{D}^{1}\right]\left[\boldsymbol{Y}_{D}^{1}\right]\left[L_{D}^{1}\right]^{\mathrm{T}}, \quad\left[\boldsymbol{K}^{1}\right]=\left[L_{K}^{1}\right]\left[\boldsymbol{Y}_{K}^{1}\right]\left[L_{K}^{1}\right]^{\mathrm{T}},
$$

$$
\left[M^{2}\right]=\left[L_{M}^{2}\right]\left[Y_{M}^{2}\right]\left[L_{M}^{2}\right]^{\mathrm{T}}, \quad\left[D^{2}\right]=\left[L_{D}^{2}\right]\left[Y_{D}^{2}\right]\left[L_{D}^{2}\right]^{\mathrm{T}}, \quad\left[\boldsymbol{K}^{2}\right]=\left[L_{K}^{2}\right]\left[\boldsymbol{Y}_{K}^{2}\right]\left[L_{K}^{2}\right]^{\mathrm{T}} .
$$

First few dynamical eigenmodes.

Mode 1 at 124.88 Hz .

Mode 2 at 302.82 Hz .

Illustration

After a component mode synthesis, we used the nonparametric probabilistic approach to introduce uncertainties in the submodels of the main panel and the stiffeners.

PDFs of the first and second eigenfrequencies.

Illustration

Conclusion and acknowledgement

- Global sensitivity analysis methods can help ascertain which sources of uncertainty are most significant in inducing uncertainty in predictions.

■ Although most applications in the literature involve scalar-valued sources of uncertainty, the concepts and methods of global sensitivity analysis are valid and useful more broadly for stochastic process, random fields, random matrices, and other sources of uncertainty.

- When combined with sub structuring approaches, nonparametric probabilistic modeling approaches allow to separately represent parametric uncertainties and modeling errors in separate structural components.

■ We discussed global sensitivity analysis of such nonparametric probabilistic models and demonstrated its application in an illustration from structural dynamics.

Conclusion and acknowledgement

- This presentation can be downloaded from our institutional repository:

http://orbi.ulg.ac.be.
- Other references:
- M. Arnst and J.-P. Ponthot. An overview of nonintrusive characterization, propagation, and sensitivity analysis of uncertainties in computational mechanics. International Journal for Uncertainty Quantification, 4:387-421, 2014.
- M. Arnst and K. Goyal. Sensitivity analysis of parametric uncertainties and modeling errors in computational-mechanics models by using a generalized probabilistic modeling approach. Reliability Engineering and System Safety, 167:394-405, 2017.
- Support of the University of Liège through a starting grant is gratefully acknowledged.

