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Abstract
The discovery of biomarkers able to detect cancer at an early stage, to evaluate its aggressiveness, and to predict the response to
therapy remains a major challenge in clinical oncology and precision medicine. In this review, we summarize recent achieve-
ments in the discovery and development of cancer biomarkers. We also highlight emerging innovative methods in biomarker
discovery and provide insights into the challenges faced in their evaluation and validation.

Keywords Cancer biomarker . Precisionmedicine . Bomics^ . Accessible proteins

1 Introduction

Cancer is the leading causes of premature mortality world-
wide. In recent years, the overall prevalence and incidence
of a wide variety of cancer types has risen considerably and
is still expected to increase. Thus, the public health burden of
cancer and its economic and social impact cannot be
underestimated. Moreover, it is generally well accepted that
the efficacy of cytotoxic systemic therapy in the treatment of
cancer has reached a therapeutic plateau [1, 2]. New tools are
therefore needed to improve cancer treatment, as well as its
screening, diagnosis, and management. Cancer biomarkers
have emerged over the last few decades as valuable tools
paving the way for personalized medicine [3]. These biolog-
ical indicators of disease have transformed the molecular land-
scape of cancer, leading to more efficient disease diagnosis,
patient stratification, treatment, and surveillance. In addition,
the integration of various multi-dimensional Bomic^ analytical
platforms—genomics, transcriptomics, proteomics, and meta-
bolomics—has undoubtedly revolutionized biomarker dis-
covery by further unraveling the functional and pathological
mechanisms of malignant disease. However, despite huge

advancements in discovery efforts, only a limited amount of
cancer biomarkers have been approved for use in the clinical
setting. The majority of candidate biomarkers that depict
malignant transformation remain poor predictors of disease
and treatment outcome, and are thus not reliable clinical
tools [4]. In this review, we discuss recent advances in the
discovery and development of cancer-associated biomarkers.
We also highlight key innovative strategies in drug target dis-
covery and precision medicine. The challenges of tumor het-
erogeneity in cancer therapy, the accessibility of quantifiable
tumor material for biomarker evaluation, and current implica-
tions for translational research are also discussed.

2 Cancer biomarkers

A cancer biomarker can be broadly defined as an objectively
measurable parameter characterizing: (i) a malignant process or
(ii) a pharmacological response to therapy. Biomarkers can ex-
ist in the form of DNA, RNA, or protein molecules [3], al-
though emerging metabolic approaches are enabling candidate
cancer biomarker discovery of various metabolites in both the
preclinical [5, 6] and clinical setting [7–9]. Historically, the first
cancer biomarkers, tumor specific antigen carcinoembryonic
antigen (CEA), and urinary Bence Jones protein were identified
in colon carcinoma by the research group of Gold and
Freedman [10, 11]. From these pioneering findings, additional
biomarkers were subsequently identified in breast cancer (CA-
15-3), ovarian cancer (CA-125), and other human cancers (CA
19-9) [11]. However, while these classical biomarkers are
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routinely employed in tumor burden assessment, their presence
at high concentrations may also be an indicator of other
hyperproliferative conditions [12]. Thus, the use of these bio-
markers as early detection, predictive or prognostic factors is a
large subject of debate, due to their apparent lack of sensitivity
and specificity [11–13]. In this section, we summarize the role
of classical and novel cancer biomarkers in diagnostic, prog-
nostic, and drug development platforms. It is important to note,
however, that some of these biomarkers can overlap. For exam-
ple, a biomarker identified as a drug target can also have prog-
nostic or diagnostic potential.

2.1 Diagnostic and prognostic biomarkers

The clinical outcome of a malignancy considerably improves
with early disease detection and diagnosis. Different cancer
subtypes have distinct risk factors, clinical presentation, and
response to therapy. Thus, the stratification of cancer subtypes
based on their biomarker expression pattern is of great impor-
tance. In addition, these biomarkers are typically selected
based on the molecular profile of the tumor and can therefore
influence the selection of therapy in the clinic. A series of
clinically relevant cancer biomarkers at their varying Bomic^
levels are listed in Table 1.

2.1.1 DNA biomarkers

Cancer cells exhibit a broad range of genetic variations, which
include mutations in oncogenes, tumor suppressor genes, mis-
match repair genes (MMR), mitochondrial DNA (mtDNA) [14,
15], as well as single nucleotide polymorphisms (SNPs) and
short tandem repeats (STRs). These can serve as biomarkers
and can be analyzed using genomic and transcriptomic ap-
proaches. For example, mutations in oncogenes such as V-Ki-
ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) [16,
17] and epidermal growth factor receptor (EGFR) [16, 18] have
been revealed as predictive factors in malignant disease. KRAS

and EGFR driver mutations are shown to increase the risk of
metastatic disease in colorectal cancer (CRC) [19] and lung
cancer [20, 21]. Currently, KRAS status is the most utilized
predictive marker for response to anti-EGFR antibody-based
therapies. In metastatic CRC patients, KRAS activating muta-
tions are responsible for the failure of cetuximab- and
panitumumab-based therapeutic regimens [17]. These thera-
peutic approaches have also failed in wild-type KRAS CRC
patients harboring mutations for NRAS (neuroblastoma RAS
viral oncogene homolog) or BRAF or PIK3CA. The latter are
downstream of EGFR and can independently activate the RAS-
RAF-MAPK cascade. In lung cancer EGFR driver mutations
predict sensitivity to similar targeted therapy [18]. However,
while EGFR-mutated lung cancers initially respond to targeted
therapy, acquired second-site EGFR mutations can also predict
resistance to therapy [22].

TP53 is frequently mutated in human cancers [23], and as
such is relevant as a biomarker in a broad spectrum of cancers.
Moreover, several lines of clinical evidence have demonstrat-
ed that a disrupted TP53 genomic status is associated with
failure to standard therapy [24–26]. Similarly, genetic alter-
ations in the cyclin-dependent kinase inhibitor A (CDK2NA)
and retinoblastoma (RB1) tumor suppressor genes have also
been linked to metastatic disease and treatment outcome in a
number of human cancers [27–29]. In addition to these, breast
cancer type 1 susceptibility protein (BRCA1) mutational status
is a well-known predictor of treatment benefit to targeted poly
[ADP-ribose] polymerase (PARP) therapy in breast cancer
[30] and ovarian cancer [31]. Several clinical trials have dem-
onstrated that PARP inhibitors such as olaparib are effective as
maintenance therapy in a selected patient sub-group harboring
germline or somatic mutant BRCA in their tumor [30].

DNA methylation is one of the most studied epigenetic
alterations commonly observed in cancer [32]. The develop-
ment of sequencing-based high-throughput assay techniques
has enabled profiling of the methylome thereby leading to the
discovery of candidate cancer-associated markers. In CRC,

Table 1 Cancer biomarkers in
clinical use Biomarker Biomolecule Specimen Clinical application Cancer type

EGFR DNA Tissue Prediction/prognosis NSCLC

KRAS DNA Tissue Prediction/prognosis Colon

MSI DNA Tissue Prediction/prognosis Colon

CEA Protein Serum Monitoring Colon

PSA Protein Serum Diagnosis Prostate

c-Kit Protein Tissue Diagnosis Gastrointestinal

HER2-neu Protein Tissue Prediction/prognosis Breast

Estrogen receptor (ER) Protein Tissue Prediction/prognosis Breast

Progesterone receptor Protein Tissue Prediction/prognosis Breast

CTCs (EpCAM, CD45,
cytokeratins 8, 18, 19

Protein Blood Prediction/prognosis Breast

CEA carcinoembryoinc antigen, NSCLC non-small cell lung cancer
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for example, hypermethylated APC, p16INK4a, and TIMP3
genes have been reported as potential biomarkers for early
cancer detection [33]. A microarray-based genome-wide
DNA methylation analysis performed by Szmida and collab-
orators [34] has demonstrated a differential methylation status
in four ErbB-associated genes (PIK3CD, PKCΒ, ERBB4,
PAK7). In addition, their result revealed that hypermethyla-
tion of PKCΒ was significantly associated with KRAS muta-
tions, whereas hypermethylation of ERBB4 was associated
with high-methylation epigenotypes (HME), and BRAF mu-
tations [34]. PKCB regulates cell proliferation and promotes
angiogenesis. Therefore, the relationship between DNAmeth-
ylation and PKCB gene expression has been shown to be an
interesting element in the context of CRC chemoprevention
and targeted anti-cancer therapy. Recently, the detection of
SEPT9 methylation appears to hold promise for the specific
diagnosis of CRC [35]. Three assays based on the detection of
methylated SEPT9 in blood are being promoted as colorectal
cancer screening tests: Epi proColon 1.0 (Epigenomics),
ColoVantageTM (Quest Diagnostic), and RealTime ms9
(Abbott).

Microsatellite instability (MSI), a somatic alteration caused
by the loss of DNAmismatch repair activity and characterized
by a hypermutable phenotype, is another molecular marker
with unique prognostic features [36]. Interestingly, the major-
ity of MSI events have been classically found in a distinct
pathological subset of colorectal cancer (CRC) and more often
have a favorable clinical outcome when detected at early
stages [17, 36]. A subset of CRCs harboring high level MSI
(MSI-H) signatures have been reported to specifically exhibit
a hypermethylation phenotype caused by methylation of ei-
therMMR or non-MMR genes [37, 38].While several lines of
evidence have demonstrated that these MSI profiles are pre-
dictive markers for resistance to 5-FU-based chemotherapy
[39, 40], other studies have shown that they may confer sen-
sitivity to irinotecan and mitomycin [41, 42]. More recently,
Hause et al. have identified MSI signatures in 14 other cancer
types [43]. Analogous to CRC, the MSI status across these
cancer types was generally reported to be a positive prognostic
factor [43].

Epigenetic alterations, implicated in the silencing of tumor
suppressor genes or transcriptional activation of cancer-
associated genes, have also been reported as potential cancer
biomarkers. In prostate cancer, it has been demonstrated that
differential CpG-island methylation of the glutathione S-
transferase (GSTP1) gene promoter, plays a role in risk strat-
ification [44, 45]. Promoter region methylation of O6-
methylguanine-DNA-methyltransferase (MGMT) in glioblas-
toma (GBM) is associated with a favorable clinical outcome
and can predict response to standard therapy [46]. Histone
modifications such as acetylation, deacetylation, and methyl-
ation may also be useful in the clinical management of cancer.
Although histone modifications have not been fully

investigated as potential cancer biomarkers, evidence suggest
that specific modification patterns could be important in
cancer risk assessment and prognosis [47, 48].

Circulating cell-free DNA (cfDNA) represents a promising
source for the detection of cancer-specific genetic alterations
[49]. Cell-free DNA is released into biological fluids (blood or
urine) by apoptotic/necrotic cancer cells or by lysis of circu-
lating tumor cells (CTCs) [50]. The screening of such fluids
can therefore reflect tumor burden and other clinical parame-
ters. It is generally accepted that increased levels of serum
cfDNA are indicative of the degree of malignancy, while
decreased cfDNA levels are used to monitor response to
therapy. Therefore, cfDNA is considered as a valid
prognostic factor in a number of human cancers [51–54].
Moreover, several studies have reported significantly higher
levels of cfDNA in CRC patients compared to healthy
controls [55]. These emerging data thus demonstrate the
potential utility of cfDNA as a non-invasive biomarker.

2.1.2 RNA biomarkers

In contrast to DNA-based biomarkers which can be molecu-
larly interrogated as individual markers, cancer-associated
RNA markers are characteristically assessed as collective bio-
marker signatures, through analysis of changes in gene ex-
pression patterns [56]. This approach can be useful for early
disease detection and can hold diagnostic, prognostic, and
predictive value [57]. Moreover, the development of high-
throughput applications such as transcriptome sequencing
(RNA-seq) has enabled the identification of these cancer-
specific RNA signatures by measuring the genome-wide
expression profile of cancerous versus normal samples.
RNA-seq methodologies have low background noise, a large
dynamic range, and are highly accurate and reproducible. In
addition, RNA-seq-based transcriptome analysis can also dif-
ferentiate specific cancer types from other cancers [58, 59].
For example, Peng and colleagues have recently demonstrated
that a lung cancer-specific gene expression signature contain-
ing SFTPA1and SFTPA2 genes can accurately distinguish lung
cancer from other cancer types [58]. The investigators also
reported that SFTPA1 and SFTPA2, described as critical fac-
tors in normal lung function [60], have strikingly downregu-
lated gene expression levels in lung tissue compared to adja-
cent non-tumoral tissue [58].

Disease-specific gene expression signatures can also be
obtained with the use of other high-throughput technologies
such as microarray [61], serial analysis of gene expression
(SAGE) [62], and bead-based microfluidics analysis [63]. In
breast cancer, recent clinical guidelines recommend the use of
validated multi-gene messenger RNA (mRNA)-based prog-
nostic assays such as OncotypeDx and MammoPrint, which
measure the likelihood of disease recurrence as a support to
clinical decision-making [64]. Evidence also suggests that
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these diagnostic tests may also predict clinical benefit to stan-
dard therapy. The OncotypeDx assay, for example, consists of
a 21-gene signature panel that covers several metastatic path-
ways including MMP11 and GRB7 [65]. In CRC, the
ColoPrint assay, comprising an 18-gene signature panel, has
been shown to hold great prognostic value for stage II patients
and might be useful to drive adjuvant therapy decision in this
patient population [66].

Transcriptome analysis of alternative splice-site variants is
an active area of biomedical research. Alternative splicing has
been implicated in cancer pathogenesis [67] and response to
therapy [68], and is therefore a suitable source for biomarker
development. For example, the presence of an alternatively
spliced androgen receptor variant 7 (AR-V7) has been identi-
fied in castration-resistant prostate cancer (CRPC) patients and
is linked to a reduced response to targeted therapy [69].
Furthermore, EGFR variant III (EGFRvIII) expression has
been widely reported in a clinically distinct subset of advanced
GBM and is a poor prognostic factor for both overall survival
and response to standard anti-EGFR therapy in GBM [70].

RNA-seq analysis is also an essential tool in the quantifica-
tion of other RNA species, which include long non-coding
RNAs (lncRNAs) and small non-coding RNAs such as
microRNAs (miRNAs) and picoRNAs (piRNAs). Of note,
the overexpression of specific lncRNAs and differentially
expressed lncRNAs patterns have been examined as prospec-
tive biomarkers in cancer management. Wang et al. recently
suggest that a unique 12-lncRNA signature is a negative prog-
nostic factor in breast cancer [71], while Presner et al. demon-
strate that the lncRNASChLAP1 is a potential marker for met-
astatic progression in prostate cancer [72]. In similar fashion,
the lncRNA PCA3 has received indication as a valid diagnostic
biomarker in prostate cancer. PCA3 is elevated in over 90% of
prostate cancers and is therefore an established tool in prostate
cancer screening [73, 74]. For the small non-coding RNAs, the
best described candidate biomarkers are miRNAs. miRNAs
derived from tissue or plasma can be profiled via small
RNA-seq [75]. Using the small RNA-seq technology,
miRNA signatures associated with poor clinical outcome have
been compiled for prostate cancer [76], lung cancer [77], oste-
osarcoma [78], and other cancer types [75, 79]. Importantly,
circulating miRNAs derived from biological fluids (e.g.
miR-141 and miR-375) have been presented as promising di-
agnostic markers for prostate cancer [80, 81]. The investiga-
tions demonstrate a link between miRNA expression levels
and adverse risk factors in prostate cancer. In CRC patients, a
variety of miRNAs have been investigated for their utility in
the diagnostic, prognostic, or predictive setting [82]. For ex-
ample, Guang-Hui Liu and collaborators [83] measured the
levels of five miRNAs (miR-21, miR-31, miR-92a, miR-18a,
and miR-106a) in serum samples from 200 CRC patients, 50
advanced adenoma patients, and 80 healthy controls by real-
time quantitative polymerase chain reaction. The authors found

that miR-21 and miR-92a serum levels have potential value for
early detection of CRC. Furthermore, it has also been shown
that miR-92a could be of prognostic value in CRC patients
[83]. In another study, circulating levels of miR-15b, miR-
18a, miR-19a, miR-19b, miR-29a, and miR-335 could dis-
criminate CRC patients from healthy controls [84]. miR-19a
is also a useful tool to predict resistance to first-line FOLFOX
chemotherapy regimen in patients with advanced CRC [85].

2.1.3 Protein biomarkers

Similar to the previously discussed RNA-based expression
profiling (Section 2.1.2 above), the proteome can also be in-
terrogated for cancer-specific expression profiles with the use
of high-throughput proteomic techniques [86]. Interestingly,
researchers have recently uncovered a cancer-specific signa-
ture derived from the profiling of ribosomal proteins [87].
Indeed, a number of ribosomal proteins have tissue-specific
expression patterns. The findings demonstrate that these
tissue-specific patterns can be modulated depending on the
individual cancer type, pointing to the potential of these
signatures in the prognostic setting [87]. Other promising
findings have revealed a protein expression signature to drug
response in various cancer models [88]. Using shot-gun pro-
teomics, the study identifies a 12-protein EGFR inhibition
signature, which includes c-jun, Jagged 1, and Claudin 4 as
part of the repertoire [88].

In breast cancer, the estrogen receptor (ER) is the most
established protein biomarker for disease classification [89,
90]. Breast tumors with varying ER status intrinsically differ
in their accumulation of aberrations at the genomic and tran-
scriptional level [91, 92]. Alterations in the progesterone re-
ceptor (PR) and human epidermal growth factor receptor 2
(HER 2) are also routinely employed in breast cancer classi-
fication [89]. While ER and PR status play a principal role in
clinical decision-making and the selection of hormonal thera-
py, HER2 status predicts a benefit to targeted therapy [93].
Androgen receptor (AR) status [94], Ki67 proliferation index
[95], and topoisomerase II alpha (TOP2A) expression [96]
have also been employed as prognostic and predictivemarkers
in breast cancer subtyping. Of note, our research group has
recently identified a stromal-derived protein, asporin, as a
prognostic factor in breast cancer [97]. Our findings reveal
that low asporin expression is associated with decreased over-
all survival (OS) and metastasis dissemination [97]. In pros-
tate cancer, current clinically approved protein biomarkers are
not ideal as they cannot adequately distinguish between pa-
tient sub-groups who should receive treatment for the aggres-
sive form and those who should avoid overtreatment for the
indolent form. A classic example of this obstacle is the well-
described prostate specific antigen (PSA). Although PSA sta-
tus is used as a prostate cancer screening tool, it is limited in its
diagnostic capabilities, due to its lack of sensitivity and
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specificity [98]. Several studies have shown that inflammatory
and non-cancerous events can elevate PSA levels, leading to
false-positive test results during screening [99, 100].

2.1.4 Metabolic biomarkers

Like RNA and proteins, metabolites can also be nominated for
profiling signatures associatedwith clinical outcome andman-
agement. These signatures which can be detected via differing
metabolic profiling modalities generally indicate a modulation
in the metabolic process, with levels of amino acids, choline
derivatives, tricarboxylic acid cycle intermediates, and among
other metabolites being altered [101]. Distinct metabolic pro-
filing signatures with potential predictive and prognostic value
have been identified for colon cancer, ovarian cancer [6],
breast cancer [102], and bladder cancer [103]. In glioma, mu-
tations affecting isocitrate dehydrogenase (IDH) are associat-
ed with a unique metabolic signature [104]. Importantly,
another study has revealed that mutant IDH activity drives
the production of the oncometabolite (R)-2-hydroxyglutarate
(2-HG) [105]. Experimental evidence has shown that 2-HG is
present at a minimal range in normal cells. However, in IDH-
mutant cells, 2-HG concentration levels are reported to be
increased by up to 100-fold compared to levels found in nor-
mal cells [106], thereby identifying 2-HG as a candidate me-
tabolite in cancer screening approaches.

2.1.5 Exosomal biomarkers

Exosomes are small extracellular vesicles that are secreted by
cells into biological fluids such as blood and urine and have
been described as valuable tools in disease monitoring.
Exosomal proteins have been presented as candidate bio-
markers in the clinical management of melanoma [107], lung
cancer [108, 109], and other cancers [110]. Among these
exosomal proteins, CD63 a member of the tetraspanin family
of scaffolding proteins has emerged as a valid marker in can-
cer diagnosis and prognosis. Investigators have demonstrated
that CD63+ exosomes are present at a higher level in malig-
nant cells compared to normal cells [107, 110]. In the same
line, our group has identified myoferlin, a novel exosomal
protein, as a potential prognostic marker in breast cancer and
pancreatic cancer [111–114].We have demonstrated that over-
expression of myoferlin in triple negative breast cancer
(TNBC) is a negative prognostic factor associated with worse
overall survival (OS) and metastatic disease [112]. Our find-
ings in pancreatic cancer also reveal a correlation between
myoferlin overexpression and a poor clinical outcome [114].

Exosomes that carry extracellular RNA protect them from
degradation and these can therefore be used in diagnostic and
prognostic platforms [115]. For example, RNA biomarkers
such as PCA3 can be detected in exosomes derived from the
urine specimens of prostate cancer patients [116]. In addition,

exosomes isolated from glioma cells have been found to con-
tain mutant EGFRvIII RNA [117]. Exosomal miRNA has also
been shown to have potential value in the clinic. An 8-miRNA
diagnostic signature previously identified in the tissue speci-
mens of ovarian cancer patients, has been identified in serum-
derived exosomes isolated from the same patients [118]. The
comparison between tissue-derived exosomes and circulating
exosomes in a small cohort of lung cancer also demonstrated
comparable miRNA signature patterns between the examined
specimens [119].

2.1.6 Volatile organic compounds

Breath analysis, a relatively new field of research, is based on
the assumption that specific volatile organic compounds
(VOCs) are formed as a consequence of altered pathways
during cancer initiation and progression [120]. Enhanced gly-
colysis, ROS accumulation and fatty acid oxidation are some
of the biological processes able to alter the production of
VOCs. Cancer VOCs originating from tumor cells released
into the tumor microenvironment and blood circulation can
arrive to the pulmonary epithelium. Therefore, the evaluation
of exhaled breath samples (usually containing around 3000
compounds) is a potential source of cancer biomarkers.
Breath can be analyzed through non-invasive techniques
coupled with mass spectrometry-based approaches.
However, the analysis of exhaled breath may be challenging
mainly due to the limited knowledge of the biochemical
mechanisms that regulate cancer-related VOCs. Another po-
tential challenge is breath sample collection, storage and VOC
stability for long-term studies. Interestingly, the presence of
cancer cell-derivedVOCs in urine gives to this biological fluid
a typical odor that can be recognized by trained dogs and thus
represents a possible application for this new class of bio-
markers. For example, in a study conducted by Cornu and
collaborators, a trained dog was able to discriminate between
prostatic cancer patients and healthy controls. The test had a
sensitivity and specificity of 91% [121]. In another study, six
dogs were trained to identify patients with bladder cancer with
a mean success rate of 41% [122]. However, although VOCs
seem to hold great potential in cancer diagnosis, no
Buniversal^ tumor marker has been approved for any cancer
type to date. Further screening and large-scale studies are
therefore mandatory. Table 2 lists some VOCs identified in a
number of human cancers.

2.2 Accessible biomarkers

The limitations of standard anti-cancer therapy such as high
toxicity associated with targeting non-malignant cells has
generated a significant need for alternative therapeutic
approaches. Indeed, targeted therapeutic strategies that
specifically target the tumor site have emerged as viable
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alternatives with accessible biomarkers being the forefront
candidates for such approaches [130]. Accessible biomarkers
can either be membrane bound proteins or found in the
extracellular matrix (ECM) of the tumor microenvironment.
Ideally, a clinically relevant accessible biomarker should be only
expressed in the tumor and not present in normal tissues. In this
regard, the specific delivery of bioactive compounds or ligands
coupled to cytotoxic drugs to the tumor site will enable effective
inhibition of malignant cells with minimal toxic side effects.

Accessible biomarkers can also have diagnostic and prog-
nostic value. Affinity ligands created against suitable targets
can be coupled with imaging reagents (fluorescent dyes, ra-
dioisotopes, nanoparticles, among others), enabling disease
profiling or monitoring of the biodistribution and therapeutic
efficacy of a particular cytotoxic agent. Some notable exam-
ples include molecular imaging of HER2-positive breast can-
cers with radioconjugates such as 89Zr-trastuzumab [131, 132]
or radiolabeled affibody molecules [133–135] for positron
emission tomography (PET) imaging. Immunofluorescent
labeling of membrane-bound HER 2 with quantum dot fluo-
rescent probes for cellular imaging modalities has also been
described [136]. Targeting abundant ECM proteins is another
means to bring engineered compounds in close proximity to
tumor cells. For instance, various isoforms of fibronectin (FN)
have been described as valid targets in the delivery of toxic
compounds to the tumor microenvironment. L19, a monoclo-
nal antibody directed towards extra domain B of FN, has
demonstrated successful tumor targeting ability and
biodistribution in preclinical and clinical studies [137]. In ad-
dition, a number of L19 derivatives have been developed in
the preclinical setting, including conjugates to fluorophores,

liposomes, cytokines, and enzymes [138]. In similar fashion,
G11, a monoclonal antibody directed against domain C of the
stromal-derived tenascin C, has also been described as a po-
tential targeting component for the selective delivery of ther-
apeutic and imaging agents [139].

3 Innovative approaches for cancer biomarker
discovery

The development of innovative and high-throughput tech-
niques in recent years has led to rapid proliferation in the
identification of potential cancer biomarkers. Since the iden-
tification of the first cancer-associated biological signature by
pioneering high-throughput technologies such as SAGE [62]
and high-capacity microarrays [140], novel and original mo-
lecular technologies that interrogate several Bomic^ subtypes
have continued to emerge. Here, we present some of such
promising techniques in cancer biomarker discovery.

3.1 Novel chemical proteomic methodologies
for accessible biomarker discovery

The cancer proteome is a critical component in the patholog-
ical mechanisms that underlie malignant disease. Taking the
latter into consideration, more recent efforts have directed
their focus on integrative proteomic platforms as a valid ap-
proach for biomarker discovery. One such approach, chemical
proteomics, involves the characterization of candidate pro-
teins either through compound-centric chemical proteomics
(CCCP) or activity-based probe profiling (ABPP). The
compound-centric approach focuses on the mechanism of ac-
tion of a known bioactive compound, while the activity-based
approach centers on the enzymatic activity of the candidate
protein [141]. A number of excellent reviews have discussed
the CCCP strategy in detail [142–144]. In this section, we
highlight some innovative and promising ABPP chemical pro-
teomic techniques.

The ABPP methodology enables the detection of proteins
via covalent modification of an exposed side residue with a
chemical reagent such as biotin. It is important to note that this
described approach can particularly be exploited in the label-
ing of accessible biomarkers present in tumor vasculature in
situ. As a direct consequence, the labeling of these accessible
biomarkers ensures the target proteins retain their native form
and structural integrity [145]. To this end, and as a means to
screen for candidate accessible markers, our group and others
have developed an original ex vivo biotinylation methodology
consisting of target protein labeling within intact biological
specimens followed by purification and recovery on a
streptavidin resin [146, 147]. The described ex vivo chemical
proteomics approach has a number of advantages: (1) it is
sensitive and easy to implement, (2) it enables the reduction

Table 2 Cancer-related volatile organic compounds (VOCs)

VOCs Cancer type Reference

Pentanal
Hexanal
Octanal
Nonanal

Lung [123]

Butan-1-ol
3-Hydroxybutan-2-one

Lung [124]

Hexadecanal Lung [125]

Dodecane Lung [126]

5-(2-Methylpropyl)nonane Lung [127]

2,6-Di-tert-butyl-4-methylphenol
2,6,11-Trimethyldodecane
Hexadecanal
3-Methylhexane
Dec-1-ene
Caryophyllene
Napthalene
Trichloroethene

Breast [128]

3-Hydroxybutan-2-one
Ethelynbenze
Decane

Liver [129]
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of sample complexity prior to subsequent proteomic process-
ing, (3) a large number of accessible proteins can be identified
using comparative proteomic methodologies such as mass
spectrometry, (4) the choice of biotin as a protein tag enables
easy purification even in the presence of heavy anionic sur-
factants (such as sodium dodecyl sulfate (SDS)), and (5) the
cancer-associated proteins identified with this method have
been demonstrated to be viable targets for anti-cancer thera-
peutic strategies[148–150].

3.1.1 Ex vivo biotinylation of tissue

Ex vivo biotinylation of accessible proteins present in biopsy
tissue involves treatment with a reactive ester derivative of
biotin that penetrates tissue via the extracellular space of the
tumor lesion. This approach has been demonstrated by our
group and others to facilitate the identification of extracellular
matrix (ECM) and membrane-bound proteins in primary can-
cers of the breast [148], pancreas [151], kidney [146], and
colon [152], as well as secondary cancers of the liver [153].
In breast cancer, biotinylation of biopsy tissue identified,
versican, a large secreted proteoglycan as a potential candidate
for targeted anti-cancer therapy [148]. Moreover, our results
from biotinylation and comprehensive proteomic analysis of a
large collection of pancreatic ductal adenocarcinoma (PDAC)
tissue identified transforming growth factor beta-induced pro-
tein (TGFBI), latent growth factor beta binding 2 (LTBP2) and
asporin, as relevant proteins in the clinical management of
PDAC [151]. Following ex vivo perfusion and biotinylation
of colorectal cancer (CRC) tissue, we also identified two po-
tential clinically relevant targets, NGAL and GW112 [152].
As a point of interest, we and others have also demonstrated
the potential clinical applicability of the ex vivo method in
biomarker discovery through perfusion and biotinylation of
tumor-bearing murine models of kidney cancer [146] and
lymphoma [154]. Indeed, these investigations resulted in the
identification of several novel tumor-specific biomarkers
[146], further providing a basis for the translation of this meth-
od in human kidney tumors (see Section 3.1.2 below).

Chemically modified biotin labels accessible proteins
through their primary amine group [148]. However, a number
of accessible proteins do not bear these amine groups and will
not be recovered by biotinylation. Considering the fact that a
large number of accessible proteins are glycosylated [155],
our group has also developed a methodology that comprehen-
sively captures (1) biotinylated proteins, (2) glycoproteins, or
(3) neither (Brest-fraction^) in three sequential steps [150].
Whereas our original biotinylation methodology employed
the use of NHS-biotin as a biotinylation reagent, the reagent
of choice for the latter described methodology is sulfo-NHS-
biotin. The use of sulfo-NHS-biotin has several advantages
due to the presence of a sulfonate group, including increased
solubility in water leading to better detection of biotinylated

peptides. The use of sulfo-NSH-biotin also enables direct al-
kylation after streptavidin-based affinity purification and over-
comes the bottleneck of sample contamination by tryptic
streptavidin peptides [145]. Importantly, for the glycopeptide
capture step, our approach makes use of a previously de-
scribed hydrazide-based extraction method [156, 157]. We
have also demonstrated that the Brest-fraction^ group of pro-
teins also contains a large number of relevant accessible bio-
markers, thus enabling the potential discovery of clinically
relevant markers and establishing this step as an important
part of our methodology [150]. In addition to our described
approach employing a minimal amount of already scarce tu-
moral material, protein quantification is also accurate and re-
producible due to the use of several internal standards. We
have validated this specific technique in breast cancer tissue,
providing important data on 93 differentially modulated pro-
teins some of which have never been described to be associ-
ated with breast cancer pathogenesis [150]. Of these novel
biomarkers, CD276, a membrane-bound glycoprotein, was
demonstrated to be differentially expressed in the examined
breast cancer lesions [150].

3.1.2 Ex vivo biotinylation of organ specimens

Based on the promising data obtained from the ex vivo perfu-
sion and biotinylation of tumor-bearingmice [146], we initiated
a proof-of-principle study to examine the presence of accessible
and abundant antigens in surgically resected human kidneys
with clear cell carcinoma [149]. Following nephrectomy,
ex vivo perfusion and biotinylation was performed on the kid-
ney specimens (n = 3), resulting in selective labeling of the
vascular portions of the tumor. Our method resulted in the iden-
tification of a large number of kidney tumor markers (184
tumor-specific proteins were identified from a total of 637 in-
vestigated proteins). Candidate biomarkers included periostin,
versican, integrin-α1, thrombospondin-2, fibromodulin, and fi-
bronectin. In addition, based on their expression profile in the
tumor microenvironment (epithelia vs. stroma), this method has
also enabled the classification of these protein targets for poten-
tial ligand-based targeting approaches [149]. Overall, our ap-
proach is applicable for biomarker discovery and validation in
other surgically resected human organ and tissue types. Further
investigations are thus warranted.

3.2 Profiling of the cancer secretome

Tumor interstitial fluid (TIF), a liquid phase that accumulates
in the tumor interstitium, is an often ignored component of the
tumor microenvironment. TIFs, also known as the cancer
secretome, represent a valuable source for potential bio-
markers. In recent years, proteomic profiling of cancer
secretomes has enhanced the identification of novel candidate
protein-based biomarkers in a variety of tumor types
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[158–163]. The collection of the cancer secretome can be
performed directly at the disease site or ex vivo on biopsy
tissue. The in vivo collection of secretomes is possible through
the use of microdialysis devices [164] or through capillary
ultrafiltration probes [165, 166]. The first is a widely used
technique in neuroscience; however, it works preferentially
for small peptides that can easily traverse the dialysis mem-
brane. The latter has been developed to capture larger proteins.
Both techniques comprise of the insertion of a device at tumor
site, which renders these approaches not always applicable for
human cancers. Alternatively, the cancer secretome can be
collected ex vivo on freshly excised biopsies. For this purpose,
two methods are available: the first utilizes tissue centrifuga-
tion at lowG-force and the second relies on the passive elution
of proteins from the tissue. The centrifugation-based method
was originally developed on experimental animals [167] and
sequentially employed in humans for ovarian carcinomas
[168]. The main disadvantage of this method is the low yield
of secretome obtained. Isolation of cancer secretome based on
the passive elution technique has been optimized on breast
cancer biopsies by Celis and collaborators [158]. The method
consists of incubating a small piece of a fresh biopsy in buffered
saline phosphate (PBS) or serum-free medium during a period
of time varying from 1 to 24 h at 37 °C, in a CO2 humidified
incubator. The fluid, corresponding to the cancer secretome, is
then collected and prepared for proteomic analysis. This ap-
proach has been employed by many researcher groups and
applied to mouse and human tissue for biomarker discovery
efforts in renal cell carcinoma [163], hepatocellular carcinoma,
ovarian cancer [169], and colorectal cancer [159]. Several pro-
teins have been presented as potential biomarkers (Table 3), but
none of them has been broadly validated to satisfy the criteria
required for clinical application. Interestingly, this approach has
been evaluated for the identification of early diagnostic bio-
markers for CRC on mice that develop spontaneous [159] or
chemically induced [172] tumors.

3.3 Identification of candidate biomarkers

Following recovery and purification, biotinylated or captured
proteins can be further processed by high-throughput identifi-
cation and validation methods. In the following section, we
briefly discuss currently established approaches in the identi-
fication and evaluation of clinically relevant biomarkers and
targets.

3.3.1 Bioinformatics methods

The identification of candidate cancer biomarkers has ad-
vanced through the use of bioinformatics tools that enable
the analysis of large datasets containing a vast amount of in-
formation derived from diverse studies. A database screening
approach (UniGene/EST) that employs a highly stringent

BLASTalgorithm against an expressed sequence tag of a target
protein is among the earliest described bioinformatics tools
used to identify potential biomarkers [173]. In this perspective,
Huminiecki and colleagues identified four novel endothelial
cell-specific genes (ECSM 1-3 and magic roundabout) using
the UniGene/EST approach combined with SAGE and
RT-PCR [173]. In addition, groups of proteins can also be
examined and identified using the publicly accessible
STRING program [174]. The rationale behind STRING anal-
ysis is to screen and identify the most relevant biological clus-
ters of accessible cancer biomarkers. In addition, modulated
proteins can be connected according to their biological expres-
sion, regulation, and function [174].

Bioinformatics processing of mass spectrometry data can oc-
cur with various software tools that have been developed to
support data collection and data analysis. Such bioinformatics
tools include DeepQuanTR which enables pairwise comparison
of the average normalized signal intensities for multiple peptides
corresponding to the same protein in a number of tissue samples
[175]. In addition, state-of-the-art comparative proteomic anal-
ysis typically requires a large sample number to establish proof-
of-principle, which cannot be achieved with conventional pro-
teomic strategies such as exogenous isotopic labeling. To elim-
inate this obstacle, DeepQuanTR has been designed to have no
limit in sample number analysis, enabling the processing of a
significant number of samples for large-scale proteomic projects
[175]. The DeepQuanTR approach has been applied for protein
identification in the previously described ex vivo biotinylation
procedure for surgically resected human kidney tumors (n =
637), where two ECM-derived (fibronectin and tenascin) were
identified as relevant for this malignancy [149]. DeepQuanTR
was also employed for the comparative proteomic analysis of
three syngeneic murine models of liver metastasis using an
in vivo biotinylation approach [153]. The analysis led to the
identification of 12 disease-specific proteins, further validated
by immunofluorescence and in vivo tumor targeting with
radiolabeled antibodies. It is important to note that
DeepQuanTR analysis not only retroactively identifies proteins
through alignment algorithms, but also identifies differentially
regulated protein splice variants [175].

3.3.2 Verification and validation of candidate biomarkers

Following their identification, potential biomarkers undergo
pre-validation via high-throughput verification methodologies.
Moreover, before moving through to the validation stage, it is
essential that candidate biomarkers are also verified using strin-
gent guidelines as well as a large number of samples to avoid
Bfalse-positives^. Differentially expressed proteins can ideally
be verified by immunohistochemistry (IHC), fluorescence in
situ hybridization (FISH), RNA in situ hybridization or other
in situ molecular techniques on tissue microarrays (TMAs)
[176, 177]. The TMA methodology enables the simultaneous
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detection of multiple specimens by comparing normal and tu-
moral tissue specimens as a means to unravel the clinical rel-
evance of the biomarker candidate. Interestingly, other inves-
tigators have also adapted the TMA methodology to include
frozen tissue [178] and needle biopsies [179].

More recent verification approaches include targeted
methods such as multiple reaction monitoring (MRM) or
MRM coupled to stable isotope standard with capture by
anti-peptide antibodies (SISCAPA) [180, 181]. MRM is a
quantitative method utilized to screen for a large number of
candidate biomarkers. In addition, this approach has excellent
multiplexing capabilities and is substantially more sensitive
and accurate than conventional biomarker discovery tools.
The targeted MRM methodology provides absolute structural
specificity of the analyte, resulting in increased accuracy of
analysis. Moreover, this approach has the advantage of being
faster and less expensive than other verification methods due
to its high-throughput capabilities and the non-use of antibod-
ies. On the other hand, while conventional TMA approaches
have an advantage of using a low amount of formalin fixed
tumor specimens; MRM analysis requires high-quality frozen
tissue which may have limited availability. However, by

employing anti-peptide antibodies to enrich candidate pep-
tides, the SISCAPA approach coupled to MRM provides ad-
ditional advantages such as increased measurement sensitivity
resulting in a significantly enhanced biomarker verification
output compared to other conventional methods [182, 183].

Surprisingly, despite its innovation and promise targeted
quantitativemass spectrometric analysis is not a widely accept-
ed tool for the validation of candidate biomarkers, as this ap-
proach is unable to achieve the accuracy and precision required
by regulatory bodies (such as the FDA) for subsequent clinical
implementation. As indicated, the validation of biomarker can-
didates requires the use of reliable antibodies that can quanti-
tatively assess each candidate. Classical methodologies such as
ELISA and radioimmunoassay (RIA) are typically employed
at this final step of the biomarker discovery pipeline [181].

3.4 Other innovative methods

Nanoproteomic technologies such as immuno-PCR (iPCR)
for quantitative detection of biomarker antigens [184] and
quantum dots for concurrent detection of multiple biomarkers
[185] represent emerging methodologies that have

Table 3 Cancer secretome-
derived biomarkers Candidate biomarker Cancer type Reference

NNMT

ENO2

TSP1

CD14

Renal cell carcinoma [163]

PRDX1 Ovarian [169]

Tubulin beta-2C chain

Serotransferrin precursor

Transgelin

Isoform C of formimidoyltransferase cyclodeaminase

Peptidylprolyl isomerase B precursor

IG kappa protein

Vimentin

Isoform M2 of pyruvate kinase isozymes M1/M2

Isoform 15 of fibronectin precursor

Actin, cytoplasmic 1

Hepatocellular carcinoma [170]

Calreticulin

Cellular retinoic acid-binding protein 2

Chloride intracellular channel protein 1

Elongation factor 1-beta

Galectin-1

Peroxiredoxin-2

Platelet-derived endothelial cell growth factor

Protein disulfide-isomerase

Ubiquitin carboxyl-terminal hydrolase 5

Breast [171]

CH13L1

MCM4

S100A9

Colon [159, 161]

Cancer Metastasis Rev



demonstrated superior sensitivity over classical approaches. In
addition, other tissue-specific techniques such as isotope-
coded affinity labeling [186], in vivo silica-based mapping of
proteins [187], and in vivo peptide display targeting [188]
have shown promise in the identification of candidate bio-
markers. Quantitative real-time RT-PCR, considered the Bgold
standard^ for quantifying and validating gene expression, can
also be performed on a high-throughput scale through the use
of microfluidic cards [63, 189].

4 Challenges in biomarker discovery

The identification and validation of clinically relevant bio-
markers remains one of the major limiting factors in the devel-
opment of diagnostic, prognostic, and therapeutic modalities.
Tumor specimens contain a complex mixture of DNA, RNA,
proteins, metabolites, and lipids, which can contribute to chal-
lenges in data interpretation and analysis. Candidate biomarkers
can also be difficult to validate and may call for different levels
of validation depending on their intended use [190]. Tumor
heterogeneity within and between individual patients addition-
ally has a profound impact on biomarker development [191].
Likewise, detecting candidate biomarkers with a low expres-
sion profile remains a significant challenge.

4.1 Biomarker source material

In malignant disease, the principal sources of biological mate-
rial available for biomarker discovery are tissue and blood. The
analysis of tumor tissue enables the study of its microenviron-
ment. However, the complexity associated with cellular het-
erogeneity can create a hindrance in this investigation. Tumor
tissue contains a diverse mixture of stromal fibroblasts, endo-
thelial cells, epithelial cells, and malignant cells. In addition,
modifications at the transcriptional and post-transcriptional
level of analytes present in the tumor microenvironment can
lead to the presence of diverse heterogenous polypeptide spe-
cies within an individual tumor. While laser capture microdis-
section (LCM) can circumvent the problem of cellular hetero-
geneity by capturing a histologically pure subpopulation of
cells for analysis [192], a major limitation with this approach
is the low amount of biomolecules (DNA, RNA, or protein)
recovered. For mass spectrometric analysis, biomarker discov-
ery typically requires a substantial amount of starting material
from 104 to 105 range in tumoral cells [193, 194], while for
oncogenomic analysis, 103 to 107 cells are typically required
[195]. In clinical practice, on the other hand, blood is the most
frequently used biological fluid for biomarker evaluation.
Although blood can be obtained through a less invasive pro-
cess compared to a tissue biopsy, the use of blood as a bio-
marker source material remains challenging due to the low
abundance of target material. It is well known that the human

plasma proteome has a dynamic range of over 12 orders of
magnitude with 99% of the protein mass represented by 22
proteins [196, 197]. For example, albumin, the most abundant
protein present in plasma, represents approximately 50% of the
total protein concentration [198]. As a direct consequence,
relevant biomarkers that are already heavily diluted in blood
circulation are masked by the huge number of these ubiqui-
tously distributed proteins of no clinical significance. Since
there is presently no established proteomic platform that can
quantitatively analyze a dynamic range of up to 1012 [196], it is
required that high-abundance plasma proteins are removed pri-
or to analysis [199, 200]. The removal of high-abundance pro-
teins can, however, increase the risk of losing important bio-
logical information, as low abundance candidate biomarkers
can also be co-depleted during this process [201].

The procurement of valuable human tissue for research
banking is also an important practice in the field of biomarker
discovery. However, standard guidelines require that procured
biopsy tissue be primarily disbursed for clinical purposes, and
the remaining scarce tissue donated for research intent after
thorough clinical expenditure [202]. Thus, in the research set-
ting, biomarker profiling with tumor tissue is further limited
by the small amount of sample available. For their potential
use, the banked tumor specimens are formalin fixed and em-
bedded in paraffin for IHC or flash frozen and embedded in
optimal cutting temperature compound (OCT) for the purpose
of obtaining histologically frozen sections. Nonetheless, due
to a frequent lack of adequate handling and preservation pro-
cedures, an additional concern among researchers is the poor
sample quality in a substantial proportion of the available
tissue specimens [203]. A lack of adherence of standard
operating guidelines in collecting, processing, storing, and
annotating these biological specimens in some research
facilities has also prompted a number of researcher to
question the validity and reliability of their data [203]. In
this context, standardized biological repositories, where
good laboratory practice, transparency, accountability, and
ethics are guaranteed, are currently established platforms in
the research sphere.

4.1.1 Tumor heterogeneity

As discussed previously, the burden of heterogeneity in solid
tumors presents an obstacle in biomarker discovery. Breast
cancer, for instance, has many diverse molecular subtypes
including luminal A and B, basal-like, HER2+ and ER+.
Thus, due to the recognized challenges linked to tumor het-
erogeneity, the concept that one biomarker can be a sole dis-
ease predictor for all patients may need to be replaced by the
paradigm that each patient subset possesses its own set of
unique biomarkers. This by extension will have an impact
on the manner in which biomarker discovery studies are de-
signed and executed. One important aspect that needs to be
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taken into consideration is that currently employed statistical
methodologies in biomarker discovery are designed for homo-
geneous disease. This could largely explain the low success
rate attributed to the clinical translation of candidate bio-
markers. Using Monte Carlo simulation [204], Wallstrom
and colleagues demonstrate that larger sample size is required
for candidate biomarker selection for heterogeneous disease
compared to homogenous disease [205]. In addition, the au-
thors also revealed that the two disease models require differ-
ent statistical tests for adequate selection and analysis. For
heterogenous populations, the use of non-parametric statistical
tests such as PAUC were deemed appropriate for improved
efficiency in candidate biomarker assessment [205].

Spatial heterogeneity, a fundamental biological feature of
the tumor microenvironment [206], can also add an additional
level of complexity to biomarker discovery and development.
Regional differences within a solid tumor (e.g., oxygen avail-
ability) can exert differing selective pressure on distinct re-
gions of the tumor giving rise to a wide variety of dominant
subclones. As they evolve over time, such heterogenous
subclones can have a direct impact on clinical presentation
and treatment response. Moreover, spatial differences within
the tumor can also contribute to potential sampling bias in
biopsy specimens, limiting the ability to adequately identify,
validate, and reproduce relevant biomarkers. Since cancer
drivers may vary over the course of the disease, there is there-
fore a pressing need to identify potential biomarkers in the
context of tumor spatial heterogeneity. While, in reality, this
may be difficult to execute, some recent biomarker-driven
studies including BATTLE-2 (NCT01248247) and Lung-
MAP (NCT02154490) are identifying predictive biomarkers
based on tumor profiling over the clinical course of the dis-
ease. In addition, the recently initiated TRACERx study
(NCT01888601), in which multiregional and longitudinal tu-
mor sampling is performed from diagnosis to relapse has im-
portant implications for biomarker-based precision medicine
[207]. Importantly, the DARWIN II trial (NCT02183883)
may also help determine the impact of subclonal cancer
drivers on anti-tumor response and resistance to therapy
through extensive biomarker analysis of genomic and immune
markers.

4.2 Biomarker discovery in preclinical animal models

The use of genetically engineered animal models that can
recapitulate distinct features of human cancers is an
established paradigm in biomarker discovery and preclinical
drug testing [208, 209]. As previously highlighted, identifying
biomarkers derived from blood has been so far limited by the
fundamental complexity and variability of the human plasma
proteome [197]. Due to the absence of environmental and
genetic variability in isogenic strains of tumor-bearing mice,
evaluating plasma derived from such models can be vital in

accelerating the biomarker pipeline from the identification,
verification, and validation of cancer-specific markers [210,
211]. Despite their promise, however, many preclinical animal
models are unable to accurately predict the clinical efficacy of
a novel biomarker or cancer agent due to their inability to
reflect the complexity and spatial heterogeneity of a human
tumor. Thus, in an effort to improve clinical applicability,
patient-derived tumor xenograft (PDTX) models that parallel
the genetic and phenotypic heterogeneity of a human tumor
have been developed [212]. PDTX involves the implantation
of surgically resected primary tumor specimens onto an im-
munocompromised mouse, and as such represent a rich re-
source for predictive biomarker [213] and drug development
studies [214]. Consequent proof-of-principle studies for pa-
tients with high-grade ovarian cancers [215] and other ad-
vanced cancers [216] have shown the clinical potential of
these PDTX in vivo surrogates. Notwithstanding, directly ex-
trapolating data obtained from PDTX models remains a diffi-
culty due to their poor predictive value. The reasons for these
perceived challenges are multifactorial, but one key shortcom-
ing is that PDTX models cannot fully capture the human
immune system, a critical component of the tumor microen-
vironment [217]. To this end, the development of humanized
PDTXmodels that can recapitulate the human immune system
is currently an active area of research [218, 219].

4.3 Limitations of current techniques

Although the innovative methodologies described in this re-
view provide a number of technical benefits over classical
biomarker discovery approaches, several limitations ascribed
to their use still exist. For instance, the presented ex vivo bio-
tinylation approaches are biased towards abundant and acces-
sible antigens. Less-abundant or intracellular proteins will
therefore not comprise the repertoire of recovered biomarker
candidates using these approaches. For blood-based samples,
this perceived bias presents a number of challenges due to the
presence of irrelevant high-abundance plasma proteins. As
discussed earlier, immunodepletion of these high-abundant
proteins can lead to the enrichment of lower abundance pro-
teins, thereby increasing detection sensitivity of relevant pep-
tides. However, a potential hurdle with the immunodepletion
approach is that lower abundance proteins can also be re-
moved alongside the targeted proteins. Consistent with this
observation, a preclinical study has shown that low-
abundance proteins derived from human plasma account for
only 5–6% of identified proteins after shotgun proteomic anal-
ysis [220]. To further confound this issue, it has also been
reported that shotgun proteomic analysis of complex mixtures
yields information for only a fraction of relevant peptides after
a single analytical run. This has a significant impact on the
profiling of potential biomarkers, as the presence or absence
of a particular protein may be the result of Banalytical
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incompleteness^ and not real differences between examined
samples [221]. A statistically relevant amount of replicates
(n = 10) is therefore required when performing comparative
proteomic analysis using mass spectrometric methodologies.

5 Conclusions

The greatest unmet clinical need in biomarker discovery is the
implementation of early detection to aid clinical decision-
making, thereby improving risk stratification and clinical out-
come. The current state-of-the-art with regard to biomarker
discovery and development remains expression profiling by
high-throughput sequencing and mass spectrometric-based
approaches. It is, however, important to mention that the
emerging ex vivo chemical proteomic technology also add
further enhancement to the field of biomarker discovery by
specifically detecting accessible biomarkers. Taken together,
the described technological advances are therefore critical in
furthering our understanding of tumor biology and disease
progression in both the preclinical and clinical setting.
However, due to the complex molecular architecture associat-
ed with biomolecules, these approaches are still yet to attain
the sensitivity and specificity required to confer cancer bio-
markers as standard clinical tools. Indeed, a key consideration
for the innovative approaches described in this review is the
wide dynamic range of analytes present in biological samples.
A major objective for clinical translation therefore involves
reduction of the dynamic range in analyzed samples as a
means to unveil important biomarkers that are present in low
abundance. This can directly have an impact on reproducibil-
ity and statistical modeling. Improved fractionation, isolation,
and enrichment strategies therefore need to be developed to
tackle the issue of dynamic range. Novel approaches using
equalizer beads [222] and enzyme-specific labels [223] may
further reduce dynamic range and aid in the identification of
less-abundant analytes.

The burden of tumor heterogeneity increases the complex-
ity of precision medicine-driven biomarker discovery efforts.
While taking multiple tumor biopsies as a means to determine
the exact clonal composition of tumors may not be a simple or
easy task, it can potentially improve our understanding of
tumor evolution during disease progression and therapy. As
an adaptation, longitudinal studies involving both tissue and
liquid biopsies could enable more effective prediction of the
disease course and may also be beneficial in monitoring treat-
ment response. Developing and improving non-invasive mo-
dalities may thus be a more realistic approach in interrogating
tumor heterogeneity in clinical practice [224]. Further to this,
the use of biomarkers with predictive, diagnostic, and prog-
nostic value is also a direct prerequisite for improved cancer
treatment and management. When evaluating candidate bio-
markers, it is important to consider that analytical artifacts

may be falsely grouped as candidate markers. Robust valida-
tion of disease-specific biomarkers can only be achieved
through strict implementation of proper experimental design
and study execution. Intensive standardization is also required
to guarantee the reliability, reproducibility, and comparability
of identified biomarker candidates. Although translating the
latter into practice may be a current challenge, the era of reli-
able biomarkers that will ultimately guide and improve patient
care may not be too distant in our future.
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